
GCC Internals
Code generation

Diego Novillo
dnovillo@google.com

November 2007

mailto:dnovillo@google.com

November 27, 2007 GCC Internals - 2

Code generation

Code is generated using a rewriting system

Target specific configuration files in

gcc/config/<arch>

Three main target-specific files

– <arch>.md Code generation patterns for RTL insns

– <arch>.h Definition of target capabilities (register
classes, calling conventions, type sizes,
etc)

– <arch>.c Support functions for code generation,
predicates and target variants

November 27, 2007 GCC Internals - 3

Code generation

Two main types of rewriting schemes supported

– Simple mappings from RTL to assembly (define_insn)

– Complex mappings from RTL to RTL (define_expand)

define_insn patterns have five elements

(define_insn "addsi3"

 [(set (match_operand:SI 0 "integer_register_operand" "=d")
 (plus:SI (match_operand:SI 1 "integer_register_operand" "%d")
 (match_operand:SI 2 "gpr_or_int12_operand" "dNOPQ")))]

 ""

 "add%I2 %1,%2,%0"

 [(set_attr "length" "4")
 (set_attr "type" "int")])

1- Pattern name (optional)
2- RTL

template

3- Additional matching
predicate

4- Assembly output
template

5- Attributes associated
with this pattern (optional)

November 27, 2007 GCC Internals - 4

Code generation

define_insn � addsi3�

Named patterns

– Used to generate RTL

– Some standard names are used by code generator

– Some missing standard names are replaced with library calls
(e.g., divsi3 for targets with no division operation)

– Some pattern names are mandatory (e.g. move operations)

Unnamed (anonymous) patterns do not generate
RTL, but can be used in insn combination

November 27, 2007 GCC Internals - 5

Code generation

[(set (match_operand:SI 0 "integer_register_operand" "=d,=d")
 (plus:SI (match_operand:SI 1 "integer_register_operand" "%d,m")
 (match_operand:SI 2 "gpr_or_int12_operand""dNOPQ,m")))]

Constraints provide second level of matching
Select best operand among the set of allowed operands
Letters describe kinds of operands
Multiple alternatives separated by commas

Matching uses
Machine mode (SI, DI, HI, SF, etc)
Predicate (a C function)
Both operands and operators can be matched

November 27, 2007 GCC Internals - 6

Code generation

"add%I2 %1,%2,%0"

Code is generated by emitting strings of target
assembly

Operands in the insn pattern are replaced in the %n
placeholders

If constraints list multiple alternatives, multiple output
strings must be used

Output may be a simple string or a C function that
builds the output string

November 27, 2007 GCC Internals - 7

Pattern expansion

Some standard patterns cannot be used to produce
final target code. Two ways to handle it

– Do nothing. Some patterns can be expanded to libcalls

– Use define_expand to generate matchable RTL

Four elements

– The name of a standard insn

– Vector of RTL expressions to generate for this insn

– A C expression acting as predicate to express availability of
this instruction

– A C expression used to generate operands or more RTL

November 27, 2007 GCC Internals - 8

Pattern expansion

(define_expand "ashlsi3"
 [(set (match_operand:SI 0 "register_operand" "")
 (ashift:SI
 (match_operand:SI 1 "register_operand" "")
 (match_operand:SI 2 "nonmemory_operand" "")))]
 ""
 "{
 if (GET_CODE (operands[2]) != CONST_INT
 || (unsigned) INTVAL (operands[2]) > 3)
 FAIL;
 }")

– Generate a left shift only when the shift count is [0...3]

– FAIL indicates that expansion did not succeed and a
different expansion should be tried (e.g., a library call)

– DONE is used to prevent emitting the RTL pattern. C
fragment responsible for emitting all insns.

