
GCC Internals
Internal Representations

Diego Novillo
dnovillo@google.com

November 2007

mailto:dnovillo@google.com

November 27, 2007 GCC Internals - IRs - 2

GENERIC and GIMPLE

GENERIC is a common representation shared by all
front ends

– Parsers may build their own representation for convenience

– Once parsing is complete, they emit GENERIC

GIMPLE is a simplified version of GENERIC

– 3-address representation

– Restricted grammar to facilitate the job of optimizers

November 27, 2007 GCC Internals - IRs - 3

GENERIC and GIMPLE

GENERIC

 if (foo (a + b,c))

 c = b++ / a

endif

return c

High GIMPLE

 t1 = a + b

t2 = foo (t1, c)

if (t2 != 0)

 t3 = b

 b = b + 1

 c = t3 / a

endif

return c

Low GIMPLE

 t1 = a + b

t2 = foo (t1, c)

if (t2 != 0) <L1,L2>

L1:

t3 = b

b = b + 1

c = t3 / a

goto L3

L2:

L3:

return c

November 27, 2007 GCC Internals - IRs - 4

GIMPLE

No hidden/implicit side-effects

Simplified control flow

– Loops represented with if/goto

– Lexical scopes removed (low-GIMPLE)

Locals of scalar types are treated as “registers” (real
operands)

Globals, aliased variables and non-scalar types
treated as “memory” (virtual operands)

November 27, 2007 GCC Internals - IRs - 5

GIMPLE

At most one memory load/store operation per
statement

– Memory loads only on RHS of assignments

– Stores only on LHS of assignments

Can be incrementally lowered (2 levels currently)

– High GIMPLE → lexical scopes and inline parallel regions

– Low GIMPLE → no scopes and out-of-line parallel regions

It contains extensions to represent explicit parallelism
(OpenMP)

November 27, 2007 GCC Internals - IRs - 6

GIMPLE statements

GIMPLE statements are instances of type tree

Every block contains a double-linked list of
statements

Manipulation done through iterators

block_statement_iterator si;
basic_block bb;
FOR_EACH_BB(bb)
 for (si = bsi_start(bb); !bsi_end_p(si); bsi_next(&si))
 print_generic_stmt (stderr, bsi_stmt(si), 0);

Statements can be inserted and removed inside the
block or on edges

For now

November 27, 2007 GCC Internals - IRs - 7

GIMPLE statement operands

Real operands (DEF, USE)

– Non-aliased, scalar, local variables

– Atomic references to the whole object

– GIMPLE “registers” (may not fit in a physical register)

Virtual or memory operands (VDEF, VUSE)

– Globals, aliased, structures, arrays, pointer dereferences

– Potential and/or partial references to the object

– Distinction becomes important when building SSA form

November 27, 2007 GCC Internals - IRs - 8

GIMPLE statement operands

Real operands are part of the statement

int a, b, c
c = a + b

Virtual operands are represented by two operators
VDEF and VUSE

int c[100]
int *p = (i > 10) ? &a : &b
a = VDEF <a>
b = VDEF
VUSE <c>
*p = c[i]

a or b may be defined

c[i] is a partial load from c

November 27, 2007 GCC Internals - IRs - 9

Accessing GIMPLE operands

use_operand_p use;
ssa_op_iter i;
FOR_EACH_SSA_USE_OPERAND (use, stmt, i, SSA_OP_ALL_USES)
 {
 tree op = USE_FROM_PTR (use);
 print_generic_expr (stderr, op, 0);
 }

Prints all USE and VUSE operands from stmt

SSA_OP_ALL_USES filters which operands are of
interest during iteration

For DEF and VDEF operands, replace “use” with
“def” above

November 27, 2007 GCC Internals - IRs - 10

GIMPLE tuples

More compact data structure than tree

Statements no longer an expression tree
a = b + c

=

a +

b c

code =
+

next

... ...
op0 a
op1 b
op2 c

subcode

prev
bb

 tree_code_size (=) = 64
+ tree_code_size (+) = 64
+ sizeof (annotation)= 96
 = 224

gimple_size (=) = 128

64 bit host

November 27, 2007 GCC Internals - IRs - 11

GIMPLE tuples

Fewer pointers

– Less scattered allocation

– Simplified pickling for streaming

– Potentially improved cache behaviour

Currently only statements are converted

Symbols and memory expressions are still
represented with tree

Expect modest overall memory savings (5% to 15%)

Bigger memory consumption: declarations, types,
debug info

November 27, 2007 GCC Internals - IRs - 12

GIMPLE tuples

Challenges

– Pervasive use of tree data structure

– New APIs are needed

– RTL expansion tuned to fat expression trees (codegen
differences)

Status

– Basic lowering, CFG and cgraph working

– RTL expansion in progress

– All analysis and optimization passes need to be converted

November 27, 2007 GCC Internals - IRs - 13

RTL

Register Transfer Language ≈ assembler for an
abstract machine with infinite registers

It represents low level features

– Register classes

– Memory addressing modes

– Word sizes and types

– Compare-and-branch instructions

– Calling conventions

– Bitfield operations

– Type and sign conversions

November 27, 2007 GCC Internals - IRs - 14

RTL

It is commonly represented in LISP-like form

Operands do not have types, but type modes

In this case they are all SImode (4-byte integers)

b = a - 1

(set (reg/v:SI 59 [b])
 (plus:SI (reg/v:SI 60 [a]
 (const_int -1 [0xffffffff]))))

November 27, 2007 GCC Internals - IRs - 15

RTL statements

RTL statements (insns) are instances of type rtx

Unlike GIMPLE statements, RTL insns contain
embedded links

Six types of RTL insns
INSN Regular, non-jumping instruction
JUMP_INSN Conditional and unconditional jumps
CALL_INSN Function calls
CODE_LABEL Target label for JUMP_INSN
BARRIER Control flow stops here
NOTE Debugging information

November 27, 2007 GCC Internals - IRs - 16

RTL statements

Some elements of an RTL insn

PREV_INSN Previous statement

NEXT_INSN Next statement

PATTERN Body of the statement

INSN_CODE Number for the matching machine
description pattern (-1 if not yet recog'd)

LOG_LINKS Links dependent insns in the same block
Used for instruction combination

REG_NOTES Annotations regarding register usage

November 27, 2007 GCC Internals - IRs - 17

RTL statements

Traversing all RTL statements

basic_block bb;
FOR_EACH_BB (bb)
 {
 rtx insn = BB_HEAD (bb);
 while (insn != BB_END (bb))

{
 print_rtl_single (stderr, insn);
 insn = NEXT_INSN (insn);
}

 }

November 27, 2007 GCC Internals - IRs - 18

RTL operands

No operand iterators, but RTL expressions are very
regular

Number of operands and their types are defined in
rtl.def

GET_RTX_LENGTH Number of operands

GET_RTX_FORMAT Format string describing operand
types

XEXP/XINT/XSTR/... Operand accessors

GET_RTX_CLASS Similar expressions are
categorized in classes

November 27, 2007 GCC Internals - IRs - 19

RTL operands

Operands and expressions have modes, not types

Supported modes will depend on target capabilities

Some common modes

QImode Quarter Integer (single byte)

HImode Half Integer (two bytes)

SImode Single Integer (four bytes)

DImode Double Integer (eight bytes)

...

Modes are defined in machmode.def

