
Deterministically Executing Concurrent Programs for Testing and Debugging

Steve MacDonald and Jun Chen
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Ontario, Canada

{stevem, j2chen}@uwaterloo.ca

Diego Novillo
Red Hat Inc.

dnovillo@acm.org

Abstract

Non-determinism is a serious problem in the testing
and debugging of concurrent programs. Thread interleav-
ings may be different on each run, changing the order of
events. Testing a concurrent program requires many of
these orders to be run, either to determine that all or-
ders produce correct results or to identify the presence
of timing-dependent errors called race conditions. This
paper presents preliminary work in deterministically ex-
ecuting a concurrent program using a combination of an
intermediate compiler form and aspect-oriented program-
ming. Specifically, we execute the code generated for the
intermediate compiler form using aspects to control the
value returned for the read of any shared variable. This
allows us to deterministically execute specific test cases.
This work is preliminary, with many outstanding issues,
but we feel the technique shows promise.
Keywords: Concurrent programs, testing, race condi-
tions, aspect-oriented programs, CSSAME compiler form.

1 Introduction

Testing any software is difficult because of the large
number of paths through the code. Testing concurrent
software is more difficult because of non-determinism.
Testing must account for differences in program execution
that result from thread interleavings that change each time
the program is run. These interleavings can alter the order
of events in a program, specifically the order of reads and
writes to shared variables, which can lead torace condi-
tions. For our purposes, a race condition occurs when a set
of operations must execute in a specific order for correct-
ness but the programmer has failed to supply synchroniza-
tion or mutual exclusion to guarantee that order. This is a
more general definition that considers timing-dependent
errors and not just missing mutual exclusion.

This paper presents some preliminary work on con-
trolling the execution of a concurrent program using two

technologies. The first is the CSSAME form, an inter-
mediate compiler form that analyzes explicitly-parallel
shared-memory programs [14, 15, 16]. This compiler
form captures definitions and uses of shared variables,
noting which writes are visible at a given variable use. The
second is aspect-oriented programming [11], specifically
AspectJ [10]. We use aspects to control the value of shared
variable reads to execute specific test cases. This paper as-
sumes familiarity with aspect-oriented programming.

Using these technologies, we have created a technique
for controlling the execution of a concurrent program with
three desirable characteristics. First, we can deterministi-
cally test a program for all values of a shared variable at a
given read, simulating all thread interleavings. Other tech-
niques are dependent on the timing characteristics of the
program execution, limiting the values they can consider
at a given read. We do not rely on application timing but
rather use aspects to control the execution. This allows us
to test any possible interleaving and provide better cover-
age. Second, we do not require an existing execution trace
of the program. We are deterministically executing the
program, not replaying it. Third, this method works even
if shared variable accesses are not protected by locks.

This deterministic execution has several potential uses.
First, we can use this technique to construct specific test
cases. We can not only produce a specific execution to
locate the problem, but run it again to verify it has been
corrected. Given the large number of interleavings, it may
be best to use this to produce unit tests or an initial sanity
test, to verify the basic operation of the system. It could
also be used to enumerate over all interleavings for a spe-
cific shared variable. Second, this technique could be used
to improve the operation ofnoisemakers[7, 8, 18], which
run a program many times using heuristics to generate dif-
ferent interleavings. However, these heuristics may not
be able to generate all interleavings. Our aspect-oriented
approach could increase the test coverage of these tools
with fewer runs of the program. Third, this approach
could be used for incremental debugging. Users could
construct schedules with small differences and compare
results. Differences between schedules that produce cor-

rect and incorrect results may help identify the error [5].

2 Related Work

One technique for detecting race conditions isnoise-
making, running a program repeatedly but conditionally
executing sleeps or yields to influence the interleavings
produced by the scheduler [8, 18]. A recent effort used as-
pects to insert noise, and employed other heuristics like
lowering the arguments to sleep calls [7]. This noise
is necessary because many thread schedulers are almost
deterministic, generating many executions that are be-
haviourally equivalent and thus redundant for testing pur-
poses [1]. However, noisemakers depend on proper seed-
ing of delays (how often to delay and for how long) and do
not have a fine degree of control over program execution,
making it difficult to control testing.

An improvement to noisemaking isvalue substitution
[1]. In addition to inserting noise, value substitution tracks
shared variable writes. On a read, value substitution ran-
domly chooses a value from an already-executed write that
could be visible, simulating different thread schedules. A
visibility graph is maintained to ensure a consistent execu-
tion. However, the visibility graph is prohibitively large.
Further, this technique can only substitute values from
writes that have already executed, so the interleavings that
can be tested depends on the execution timing of the pro-
gram.Fidgetingwas introduced to solve this problem [2].
The choice of value for substitution is delayed as long as
possible to increase the set of possible substitutions, but
there is still no guarantee of test coverage.

Another common debugging technique isprogram re-
play provided by tools like DejaVu [4] and others. These
tools capture the execution of a program so it can be re-
executed. If an erroneous execution is captured, the error
can be repeated until the problem is found. However, cap-
turing an error condition can be difficult if it appears infre-
quently. Further, the code that captures the execution may
perturb the program enough to remove the error. Once the
problem has been corrected, the execution state likely can-
not be used to verify the correction. The complete testing
process will have to be repeated.

A variation of replay calledalternative replayuses the
visibility graph from value substitution to produce new
thread interleavings [2]. This is similar in style toreacha-
bility testing[9]. Both replay a program up to a given point
in its execution, but rather than continuing with the exist-
ing trace, they select a new event to execute next. From
that point, the program executes normally. Reachability
testing tracks the set of executed schedules to enumerate
over all possible interleavings. Both systems rely on deter-
ministic replay (for the events at the start of the program).
In contrast, the properties of the CSSAME form permits
us to achieve the same effects without imposing this total

order, by having a history of each write to a variable. The
necessary properties are discussed in Section 4. Further,
we can control the execution of the complete program or
any portion, not just from the beginning of the execution.

A race condition is sometimes defined as concurrent
accesses to shared variables without proper synchroniza-
tion, a less general definition than the one used in this pa-
per. There are tools that try to verify this property at run-
time, like Eraser [17]. Eraser verifies not just that locks
are held, but also tries to associate variables with locks to
ensure that the correct lock is held. The main drawback is
that it can only verify a specific execution of the program.

Another approach to locating errors in concurrent
code is model checking, implemented by tools like Java
PathFinder (JPF) [3] and many others. Most model check-
ers do not execute the application, but rather create an
internal representation and analyze the representation to
verify properties of the original program. JPF is a new
Java virtual machine that detects race conditions using the
Eraser algorithm [17]. It also implements thread schedul-
ing, which is used to enumerate over different interleav-
ings. This testing uses backtracking to save re-executing
a program for each test. Our approach cannot use back-
tracking, but is considerably simpler as it does not require
a new JVM.

3 The CSSAME Compiler Form

CSSAME (Concurrent Static Single Assignment with
Mutual Exclusion, pronouncedsesame) is an intermedi-
ate compiler form for analyzing explicitly-parallel shared-
memory programs [14, 15, 16]. It extends the Concurrent
Static Single Assignment form [12], taking the synchro-
nization structure of the program into account in its anal-
ysis. Both are concurrent extensions of the Static Single
Assignment (SSA) form for single-threaded programs.

A program in SSA form has two key properties. First,
each variable is assigned only once. A single variable in
a program is replaced with multiple subscripted versions,
one for each assignment. Second, there can only be one
reaching definitionfor a given use of a variable. A reach-
ing definition for a variable use is a write to that variable
that may be the value that is read (i.e., there is an execution
path with no intervening writes between the reaching def-
inition and the use). However, control flow statements can
yield multiple reaching definitions for a use. To enforce
the second property, SSA insertsmerge operatorsinto the
code, which appear asφ functions. The arguments to the
φ function are the set of reaching definitions for the vari-
able use. The return value of theφ function is one of its
arguments, determined by the path through the code. An
example of the SSA form is shown in Figure 1.

CSSAME extends SSA to includeconcurrent reach-
ing definitionsfrom other threads. A concurrent reaching

a = 0
if (condition)

a = 1
print(a)

(a) Original source code.

a1 = 0
if (condition)

a2 = 1
a3 = φ(a1, a2)
print(a3)

(b) SSA form.

Figure 1. Example: φ functions in SSA.

definition for a variable use is a write to that variable by
another thread that may be the value that is read. Like
SSA, a use of a variable can only be reached by exactly
one definition, so concurrent definitions are merged using
π functions inserted into the code. The arguments to aπ
function are the reaching definition from the local thread
together with the set of reaching definitions from other
threads. Reaching definitions from within a single thread
are still merged withφ functions. CSSAME prunes the
arguments to aπ function based on the synchronization
structure of the program, since this limits the set of defini-
tions that could be read by another thread. This pruning is
based on two observations about the behaviour of shared
variable accesses from within a critical section [16]. First,
a definition can only be read by another thread if it es-
capes the critical section. Second, if a definition and use
occur in the same critical section, then concurrent reach-
ing definitions from other threads that are protected by
the same lock are not visible. This pruning process re-
duces the number of dependencies between threads and
increases opportunities for optimization.

An example of the CSSAME form is given in Figure 2.
The use ofa4 in T3 can only have one concurrent reach-
ing definition, so aπ function is used to merge the writes
from T1 andT2. Note thata1 is not part of the merge; the
definition does not escape the critical section inT1 and the
code inT3 runs with the same lock. Thus, it is not possible
for T3 to reada1. If the lock in eitherT1 or T3 is removed,
thena1 would be added as an argument to theπ function.

For unsynchronized accesses to shared variables, the
set of concurrent reaching definitions are dictated by the
underlying memory model. Different memory models im-
pact the placement and arguments of theπ functions [14].

The CSSAME form is generated by the Odyssey com-
piler [14]. Odyssey supports a superset of C including
explicitly-parallel programming constructs. Parallelism is
created using cobegin/coend regions, used in this paper, or
parallel loops. In the cobegin/coend region, thread bodies
are specified using syntax similar to that in Figure 2(a).
Each body runs independently. Execution resumes af-
ter the coend statement when all threads have completed.
Odyssey supports several synchronization constructs. The
best supported are locks, which Odyssey analyzes to re-
move unnecessary terms inπ functions. Event variables
and barriers are also available but are not analyzed.

Note that Odyssey only analyzes the code that it sees. If

a = 0
cobegin

T1: Lock(L)
a = 1
a = 2
Unlock(L)

T2: Lock(L)
a = 3
Unlock(L)

T3: Lock(L)
print(a)
Unlock(L)

coend

(a) Original Odyssey code.

a0 = 0
cobegin

T1: Lock(L)
a1 = 1
a2 = 2
Unlock(L)

T2: Lock(L)
a3 = 3
Unlock(L)

T3: Lock(L)
a4 = π(a0, a2, a3)
print(a4)
Unlock(L)

coend

(b) CSSAME form.

Figure 2. Example: π functions in CSSAME.

concurrent reaching definitions are in code not processed
by Odyssey (i.e., library code), then the analysis will be
incomplete. We assume no hidden definitions exist.

4 Using Aspects to run CSSAME Code

Deterministically executing a concurrent program re-
quires us to control the order of events in the program.
The events we need to control are those that cause interac-
tions between threads, which are access to shared data and
synchronization. We consider shared data accesses in this
paper. Controlling these accesses requires the ability to
order the reads and writes to the data. More specifically, if
a shared variable is written by different threads, we need
to control which of the written values is returned by a read
operation. The most common approach to impose a total
order on the events in a program by replaying an existing
trace. However, this work is not based on replay.

Our approach is based on executing the CSSAME in-
termediate form, using aspects to establish an event order-
ing. However, we do not impose a total order on the events
in the system. Instead, we exploit two key properties of
the CSSAME form to create the appearance of determin-
istic execution:π functions that indicate concurrent reach-
ing definitions and single assignment of variables. These
properties provide information about thread interactions
and allow us to capture the execution history without a
total event order.

The π functions in CSSAME provide information
about thread interactions by identifying the concurrent
reaching definitions at a variable use. For a variable read,
we know the writes from other threads that may be re-
turned, presented as terms in theπ function before the use.
π functions with multiple terms highlight places in the
code where the thread schedule may alter the outcome, as
the value for a variable use depends on the order in which
threads are run. As a result, returning different values for
aπ function simulates different schedules. One important
note is that multiple terms are not necessarily an error. The

result may depend on the thread schedule, but if no con-
current reaching definition causes an error then there is no
race condition.

Using theπ functions, we can identify two potential
sources of concurrency errors. First, aπ function may in-
clude extra, incorrect terms. In some cases, these terms
are false positives; if the compiler cannot recognize the
synchronization structure, it assumes unsynchronized ac-
cesses and does not prune the terms. Otherwise, the use
of the variable may read a value that the programmer does
not want, but there is insufficient synchronization to en-
sure the value is not visible. Given Figure 2, the program-
mer may wish the program to print out the results from
eitherT1 or T2. However, from Figure 2(b), we can see
that the initial value of 0 may be read inT3 if it executes
before the other threads. Note that this error can still occur
even if the thread bodies are mutually exclusive; barrier or
event synchronization is needed to remove this error. This
problem can often be identified by inspection. The pres-
ence ofa0 in the π function may be enough to spot the
potential problem. The problem can also be noted by run-
ning the program several times while changing the value
returned in theπ function.

The second potential problem is that one of the specific
values that is written results in an error. The program-
mer may have written the program so that its correctness
does not depend on order, but specific values may cause
errors. The programmer may wantT3 to print a value that
is greater than 0, so the error is the initial value ofa. This
problem can be found by enumerating over the terms in
theπ function.

There are several difficulties in testing concurrent pro-
grams that arise here. First, the choice of value for aπ
function is made non-deterministically at runtime, so enu-
merating over all terms in aπ function is difficult. This
problem is exacerbated by the fact that thread scheduler
implementations may be deterministic and may not pro-
duce all possible interleavings with equal probability. If
the error condition occurs on an infrequently-used sched-
ule, it can be difficult to produce the problem. Second,
once the problem is uncovered, it may be necessary to re-
peat it to locate its source. Third, once an error has been
detected, it can be difficult to be certain that changes to
the program have corrected it without restarting the test-
ing process from the beginning.

Our approach to addressing these difficulties is to deter-
ministically execute a concurrent program by running its
CSSAME equivalent, includingπ andφ functions. (For
this paper, we will ignoreφ functions and focus on con-
current reaching definitions.) However, we must still con-
trol the execution of the program by ordering the events
in a program. We do this by controlling the return values
for theπ functions, selecting one of the terms before the
program runs. For example, in Figure 2(b), the value for

a4 is the result fromπ(a0, a2, a3), which must be one of
the three concurrent reaching definitions.

We control the return value for aπ function with
aspect-oriented programming. We create an aspect that in-
tercepts calls to aπ function and overrides the return value
to be one of its arguments, chosen by the user. Different
test cases can be constructed by a user or by automated
testing software. The benefit to using aspects for this task
is the same benefit as using aspects in general: separation
of concerns. The CSSAME form can be generated once,
independently of any test case. Each test case is a separate
aspect. Without aspects, we would need to insert complex
code intoπ function bodies that would need to be modi-
fied for each test.

However, this technique in itself introduces a race on
the selected term in theπ function. That is, before the as-
pect can return a given term, we must first be sure that the
variable has been written. This problem is solved using
another aspect that intercepts field writes, noting that only
fields are shared between Java threads. Here, we exploit
the single assignment property of CSSAME; a variable is
represented by a set of subscripted versions of that vari-
able, where a version is assigned once. This has two rami-
fications. First, we have a history of the variable, saved in
different subscripted versions. Second, we can treat each
version as a latch, knowing that once it is assigned it can
be safely used without any further races. This latch is eas-
ily implemented by maintaining a boolean value indicat-
ing if the value for the variable has been set. The advice
for a π function checks this boolean and blocks the call-
ing thread until it is true. The advice for field writes sets
the boolean and wakes any waiting threads. This solution
allows any thread interleaving to be simulated, indepen-
dently of the timing of events in the program execution.

It may seem that a simpler approach to this problem
is to create aspects to intercept both reads and writes to
shared fields and control the reads. However, analysis is
still needed to find the set of concurrent reaching defini-
tions for the read. We have chosen the CSSAME form as
our analysis; other solutions are possible.

An example aspect, with helper code, is given in Fig-
ure 3. Figure 3(a) shows the aspect. The aspect defines
four pointcuts: one that captures calls to theπ function
(line 5), and one that captures writes for variablesa0

(line 10),a2 (line 12), anda3 (line 14). The advice fol-
lowing the pointcuts provides code that is inserted into the
CSSAME code. The around advice for the first pointcut,
at line 21, replaces the body of theπ function. This advice
returns the value ofa2 for theπ function in Figure 2(b).
It does so by blocking the calling thread on the latch for
a2 until it opens. This test case selects the thread inter-
leaving that hasT3 execute immediately afterT1; T2 may
have completed or may not have executed. By changing
the latch in line 23, we can construct test cases that sim-

1 public aspect TestCase1 {
2 // The args() clause lets advice access
3 // argument values.
4 // Pointcut for the π function.
5 pointcut piFunc(int a, int b, int c) :
6 (call * int π(int,int,int) && args(a,b,c));
7

8 // Pointcuts for writes to a0, a2, a3.
9 // a1 is not visible in any π function.

10 pointcut set_ a0(int n) :
11 set(protected int Example. a0) && args(n);
12 pointcut set_ a2(int n) :
13 set(protected int Example. a2) && args(n);
14 pointcut set_ a3(int n) :
15 set(protected int Example. a3) && args(n);
16

17 // Advice that wraps around execution of π
18 // function and replaces method body.
19 // Return the selected argument after it has
20 // been written.
21 int around(int a0, int a2, int a3) :
22 piFunc(int,int,int) && args(a0, a2, a3) {
23 ItemLatch choice = latch_ a2;
24 synchronized(choice) {
25 while(!choice.ready) {
26 choice.wait();
27 }
28 }
29 return(choice.value);
30 }
31

32 // Trip the latch when the field is set.
33 after(int n) : set_ a0(n) {
34 synchronized(latch_ a0) {
35 latch_ a0.ready = true;
36 latch_ a0.value = n;
37 latch_ a0.notifyAll();
38 }
39 }
40 after(int n) : set_ a2(n) {
41 // Same as for a0
42 }
43 after(int n) : set_ a3(n) {
44 // Same as for a0
45 }
46 ItemLatch latch_ a0 = new ItemLatch();
47 ItemLatch latch_ a2 = new ItemLatch();
48 ItemLatch latch_ a3 = new ItemLatch();
49 }

(a) Aspect that selectsa2 for π function.

1 public class ItemLatch {
2 public ItemLatch() {
3 ready = false;
4 }
5 public boolean ready;
6 public int value;
7 }

(b) ItemLatch helper class.

Figure 3. Aspect and helper code for a test
case in Figure 2(b).

ulate all of the potential thread interleavings. Note that
this can be done with only three executions; we only need
to determine which threads execute beforeT3, which does
not require us to enumerate over all possible orderings.
For example, in this test case, it does not matter ifT2 ex-
ecutes beforeT1 or afterT3; it is only important thatT3

runs immediately afterT1.
The advice fora0, a2, anda3 (starting at line 33) runs

after writes to the variables. It updates and opens the latch
for the variable, waking any threads waiting for the value.
The latch code is given in Figure 3(b).

This approach has several benefits. First, it is insen-
sitive to the execution timing of the program. We do not
establish a total order on the events in the program, but use
the execution history provided by the multiple subscripted
versions of shared variables. We can select a value for re-
turn in aπ function regardless of when that value is written
when the program executes. Second, we can construct any
valid interleaving for a test case when desired. Specific
scheduler implementations may not generate all possible
schedules, and may generate others infrequently. Our se-
lection of return values forπ functions is not restricted
by the scheduler. Third, we separate test cases from the
CSSAME form using aspects. Otherwise, the generated
CSSAME code would have to include all of the necessary
synchronization code. This code would appear in theπ
function bodies and at every update of a shared variable,
making for tangled code.

However, this approach has some problems. First, it is
possible to select an invalid schedule. That is, it is possible
to construct a test case specifying return values forπ func-
tions that cannot result from a valid thread schedule. This
case sometimes appears as a program that does not termi-
nate, with threads waiting for latches that will not open
because the program did not write the desired variables.
In other cases, the program terminates generating illegal
output. We need a mechanism for preventing such test
cases. Second, SSA (on which CSSAME is based) was
created for analyzing procedural programs with scalars. It
will need to be augmented to deal with arrays [6] and with
the object-oriented constructs in Java. Third, loops pose
problems for static single assignment forms. This problem
may be addressed using techniques from dynamic single
assignment [19]. These issues are discussed in [13].

5 Example

This section describes an example program based on
an example found in [1]. The primary objective is to
show how we can use our aspect-oriented approach to con-
struct different program executions to expose errors, and
to highlight some of the additional characteristics of this
approach. Another example can be found in [13].

We do not yet have an implementation of the CSSAME

int n = 1
cobegin

T1: Lock(L)
n = 0
Unlock(L)

T2: sleep(10)
Lock(L)
n = 3
Unlock(L)
barrier(2)

T3: barrier(2)
Lock(L)
print(21/n)
Unlock(L)

coend

(a) Odyssey code.

int n0 = 1
cobegin

T1: Lock(L)
n1 = 0
Unlock(L)

T2: sleep(10)
Lock(L)
n2 = 3
Unlock(L)
barrier(2)

T3: barrier(2)
Lock(L)
n3 = π(n1, n2)
print(21/n3)
Unlock(L)

coend

(b) CSSAME form.

Figure 4. Example based on Fig. 7 from [1].

form for Java code. For now, we are prototyping such a
compiler by writing explicitly-parallel code for Odyssey,
then manually translating the generated CSSAME code to
its Java equivalent and adding the necessary aspects. This
translation process is described in [13].

The example, in Figure 4, is based on Figure 7 from
[1]. In the original, one thread sets an object represent-
ing a network connection to null. A second thread sleeps,
executes a long-running method, then initializes the con-
nection object. A third thread waits for the second to com-
plete and then sends data along the connection, assuming
a non-null value. We simulate this problem using integer
arithmetic. The first thread sets a shared variable to 0. The
second sleeps then sets the variable to 1. The third thread
uses the variable as a divisor, assuming a non-zero value.
To ensure the third thread runs after the second finishes,
we use a barrier that waits for two threads to arrive.

For this example, we will assume that all of the concur-
rent reaching definitions are expected by the programmer,
and the error is that some values produce incorrect results.

When a Java version of this program is run 1000 times,
any non-zero sleep value inT2 results in a final value of 7
becauseT1 executes to completion first. In fact, the results
are correct if the sleep inT2 is removed as long asT1 is
started first. However, the program runs correctly because
the scheduler hides the error. If the sleep inT2 is removed
and it is launched first, the program almost always throws
an exception (only 5 of 1000 runs ran correctly).

Theπ function inT3 captures the concurrent reaching
definitions forn3, which shows thatn1 from T1 or n2

from t3 will be the divisor. Testing this code only requires
us to consider these two possibilities. Although there are
a large set of potential thread schedules, these schedules
can only impact the results of this program by changing
which concurrent reaching definition is used for the divi-
sor. Or rather, all thread schedules result in one of the two
possible outcomes, so we only need to test that these two
outcomes are correct. We need only run the program with

n3 equal to 3 (fromn2) andn3 equal to 0 (fromn3).

Using aspects around theπ function, we can select ei-
ther term as the return value to test the two outcomes.
With our aspect-oriented approach, we can test this pro-
gram by running it only twice. In contrast, noisemaking
programs are sensitive to the timing execution of the pro-
gram, making it difficult to properly test programs that
mistakenly use sleeps or other delays to remove race con-
ditions. In these programs, the inserted noise must out-
weigh that already in the program to force different inter-
leavings, which may be difficult since noise is probabilis-
tically executed with random sleep values. If the sleep
in T2 is sufficiently large, it may take many executions
to force the incorrect interleaving. The aspect version of
noisemaking uses advice to reduce the length of program
delays by overriding and reducing the argument to sleep
[7], but again this is done probabilistically. The timing re-
lationships in the original source code influence the abil-
ity of these tools to properly test this code. Our aspect-
oriented approach does not suffer from these timing prob-
lems. If we selectn1 as the result for theπ function, we
need only ensure that the write has completed beforen3

is assigned, which is accomplished using latches. Our ap-
proach is more closely related to value substitution [1, 2]
except that we are again not influenced by execution tim-
ings in the original. Value substitution substitutes values
from writes that have already completed in the program.
Again, the sleep in this program makes it difficult for value
substitution to detect and use the incorrect value fromT1.
Our latches remove these timing relationships and allows
us to substitute any legally visible value forn3.

To further show how value substitution depends on the
execution timing of the program, consider a version of
Figure 4 where the sleep is moved fromT2 to the start
of T1. Now, the problematic write ton1 is hidden be-
causeT1 executes last. This change has no effect on our
aspect-oriented solution because our mechanism involves
selecting values for theπ functions. Again, the latches
for the variables remove execution timing problems. With
value substitution, it is unlikely that the write of the zero
value will be finished whenT3 accesses it, so the value
is unlikely to be substituted. Fidgeting is also unlikely to
help. Adding noise to value substitution may increase the
chances of testing this scenario, but it again relies on good
seeding. Alternative replay is probably the best solution.

An additional problem for noisemakers and value sub-
stitution is that the number of executions needed to thor-
oughly test the program increases with the number of con-
current reaching definitions. Take aπ function with w
terms (one local reaching definition,w − 1 concurrent
reaching definitions). Further, assume that allw terms are
always assigned when the variable is used. Value substi-
tution selects a term with probability1w . This will likely
require more thanw executions to capture all possible in-

terleavings. Noisemakers, with less control over program
execution, will likely require even more executions. Our
approach takes exactlyw executions.

Our approach also allows executions to be repeatedly
executed during debugging. Once the division by zero is
uncovered (by selectingn1 as the return value for theπ
function), this interleaving can be repeated until the pro-
grammer uncovers the problem. In this example, the prob-
lem can be identified quickly. In more complex programs,
it may take more effort to identify the source of the error.

Equally important is that our approach can help retest
the program once a fix is applied to the code. In this ex-
ample, the error is thatn1 is assigned zero, causing the
divide by zero error. If a non-zero value is assigned in-
stead, we need to retest the program to be sure that the
results are now correct. Our aspect-oriented approach lets
us run the two test interleavings for this retesting, quickly
showing the fix removes the error. With noisemakers and
value substitution, testing must start from the beginning.
However, there is no guarantee that either kind of system
will retest the particular error condition. Program replay
is not helpful since the captured trace cannot be used to
run the new program.

It should be noted that this example requires the
CSSAME form to recognize and correctly analyze barrier
synchronization. In the program, the barrier ensures that
T3 cannot read the initial valuen0 because it must execute
afterT2 and its write. The current version of Odyssey does
not properly analyze barrier synchronization, and addsn0

as another term in theπ function. When we implement the
CSSAME form for Java, we will correct this limitation.

6 Conclusions

This paper presented preliminary research on a tech-
nique to deterministically execute a concurrent program,
based on a combination of compiler analysis and aspect-
oriented programming. We execute the Java equivalent of
the CSSAME form and use aspects to control its execution
by overriding the return values of theπ functions to return
specific values.

The main advantages of this approach are threefold.
First, we can deterministically execute the concurrent pro-
gram, examining all interleavings for a given use of a
shared variable. This allows for both testing of code and
retesting of code fixes. Most importantly, we can test
cases independently of the execution timing of the pro-
gram. Second, we do not require an execution trace of
the program since we are deterministically executing it,
not replaying it. Third, this method works even if the
shared variables are not protected with synchronization.
Although this work is preliminary, we believe it holds
promise as the basis for a testing and debugging tool for
concurrent programs.

Acknowledgements

This research was supported by the Natural Science
and Engineering Research Council of Canada and the Uni-
versity of Waterloo.

References

[1] M. Biberstein, E. Farchi, and S. Ur. Choosing among alternative
pasts. InProc. 2003 Workshop on Parallel and Distributed Systems:
Testing and Debugging, 2003.

[2] M. Biberstein, E. Farchi, and S. Ur. Fidgeting to the point of no re-
turn. InProc. 2004 Workshop on Parallel and Distributed Systems:
Testing and Debugging, 2004.

[3] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder -
Second generation of a Java model checker. InProc. Workshop on
Advances in Verification, pages 130-135, 2000.

[4] J.-D. Choi and H. Srinivasan. Deterministic replay of java multi-
threaded applications. InProc. SIGMETRICS Symposium on Par-
allel and Distributed Tools, pages 48–59, 1998.

[5] J.-D. Choi and A. Zeller. Isolating failure-inducing thread sched-
ules. InProc. 2002 International Symposium on Software Testing
and Analysis, pages 210–220, 2002.

[6] J.-F. Collard. Array SSA for explicitly parallel programs. InProc.
5th Intl. Euro-Par Conf., LNCSvol 1685, pages 383-390, 2005.

[7] S. Copty and S. Ur. Multi-threaded testing with aop is easy, and it
finds bugs! InProc. 11th International Euro-Par Conf., LNCSvol
3648, pages 740–749. Springer-Verlag, 2005.

[8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, S. Ur. Multithreaded
java program test generation.IBM Systems Journal, 41(1):111–
125, 2002.

[9] G. Hwang, K. Tai, T. Huang. Reachability testing: An approach
to testing concurrent software.International Journal of Software
Engineering and Knowledge Engineering, 5(4):493-510, 1995.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. An overview of AspectJ. InProc. 15th European
Conf. on Object–Oriented Programming, LNCSvol 2072, pages
327–353. Springer–Verlag, 2001.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. Loingtier, and J. Irwin. Aspect-oriented programming. InProc.
11th European Conf. on Object-Oriented Programming, LNCSvol
1241, pages 220–242. Springer-Verlag, 1997.

[12] J. Lee, S. Midkiff, and D. Padua. Concurrent static single as-
signment form and constant propagation for explicitly parallel pro-
grams. InProc. 10th Workshop on Languages and Compilers for
Parallel Computing, 1997.

[13] S. MacDonald, J. Chen, and D. Novillo. Choosing among alter-
native futures. InProc. Haifa Verification Conference, LNCSvol
3875, pages 247–264. Spring-Verlag, 2005.

[14] D. Novillo. Analysis and Optimization of Explicitly Parallel Pro-
grams. PhD thesis, Dept. Comp. Sci., Univ. of Alberta, 2000.

[15] D. Novillo, R. Unrau, and J. Schaeffer. Concurrent ssa form in the
presence of mutual exclusion. InProc. 1998 International Conf. on
Parallel Programming, pages 356–364, 1998.

[16] D. Novillo, R. Unrau, and J. Schaeffer. Optimizing mutual ex-
clusion synchronization in explicitly parallel programs. InProc.
5th Workshop on Languages, Compilers, and Run-time Systems for
Scalable Computers, pages 128–142, 2000.

[17] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391–411, 1997.

[18] S. Stoller. Testing concurrent Java programs using randomized sch-
eduling.Electr. Notes Theoretical Computer Science, 70(4), 2002.

[19] P. Vanbroekhoven, G. Janssens, M. Bruynooghe, H. Corporaal, and
F. Catthoor. Advanced copy propagation for arrays. InProc. 2003
ACM Conference on Languages, Compilers, and Tools for Embed-
ded Systems, pages 24-33, 2003.

