
University of AlbertaLibrary Release Form
Name of Author: Diego NovilloTitle of Thesis: Analysis and Optimization of Expli
itly Parallel ProgramsDegree: Do
tor of PhilosophyYear this Degree Granted: 2000
Permission is hereby granted to the University of Alberta Library to reprodu
esingle
opies of this thesis and to lend or sell su
h
opies for private, s
holarlyor s
ienti�
 resear
h purposes only.The author reserves all other publi
ation and other rights in asso
iation withthe
opyright in the thesis, and ex
ept as herein before provided, neitherthe thesis nor any substantial portion thereof may be printed or otherwisereprodu
ed in any material form whatever without the author's prior writtenpermission.

Diego NovilloAv. Coronel D��az 2164, 5 BBuenos Aires, 1425Argentina
Date:

University of Alberta
Analysis and Optimization of Expli
itly Parallel ProgramsbyDiego Novillo

A thesis submitted to the Fa
ulty of Graduate Studies and Resear
h in partialful�llment of the requirements for the degree of Do
tor of Philosophy.
Department of Computing S
ien
e

Edmonton, AlbertaSpring 2000

University of AlbertaFa
ulty of Graduate Studies and Resear
h
The undersigned
ertify that they have read, and re
ommend to the Fa
ultyof Graduate Studies and Resear
h for a

eptan
e, a thesis entitled Analysisand Optimization of Expli
itly Parallel Programs submitted by DiegoNovillo in partial ful�llment of the requirements for the degree of Do
tor ofPhilosophy.

Jonathan S
hae�erSupervisorRon UnrauCo-SupervisorMariusz KlobukowskiDuane SzafronLaurie HendrenExternal Examiner
Date:

Para Lily.Convertiste mi Sue~no en Realidad.

Abstra
tIn this thesis we introdu
e the CSSAME form, a new analysis frameworkfor expli
itly parallel programs that re
ognizes three fundamental elementsof a parallel program: (1) parallel stru
ture, (2) memory semanti
s, and (3)syn
hronization stru
ture. By modeling these three elements in a single uni�edframework, a
ompiler
an better exploit optimization opportunities in parallelprograms.We also develop a new syn
hronization analysis te
hnique to dete
t mutualex
lusion syn
hronization patterns that
annot be analyzed with existingte
hniques. We introdu
e the notion of multiple-entry/multiple-exit mutexregions and provide methods for validating mutual ex
lusion syn
hronizationat
ompile-time. This analysis provides the basis for the elimination ofsuper
uous memory
on
i
t edges in the program's
owgraph, leading to asimpler representation and allowing more optimization opportunities.We integrate rea
hing de�nition analysis and dead-
ode elimination intothe CSSAME framework. Furthermore, we introdu
e new optimizationte
hniques to redu
e mutual ex
lusion syn
hronization overhead: Lo
kPi
king, Lo
k Independent Code Motion and Mutex Body Lo
alization. Westudy the e�e
ts of these transformations in the
ontext of SPLASH and Javaappli
ations, prove their
orre
tness, and provide algorithms that implementthem.

A
knowledgementsMy �rst important dis
overy during this work was the realization that this isnot an individual a
hievement. Far from it. Over the years many people haveprovided me with the ne
essary intelle
tual, spiritual and monetary supportneeded to
ross the �nish line. First and foremost, I want to thank my family:Lily, Ni
ky, Pap�a, Mam�a, Mo, Enri y Ernie. Sin ustedes esto no hubiera sidoposible. Gra
ias!My long-time friend and wonderful edu
ator Carlos Neetzel planted the�rst seeds of
uriosity. Thank you Carlos for showing me what's beneath the
overs.My supervisors Dr Jonathan S
hae�er and Dr Ron Unrau provided superbguidan
e and support (both monetary and intelle
tual). Three di�erent pointsof view are sometimes diÆ
ult to re
on
ile. But I soon learned the subtle artof steering out of trouble by letting them argue among themselves. Within�nite patien
e they taught me the basi
s of resear
h,
ompilers and parallel
omputing. Their heroi
 e�orts
onverted my often
onvoluted writing andthought pro
ess into the organized do
ument that you read today.To my examining
ommittee Dr Laurie Hendren, Dr Duane Szafron andDr Mariusz Klobukowski: I thank you for your time and dedi
ation in readingthis do
ument and providing valuable feedba
k. All the remaining errorsand omissions are ex
lusively my fault. I am parti
ularly grateful for thesuggestions that Dr Hendren made to simplify the algorithms that analyzeirregular mutex bodies in the
ode.Spe
ial thanks to Dr Duane Szafron who started being one of mysupervisors until I turned into the dark side of
ompilers, bits, bytes andpointers. Your high-level views of parallel
omputing helped edu
ate anotherwise ignorant \metal-head". Rest assured that not all your e�orts havegone to waste.To my lab mates and friends Wally Lysz, Ivan Ourdev, Roel van der Goot,Steve Ma
Donald, Mark Bro
kington, Ian Parsons and David Wolos
huk;thank you for the stimulating environment you helped
reate. Steve: Hasanyone asked you what CSOC stands for? (E-mail stevem�
s.ualberta.
a fordetails).

I am also in debt with Ron Senda, my manager at the Resear
h Support Groupfor the University of Alberta. Thank you for allowing me the time and resour
esto write and play with the
ompiler. I would also like to thank Jim Lemke, my
urrent manager at Cygnus Solutions, for making it possible to �nish writing thethesis during my initial time at Cygnus.Finally, to my friends: Gra
ias mu
ha
hos!
Edmonton, Mar
h 2000

Contents
1 Introdu
tion 11.1 The Problem . 21.2 Summary of Major Contributions 41.2.1 Analysis Te
hniques 5Stati
 Single Assignment Form for Parallel Programs . 5Mutual Ex
lusion Syn
hronization Dete
tion 51.2.2 Optimizations . 6Dead-Code Elimination 7Lo
k Pi
king . 7Lo
k-Independent Code Motion (LICM) 7Mutex Body Lo
alization (MBL) 71.3 Thesis Organization . 81.4 Summary . 92 Ba
kground 112.1 Parallel Programming Models 112.1.1 Language Model . 122.1.2 Memory Model . 142.1.3 Syn
hronization Model 152.2 Optimizing Compilers . 172.2.1 Front-End . 18Lexi
al Analysis . 18Syntax and Semanti
 Analysis 19Intermediate Code Generation 192.2.2 Ba
k-End . 20Optimizing Transformations 21Code Generation . 222.3 Analysis and Optimization of Expli
itly Parallel Programs . . 222.4 Control-Flow Analysis . 242.4.1 The Control-Flow Graph 24Parallel Flow Graph 26

Extended Flow Graph 26Con
urrent Control Flow Graph 272.4.2 Common Graph Con
epts 272.5 Data-Flow Analysis . 292.5.1 Common Data-Flow Problems 30Rea
hing De�nitions 30Live Variables . 32Available Expressions 322.5.2 Iterative Data-Flow Analysis 33Iterative Data-Flow Analysis for Expli
itly ParallelPrograms . 332.5.3 Stati
 Single Assignment Form 34Stati
 Single Assignment for Expli
itly Parallel Programs 352.5.4 Other Approa
hes to Optimizing Expli
itly ParallelPrograms . 362.6 Summary . 373 Analyzing Expli
itly Parallel Programs 393.1 Con
urrent Control Flow Graph 403.1.1 Graphi
al Representation of a CCFG 423.2 Building the CCFG . 443.3 Syn
hronization Analysis . 493.3.1 Mutex Syn
hronization 49Motivation . 50Dete
ting Mutex Stru
tures 533.3.2 Validating Mutex Syn
hronization 56Lo
k Tripping . 56Deadlo
k . 58Other Lo
king Irregularities 593.3.3 Event Syn
hronization 613.3.4 Barrier Syn
hronization 613.4 Summary . 664 The CSSAME Form 694.1 The CSSA Form . 694.1.1 Computing the Sequential SSA Form 704.1.2 Pla
ing � Fun
tions . 714.1.3 Time Complexity of the CSSA Algorithm 724.2 The CSSAME Form . 734.2.1 Parallel Loops . 744.2.2 Conse
utive Kills . 76

4.2.3 Prote
ted Uses . 774.2.4 Modifying � Fun
tions Inside Mutex Bodies 784.2.5 Modifying � Fun
tions A�e
ted by Barriers 804.2.6 Computing the CSSAME Form 834.2.7 Time Complexity of the CSSAME Algorithm 844.3 Summary . 845 Optimizing expli
itly parallel programs 875.1 Constant Propagation . 875.2 Con
urrent Dead Code Elimination 905.3 Lo
k Pi
king . 925.4 Lo
k-Independent Code Motion 975.4.1 Moving Lo
k-Independent Statements 98Moving Statements to Premutex Nodes 98Moving Statements to Postmutex Nodes 103LICM for Statements (LICMS) 1055.4.2 LICM for Control Stru
tures 1065.4.3 LICM for Expressions 1095.4.4 Putting it All Together: Lo
k-Independent Code Motion(LICM) . 1115.5 Mutex Body Lo
alization . 1115.5.1 Single Writer, Multiple Readers Lo
k Pi
king 1185.6 Summary . 1186 Results 1216.1 Implementation . 1226.2 Experimental Results . 1236.2.1 SPLASH Appli
ations 125Water . 125O
ean . 1296.2.2 Java Appli
ations . 134Java Implementation 134C Implementation . 136Sequential Java Programs 1376.2.3 Other Appli
ations . 1386.3 Con
lusions . 1397 Con
lusions and Future Work 1437.1 Summary of Contributions . 1437.1.1 Analysis . 1447.1.2 Optimization . 145Adapting Sequential Te
hniques 145

Optimizing the Stru
ture of a Parallel Program 1457.2 Future Work . 1467.2.1 Parallelism . 1467.2.2 Syn
hronization . 1487.2.3 Other Memory Models 1487.2.4 Dependen
y Analysis 1497.2.5 Other Optimizations 149Partial Redundan
y Elimination (PRE) 149Thread Propagation 150Lo
k Partitioning . 1517.3 Con
lusions . 151Bibliography 153

List of Tables6.1 Speedups obtained by LICM on Water as a fun
tion of the numberof simulation time-steps. 1286.2 E�e
ts of LICM on lo
k
ontention in Water. 1296.3 E�e
ts of MBL and LICM on Simple O
ean. 1316.4 E�e
ts of LICM on the original Java implementation of the PSRSsorting algorithm (8 pro
essors). 1356.5 E�e
ts of LICM on the Java implementation of matrix multipli
ation(8 pro
essors). 1356.6 E�e
ts of LICM on the C implementation implementation of thePSRS sorting algorithm (2 pro
essors). 1366.7 E�e
ts of LICM on the C implementation of matrix multipli
ation(2 pro
essors). 1366.8 E�e
t of Lo
k-Pi
king (LP) on sequential Java programs. 138

List of Figures2.1 Syntax for spe
ifying parallel a
tivity in a program. 132.2 A distributed-memory system. Pro
essors have their own memory. 142.3 A shared-memory system. Pro
essors share the same address spa
e. 142.4 A high-level view of the
ompilation pro
ess. 172.5 The front-end analyzes and prepares the program for optimization. 182.6 Parse tree for the statement foo = bar + 30.4 - foo. 192.7 Constant propagation problems in an expli
itly parallel program. . 242.8 A sequential program and its
ontrol-
ow graph. 252.9 An example
owgraph and its dominator tree. 292.10 Dominan
e sets and dominan
e frontiers for Figure 2.9. 302.11 Post-dominan
e sets for the
owgraph in Figure 2.9. 302.12 Example of the rea
hing de�nitions problem. 312.13 Rea
hing de�nitions and rea
hed uses sets for the program in Figure2.12. 312.14 An example sequential program and its SSA form. 353.1 Mutual ex
lusion
an redu
e data dependen
ies a
ross threads in aparallel program. 403.2 Representation of parallel
onstru
ts and syn
hronization in a CCFG. 433.3 A task parallel program. 453.4 Con
urrent Control Flow Graph for the program in Figure 3.3. . . 463.5 Lo
king pattern in fun
tion PopWork(). 513.6 Partial SSA form for fun
tion PopWork(). 523.7 Dete
ting irregular mutex stru
tures in a parallel program. 543.8 Some lo
k tripping s
enarios. 583.9 Some deadlo
k s
enarios. 593.10 Lo
king irregularities. 623.11 An example of barrier syn
hronization. 643.12 Partition of pro
ess segments into phases for the program in Figure3.11. 664.1 � fun
tions inside a parallel loop. 75

4.2 Removing memory
on
i
ts. 764.3 E�e
ts of barrier syn
hronization on � fun
tions. 825.1 Constant propagation example (CSSA). 885.2 Constant propagation example (CSSAME). 895.3 Con
urrent Dead Code Elimination for program in Figure 5.2(b). . 925.4 E�e
ts of lo
k pi
king on nested mutex bodies. 945.5 Moving lo
k-independent statements. Moved statements are markedwith arrows ()). 995.6 E�e
ts of lo
k-independent
ode motion (LICM). 1125.7 Appli
ations of mutex body lo
alization. 1145.8 E�e
ts of MBL in the presen
e of single-writer, multiple-readers. . 1196.1 Computation of inter-mole
ular intera
tions in Water. 1266.2 E�e
t of LICM on the �rst mutex body of Figure 6.1. 1286.3 Simpli�ed version of fun
tion INTRAF in Water. 1306.4 E�e
ts of MBL and LICM on the
ode in Figure 6.3. 1306.5 Pro
edure slave in Simple O
ean. 1326.6 E�e
ts of MBL and LICM on the
ode in Figure 6.5. 1336.7 Nested mutex bodies in fun
tion PopWork(). 1407.1 Expressing parallel a
tivity using fork. 1477.2 Mutual ex
lusion syn
hronization without lo
ks. 1497.3 Thread propagation optimization. 150

List of De�nitions2.1 Basi
 blo
k . 252.2 Dominan
e . 272.3 Stri
t dominan
e . 272.4 Post-dominan
e . 272.5 Stri
t post-dominan
e . 282.6 Dominan
e frontier . 282.7 Immediate dominator . 282.8 Dominator tree . 282.9 Use-def
hains . 322.10 Rea
hed-uses set . 322.11 Rea
hing-defs . 323.1 Variable referen
es . 403.2 Shared variable referen
e
on
i
ts 403.3 Con
urrent basi
 blo
k . 403.4 Con
i
ts between
on
urrent basi
 blo
ks 413.5 Con
urrent Control Flow Graph (CCFG) 413.6 Entry and exit nodes . 423.7 Control path . 423.8 Lo
k-prote
ted nodes . 533.9 Mutex body . 543.10 Mutex stru
ture . 554.1 Rea
hability . 764.2 Upward exposure for mutex bodies 775.1 Lo
k-independen
e . 97

List of Algorithms3.1 Build a Con
urrent Control Flow Graph. 453.2 Con
urren
y relation. 473.3 Add
on
i
t edges. 483.4 Add syn
hronization edges. 483.5 Identi�
ation of mutex stru
tures. 573.6 Guaranteed partial exe
ution ordering. 634.1 Build the CSSA form. 704.2 Pla
e � fun
tions. 714.3 Build FUD
hains. 724.4 Pla
e � fun
tions. 734.5 Rewrite � fun
tions to a

ount for mutual ex
lusion. 804.6 Rewrite � fun
tions to a

ount for barrier syn
hronization. 834.7 Build the CSSAME form. 845.1 Con
urrent rea
hing de�nitions. 935.2 Lo
k-pi
king. 965.3 Compute
andidate premutex nodes (re
eivers). 1025.4 Compute
andidate postmutex nodes (releasers). 1045.5 Lo
k-Independent Code Motion for Statements (LICMS). 1075.6 LICM for Control Stru
tures (LICMT). 1085.7 Lo
k-Independent Code Motion for Expressions (LICME). 1105.8 Lo
k-Independent Code Motion (LICM). 1135.9 Lo
alization test (lo
alizable). 1165.10 Mutex body lo
alization. 117

List of Theorems and Lemmas4.1 Conse
utive kills . 764.2 Prote
ted uses . 774.1 Corre
tness of the � rewriting algorithm 794.3 Barrier prote
tion . 814.4 Corre
tness of the CSSAME algorithm 835.1 Corre
tness of the CDCE algorithm 915.1 Nested mutex stru
tures . 955.2 Non-
on
i
ting mutex bodies . 965.2 Hoistable statements . 1025.3 Downward-movable statements 1045.4 Target nodes for lo
k-independent expressions 109

Chapter 1Introdu
tionParallel
omputers have the potential to solve
omplex problems mu
h fasterthan
onventional sequential
omputers. Unfortunately, the mere presen
eof multiple pro
essors does not automati
ally guarantee better performan
e.Parallel programs must expli
itly distribute the work among the availablepro
essors and
oordinate their a
tivities. In turn, this division of laboralso a�e
ts the algorithm used to solve the problem. While some sequentialalgorithms lend themselves to parallel implementations, others do not.Sequential algorithms amenable to parallelization have been extensivelystudied and existing tools
an automati
ally turn some algorithms intotheir parallel
ounterpart. This approa
h, known as impli
it or automati
parallelization works well on some appli
ation domains but it is not a universalsolution (Blume and Eigenmann 1992; Eigenmann and Blume 1991). In thisdissertation we are interested in algorithms that are parallel from the outset.These algorithms express the solution to a problem in terms of sub-problemsto be solved
on
urrently. The ne
essary allo
ation of work to the di�erentpro
esses,
oordination and data sharing are expli
itly stated in the algorithm.Languages that support the implementation of expli
itly parallel algorithmsare
alled expli
itly parallel languages.In an expli
itly parallel language, the programmer has full
ontrol over theparallelism in the program. This is an expressive model be
ause it allows theuser to take full advantage of the system
apabilities. However, performan
eis still an issue; using an expli
itly parallel language does not ne
essarily1

2 Introdu
tionlead to optimum runtime performan
e. In addition to good algorithm designand implementation, an essential key to obtaining good performan
e is the
ompiler. The
ompiler is responsible for translating a program writtenin a high-level language to an equivalent program in a low-level languagethat the target ar
hite
ture
an understand. During this translation pro
essthe
ompiler applies optimizing transformations to the
ode to improve itsperforman
e. In general these transformations have an important property:they preserve the semanti
s of the original program (i.e., the optimizedprogram behaves like the original one). In
ertain
ir
umstan
es, however,optimizing transformations
an alter the semanti
s of the program. Typi
alexamples in
lude transformations that trade-o�
oating point arithmeti
pre
ision in favor of speed.To su

essfully transform a program the
ompiler must gather informationabout it. This pro
ess, known as program analysis, builds the ne
essarydata stru
tures representing the
ow of
ontrol and data in the originalprogram. This information is vital for the subsequent pro
ess of programoptimization that improves the original program. It should be noted that theterm optimization is really a misnomer. Optimizing transformations try toimprove the original
ode but they make no guarantees that the transformationwill a
tually be optimal. The transformations are intended to produ
e
odethat is no worse than the original one.This thesis introdu
es novel
ompiler analysis and transformationte
hniques to optimize the performan
e of expli
itly parallel programs. Inthe following se
tions we des
ribe the problem in detail (Se
tion 1.1), presentour main
ontributions of this work (Se
tion 1.2) and des
ribe the organizationof this thesis (Se
tion 1.3).1.1 The ProblemArguably, the easiest way to develop a parallel program is to write sequential
ode and have the system automati
ally generate an equivalent parallelprogram. This pro
ess, known as automati
 or impli
it parallelization, hasbeen the fo
us of intense resear
h and development for over three de
ades.

1.1 The Problem 3Con
eptually, this pro
ess works like any other optimizing transformation; theparallelizer (often built into the
ompiler) looks for
onstru
ts in the originalprogram that
an be exe
uted
on
urrently without altering the originalsemanti
s. By exe
uting multiple instru
tions simultaneously, the exe
utionpath of the program is shortened, thus redu
ing its runtime.This approa
h to generating parallel
ode has been extremely su

essful in
ertain appli
ation domains. Traditionally, programs performing matrix andve
tor
omputations using regular loops are prime
andidates for automati
parallelization. Many s
ienti�
 problems in physi
s, engineering and
hemistryfall into this
ategory. Unfortunately, the state of the art in parallelizingte
hnology has not advan
ed mu
h beyond this. Parallelizing
ompilers arefundamentally limited by the need to preserve the original sequential semanti
sof the program. The transformations must be su
h that the resulting parallelprogram should produ
e exa
tly the same results as the sequential version.For many appli
ation domains impli
itly parallelizing a sequential algorithmis seldom better than using an expli
itly parallel algorithm from the outset.For instan
e, the parallel version of the well-known qui
ksort algorithm, avery good sequential algorithm, performs very poorly
ompared to PSRS, anexpli
itly parallel sorting algorithm (Shi and S
hae�er 1992).The re
ognition of these limitations has resulted in an in
reased demandfor expli
itly parallel languages. An expli
itly parallel language provideslanguage
onstru
ts or library fun
tions that allow the programmer todes
ribe
on
urrent a
tivity inside the program. This added
exibility isa double-edged sword; programmers are free to spe
ify parallel algorithmsany way they
hoose at the potential expense of in
reased programming
omplexity. For some time now, resear
hers have developed new programmingmodels, programming environments and automati
 validation te
hniques tosimplify the development of parallel programs. However, developing parallelprograms is
omplex in another dimension: performan
e. Most of the existingwork in the language area has addressed expressibility and
exibility issues.Programming environments like Enterprise (S
hae�er et al. 1993) providean integral framework for developing parallel programs based on
ommonparallel
onstru
ts. Analysis tools exist to stati
ally dete
t deadlo
k patterns

4 Introdu
tion(Masti
ola and Ryder 1993) and shared memory
on
i
ts (Emrath et al.1992; Helmbold and M
Dowell 1994; Callahan et al. 1990). New languagesand programming models are being
onstantly introdu
ed; ea
h typi
allywell-suited to a few spe
i�

lasses of problems. However, these developmentsrarely address performan
e, whi
h is, in our view, the main reason for using aparallel
omputer in the �rst pla
e.Little resear
h has been done on making
ompilers understand expli
itlyparallel
ode for the purpose of optimization. Typi
ally, existing systemsand tools rely on the programmer to develop eÆ
ient
ode. The systemunderstands expli
itly parallel semanti
s only to the extent of mapping theprogram to the target ar
hite
ture. Little or no attempt is made to optimizethe
ode. In fa
t,
urrent
ommer
ial
ompilers treat expli
itly parallelse
tions of the
ode as a \bla
k box" and leave them untou
hed. There isa good reason for this limitation: transformation te
hniques for optimizingsequential programs
annot be dire
tly applied to expli
itly parallel
odebe
ause they may generate in
orre
t transformations (Midki� and Padua1990). The te
hniques developed in this thesis �ll part of the void. We presenta uni�ed framework for analyzing and optimizing expli
itly parallel programs.The optimizations des
ribed here fall into two
lasses: the adaptation ofsequential optimizations to a parallel environment; and the dire
t optimizationof the parallel and syn
hronization stru
ture of the program.1.2 Summary of Major ContributionsThe te
hniques developed in this thesis
an be organized into two
ategories:analysis and transformation te
hniques. Analysis te
hniques allow the
ompiler to reason about an expli
itly parallel program. We prove
orre
tnessproperties about the analysis and provide algorithms that implement thete
hniques. Transformation te
hniques use the information gathered by theanalysis and
onvert parts of the program into a more eÆ
ient but semanti
allyequivalent form. We prove
orre
tness properties about the transformationsand provide algorithms that implement them. We have also implemented mostof these algorithms in the SUIF
ompiler infrastru
ture (Hall et al. 1996).

1.2 Summary of Major Contributions 5We apply them to several expli
itly parallel programs and show that theseoptimizations
an result in signi�
ant improvements in performan
e. Thefollowing se
tions provide an overview of the spe
i�

ontributions of thiswork.1.2.1 Analysis Te
hniquesStati
 Single Assignment Form for Parallel ProgramsThis thesis introdu
es the Con
urrent Stati
 Single Assignment formwith Mutual Ex
lusion (CSSAME). CSSAME1 is an intermediate programrepresentation based on the the well-known Stati
 Single Assignment (SSA)form (Cytron et al. 1991). The SSA form is based on the fundamental premisethat every memory variable in the intermediate program
an only be assignedon
e. If a program is transformed to
omply with this
ondition we say thatthe program is in SSA form.An SSA form for parallel programs with interleaving memory semanti
smust take into a

ount that write and read operations to a given variable
an take pla
e simultaneously from di�erent pro
esses. The CSSAME formextends the single assignment
on
ept to the parallel
ase. It is based onthe Con
urrent Stati
 Single Assignment (CSSA) form (Lee et al. 1997b).CSSAME extends the CSSA form to support two important syn
hronizationme
hanisms, namely mutual ex
lusion and barrier syn
hronization. Chapter4 presents a formal des
ription of the CSSAME framework.Mutual Ex
lusion Syn
hronization Dete
tionMutual ex
lusion syn
hronization is used when a pro
ess needs to haveex
lusive a

ess to a shared resour
e. Ex
lusive a

ess to a shared resour
eprevents simultaneous modi�
ations whi
h might lead to an in
onsistent state.We will model mutual ex
lusion using lo
k and unlo
k operations. Ex
lusivea

ess to a shared resour
e is requested using a lo
k operation. On
e therequesting thread is done a

essing the resour
e, it
alls unlo
k to free theresour
e and allow other threads to a

ess it. All the instru
tions exe
uted1Pronoun
ed sesame.

6 Introdu
tionbetween the lo
k and the
orresponding unlo
k operation are said to be insidea mutual ex
lusion se
tion. Other names for mutual ex
lusion se
tion in
ludemutex body and
riti
al se
tion. In the
ontext of
on
urrent programs, mutualex
lusion is typi
ally used to a

ess shared variables that might be otherwisemodi�ed by several
on
urrent threads.Sin
e syn
hronization operations
an o

ur in arbitrary se
tions of the
ode, the mutual ex
lusion se
tions de�ned by lo
k and unlo
k operations
an be diÆ
ult to dis
ern. In this thesis we develop a new analysis te
hniqueto dete
t mutual ex
lusion se
tions in the program. Although te
hniques existto dete
t mutual ex
lusion se
tions, they are limited in the types of lo
kingpatterns that they
an dete
t. We formulate a di�erent algorithm for dete
ting
riti
al se
tions that
an
ope with irregular lo
king patterns in the
ode. Thisanalysis provides the foundation for all the transformations that optimize thesyn
hronization stru
ture of the program, and
an also be used to warn theprogrammer about illegal lo
king patterns.1.2.2 OptimizationsWe apply the CSSAME analysis framework to perform two types ofoptimizations: (1) the adaptation of known sequential transformations to theparallel
ase and (2) the development of new transformations that target theparallel and syn
hronization stru
ture of the program dire
tly.Current resear
h e�orts in the �eld are geared towards the �rst type oftransformations (Knoop et al. 1996; Lee et al. 1998; Lee et al. 1999). In thisthesis we adapt a sequential dead-
ode elimination algorithm to the parallel
ase.Transforming the parallel and syn
hronization stru
ture of expli
itlyparallel
ode has re
eived less attention (Krishnamurthy and Yeli
k1996; Novillo et al. 1998). We
ontribute new algorithms to eliminatesyn
hronization overhead from expli
itly parallel programs: lo
k pi
king,lo
k-independent
ode motion and mutex body lo
alization.

1.2 Summary of Major Contributions 7Dead-Code EliminationWhen a statement
omputes a value that is not used anywhere else in theprogram we say that that
omputation is dead. Dead
ode is usually removedfrom the program be
ause it serves no useful purpose. In this thesis we adapt asequential dead-
ode elimination algorithm (Cytron et al. 1991) to the parallel
ase.Lo
k Pi
kingUsing lo
k information
olle
ted during the
onstru
tion of the CSSAME form,it is possible to dete
t lo
k and unlo
k operations that are not neededin the program. As a simple
ase,
onsider a sequential program or asequential se
tion of a parallel program. Sin
e there is no parallel a
tivity,any syn
hronization operation in that se
tion is not ne
essary and
an beremoved. We
all this transformation lo
k pi
king.Lo
k-Independent Code Motion (LICM)Mutual ex
lusion
an be
ome a performan
e bottlene
k if used ex
essivelybe
ause it restri
ts parallel a
tivity in the program. In general it is desirableto redu
e the size and number of mutual ex
lusion se
tions in the
ode.Lo
k-Independent Code Motion (LICM) tries to redu
e the size of mutualex
lusion se
tions by moving
ode outside mutual ex
lusion se
tions. Thiste
hnique s
ans all the mutual ex
lusion regions in the program looking forinterior
ode that does not need to be prote
ted by the
orresponding lo
k. Thealgorithm
an move expressions, statements and even whole
ontrol stru
turesout of
riti
al se
tions.Mutex Body Lo
alization (MBL)Mutex Body Lo
alization is a new transformation that
onverts referen
es toshared memory into referen
es to lo
al memory inside
riti
al se
tions of the
ode. This transformation
an potentially
reate more lo
k-independent
odethat
an be later optimized by LICM.

8 Introdu
tion1.3 Thesis OrganizationThe rest of this thesis is organized as follows:� Chapter 2 provides ba
kground information and related work aboutparallel programming, syn
hronization models and optimizing
ompilers.It also provides details about the ne
essity of adapting sequentialoptimization te
hniques to work on expli
itly parallel programs. Thespe
i�
 language model that we assume in the rest of this thesis isintrodu
ed: an expli
itly parallel language with interleaving memorysemanti
s and three di�erent syn
hronization me
hanisms (mutualex
lusion, barriers and event variables).� Chapters 3 and 4 des
ribe the analysis framework that we use to reasonabout parallel programs. We des
ribe the Con
urrent Control FlowGraph (CCFG) that represents the
ontrol and syn
hronization stru
tureof parallel programs, the te
hnique used to identify mutual ex
lusionsyn
hronization patterns and the CSSAME form.� Chapter 5 builds on the CSSAME form to develop the followingoptimizing transformations:
on
urrent dead-
ode elimination,lo
k-independent
ode motion, mutex body lo
alization, lo
k pi
kingand lo
k partitioning.� Experimental results are presented in Chapter 6. We illustrate thebene�ts of using the CSSAME framework and the e�e
ts of the di�erenttransformations on sele
ted parallel programs taken from SPLASH(Singh et al. 1992) and TreadMarks (Keleher et al. 1994). We alsoinvestigated the potential bene�ts of our optimizations on programswritten in Java. We found that the generi
 nature of Java's thread-safelibraries leads to
orre
t but
onservative implementations that areoften overly syn
hronized. When our optimizations are applied tosample Java programs we observed up to a fa
tor of 4 improvementin runtime
ompared to the original parallel program. In fa
t, be
ausethe same libraries are used for sequential programs, we were able to get

1.4 Summary 9between 10% and 25% improvement in sequential programs when ouroptimizations are applied.� Con
lusions and future work are the subje
t of Chapter 7.1.4 SummaryWith low-
ost multipro
essor systems now being ubiquitous, the need fortools to maximize parallel performan
e has never been greater. This thesisrepresents a signi�
ant step forward in improving the
apabilities of
ompilersfor parallel programs. In parti
ular, we expe
t these te
hniques to have asigni�
ant impa
t in high-level
on
urrent or thread-based languages. Ofparti
ular importan
e in these environments is the ability of the
ompiler tounderstand syn
hronization operations whi
h
an be a sour
e of substantialoverhead in some appli
ations.

10 Introdu
tion

Chapter 2Ba
kgroundThis
hapter introdu
es the fundamental
on
epts used as the foundation forthe te
hniques developed in this thesis. The dis
ussion starts with an overviewof the more popular parallel programming models, in
luding the spe
i�
ationof parallel a
tivity, memory semanti
s and syn
hronization
onstru
ts (Se
tion2.1).The dis
ussion
ontinues with a des
ription of the stru
ture andresponsibilities of a typi
al optimizing
ompiler. The emphasis is on the datastru
tures and program representations used in the optimization phase of the
ompilation pro
ess (Se
tion 2.2).Finally, Se
tions 2.3, 2.4 and 2.5 provide ba
kground information about the�eld of analysis and optimization of expli
itly parallel programs. Te
hniquesused in sequential
ompilers
annot be dire
tly applied to parallel programs.We will des
ribe the reasons for this limitation and survey existing work inthe area. This dis
ussion will motivate the new te
hniques developed in therest of this dissertation.2.1 Parallel Programming ModelsSeveral issues must be
onsidered in a parallel programming environment:spe
i�
ation of parallel a
tivity (language model), data sharing semanti
s(memory model) and syn
hronization operations to order the a

ess to sharedresour
es (syn
hronization model). 11

12 Ba
kgroundLanguage model. The spe
i�
ation of parallel a
tivity determines how thedi�erent pro
esses parti
ipate in a
omputation. There are two types ofparallelism: task and data. In a task-parallel program, di�erent threadsexe
ute di�erent se
tions of the program on di�erent data elements.Conversely, in a data-parallel program, di�erent threads exe
ute thesame
ode on di�erent data elements.Memory model. Unlike sequential programs, the di�erent pro
esses thatexe
ute a parallel program do not ne
essarily have a

ess to the samememory address spa
e. The memory
an be shared among the pro
esses,or distributed. The
hoi
e of memory model will have a signi�
antimpa
t on the implementation and even on the algorithms used.Syn
hronization model. Syn
hronization is ne
essary to prote
t theintegrity of resour
es shared by several pro
esses. It prevents a pro
essfrom
omputing with stale or in
omplete data.2.1.1 Language ModelFor a long time, resear
h in the �eld of parallel
ompilation has fo
used on theautomati
 transformation of sequential programs into their parallel equivalent(Gupta and Banerjee 1992; Wilson et al. 1994). The
ompiler analyzes theprogram looking for se
tions of the
ode that
an be exe
uted in parallelwithout a�e
ting the original data dependen
ies in the program.Parallelizing
ompilers are very useful for some appli
ation domains. Theytypi
ally ex
el in numeri
 and s
ienti�
 appli
ations involving
omputations onregular data stru
tures like matri
es. Unfortunately, there are some importantproblem domains that parallelizing
ompilers
annot handle eÆ
iently (Blumeand Eigenmann 1992; Eigenmann and Blume 1991) (e.g., sorting, sear
hing,sparse matrix
omputations, et
). These short
omings are not always dueto limitations in the parallelization te
hniques used. For some appli
ations,the best sequential algorithms
ontain data and
ontrol dependen
ies that
urrent automati
 parallelization te
hniques
annot handle. To over
ome theselimitations, parallelizing
ompilers provide a set of annotations and dire
tivesso that the programmer
an dire
t the a
tions of the parallelizer. Even these

2.1 Parallel Programming Models 13=� Start N threads to exe
ute di�erent� se
tions of
ode
on
urrently.�=
obeginT1: beginstatementsendT2: beginstatementsend. . .TN : beginstatementsend
oend(a) A task-parallel program.

=� Start N threads to exe
ute the same�
ode
on
urrently. Ea
h thread exe
utes� with a di�erent value of i.�=parloop (i, 1, N) fstmt1;stmt2;. . .stmtM;g
(b) A data-parallel program.Figure 2.1: Syntax for spe
ifying parallel a
tivity in a program.extensions are often not enough; often the best solution is to solve the problemusing a parallel algorithm from the outset (Shi and S
hae�er 1992). All thete
hniques and algorithms developed in this thesis work on expli
itly parallelprograms. Our goal is not to extra
t parallelism from a sequential programbut to analyze and optimize a program that is already parallel. This appliesto programs that are expli
itly parallel from the outset and to the output ofan automati
 parallelization tool.We assume that expli
itly parallel programs start as a single thread of
omputation. New threads are logi
ally
reated when exe
ution rea
hesa parallel se
tion in the program. Although the
reation, pla
ement ands
heduling of threads is not signi�
ant for our resear
h, the
ompiler mustbe able to re
ognize parallel se
tions in the
ode. There are a varietyof me
hanisms for expressing parallel a
tivity. Some examples in
lude
obegin/
oend
onstru
ts, fork statements and parallel loops.We will represent task-parallel programs using
obegin/
oend
onstru
ts(Figure 2.1(a)) and data-parallel programs using parallel loops (Figure2.1(b)). The program fragments in Figure 2.1 laun
h N threads that exe
uteindependently and join with the invoking thread at the end of the parallelse
tion. The threads
reated by the
obegin/
oend
onstru
t will exe
utedi�erent
ode se
tions while the threads
reated by the parloop loop will

14 Ba
kground
M

CPU

M

CPU

M

CPU

M

CPU

M

CPU

NETWORK

msgFigure 2.2: A distributed-memory system. Pro
essors have their own memory.
CPU

cache

CPU

cache

CPU

cache

CPU

cache

CPU

cache

CPU

cache

Shared

Memory

Figure 2.3: A shared-memory system. Pro
essors share the same address spa
e.exe
ute the same pie
e of
ode. With these two
onstru
ts it is possible toexpress both task-parallel and data-parallel algorithms.2.1.2 Memory ModelMemory
an be shared or distributed among the pro
essors in the system.On a distributed-memory system, ea
h pro
essor has its own lo
al memorywhi
h
annot be a

essed by other pro
essors in the system (Figure 2.2).Interpro
essor
ommuni
ation is based on message passing. Data is sent fromone pro
essor to another via data
ommuni
ation primitives send and re
eive.In
ontrast to the distributed approa
h, a shared-memory system providesa single address spa
e that
an be a

essed by all the pro
essors in thesystem (Figure 2.3). Traditionally, shared memory has been provided inhardware with pro
essors
onne
ted to a
ommon memory pool through ashared bus. These systems, known as Symmetri
 Multipro
essors (or SMPs),su�er from s
alability problems; beyond a
ertain number the performan
e of

2.1 Parallel Programming Models 15SMP systems degrades greatly be
ause of the in
reased traÆ
 on the sharedmemory bus.To address the s
alability problem, resear
h has fo
used on providinga shared memory image on top of physi
ally distributed hardware. Thesesystems, known as Distributed Shared Memory (or DSM) or Non-UniformMemory A

ess systems (NUMA), mask the distributed nature of the memoryby providing an abstra
tion that transforms shared memory referen
es intomessages between di�erent memory modules.A sometimes heated debate exists in the parallelism
ommunity aboutthe relative bene�ts of shared-memory versus distributed-memory systems.Supporters of the shared memory model argue that its uni�ed dataa

ess notation makes for simpler and easier to maintain programs. Any
ommuni
ation required to a

ess the
ommon memory is transparentlyhandled by the system. The
urrent trend is for these two types of ar
hite
turesto merge into hybrid ar
hite
tures with features from both types of systems.While this is a
onvenient programming model, the overhead of repeatedshared-memory referen
es
an restri
t the performan
e of the programsigni�
antly. The fo
us of
urrent resear
h into shared-memory systems is inminimizing
ommuni
ation due to shared-memory traÆ
. This has produ
ed
ompiler te
hniques,
a
hing algorithms and laten
y-hiding te
hniques at thehardware and operating system level. In this work we assume that threads runin a shared address spa
e with interleaving semanti
s (i.e., updates to sharedmemory made by one thread are immediately visible to the other threads).Programs share memory via shared variables.2.1.3 Syn
hronization ModelThe analysis te
hniques dis
ussed in this do
ument rely on the e�e
ts thatsyn
hronization operations have on the
ow of data in the parallel program.The algorithms developed in this thesis support three standard syn
hronization
onstru
ts, namely mutual ex
lusion, events and barriers:� Mutual ex
lusion is used to serialize referen
es to shared variables inthe program. We will assume that programmers use standard lo
k

16 Ba
kgroundand unlo
k instru
tions to serialize a

ess to shared variables. Bothinstru
tions operate on lo
k variables whi
h
an only be referen
ed in alo
k or unlo
k statement. Furthermore, we assume that lo
k(L) readsand writes to the lo
k variable L and unlo
k(L) only writes to L.lo
k(L) blo
ks the
alling thread until it is granted ex
lusive a

essto the lo
k variable L. If a thread t2 tries to a
quire a lo
k alreadyheld by another thread t1, t2 will blo
k until t1 releases the lo
k. Ifmultiple threads try to a
quire the lo
k simultaneously, exa
tly oneis guaranteed to su

eed. The other threads are for
ed to wait.unlo
k(L) releases the lo
k on L and allows one of the threads waitingon the lo
k to pro
eed.� Event syn
hronization is supported using event variables. An eventvariable is an integer with two possible values, posted and
leared. Threeoperations apply to an event variable e:set(e) sets event variable e to posted.wait(e) if e is set to
leared, it blo
ks the
alling thread until e is setto posted.
lear(e) sets e to
leared.Event syn
hronization is used as a signaling me
hanism between threads.By using events, the programmer
an introdu
e a partial order in theexe
ution of
on
urrent threads. Assume that some
omputation Bin thread T2
an only exe
ute after thread T1 has produ
ed another
omputation A. This relation
an be implemented by using an eventvariable e that is set by T1 immediately after
omputing A and waitedby T2 immediately prior to
omputing B. Our work does not addressevent syn
hronization dire
tly; all the support for event syn
hronizationis derived from the pre
eden
e algorithms in (Lee et al. 1997a).� Barriers are used in algorithms that need to pro
eed in phases. Abarrier(b, N) instru
tion for
es the
alling thread to wait until Nthreads have exe
uted the statement barrier(b, N).

2.2 Optimizing Compilers 17
Input

Program
Front-End
(Analysis)

Intermediate
Representation

Back-End
(Synthesis)

Object
CodeFigure 2.4: A high-level view of the
ompilation pro
ess.2.2 Optimizing CompilersA
ompiler analyzes an input program written in one language (sour
e
ode)and transforms it into a semanti
ally equivalent program in another language(obje
t
ode). During translation an optimizing
ompiler applies
ertaintransformations to the input program to improve its eÆ
ien
y. There aretwo fundamental ways of measuring eÆ
ien
y: performan
e and spa
e. Mostoptimizing transformations are meant to improve performan
e. In
ertainsituations, spa
e
onsiderations are more important (e.g., systems with limitedamounts of memory and/or registers).We should point out that the transformations applied by an optimizing
ompiler are generally not optimal; they merely attempt to improve
ertainaspe
ts of the program. Optimizing transformations try to be as aggressiveas possible without modifying the original semanti
s of the program. Toa
hieve this the optimization algorithms always err on the safe side; atransformation will only be applied if it is valid for every possible exe
ution ofthe program. To summarize, an optimizing transformation must be aggressivebut
onservatively
orre
t.This se
tion starts with an overview of a typi
al
ompiler system.Compilers have two major
omponents: the front-end, whi
h is responsiblefor re
ognizing and validating the input program; and the ba
k-end, whi
htranslates the input program into the target language and applies optimizingtransformations to make the program more eÆ
ient (Figure 2.4). Spe
ialattention is given to the ba
k-end of the
ompiler; we will only brie
y des
ribethe
ompiler front-end (an in-depth des
ription of this topi

an be found in(Aho et al. 1986)).

18 Ba
kground2.2.1 Front-EndBefore the program
an be optimized and translated into
ode for the targetma
hine, the
ompiler must understand its lexi
al and synta
ti
 stru
ture.The front-end of the
ompiler
onverts the string of
hara
ters representingthe input program into data stru
tures that
onvey all the information neededby the ba
k-end to transform the program and generate obje
t
ode. There
ognition of the input program is done in three phases, namely lexi
alanalysis, syntax analysis and intermediate
ode generation (Figure 2.5).
Input

Program
Lexical

Analysis

Syntax
Analysis
(Parsing)

Semantic
Analysis

Intermediate
Code

Generation

Intermediate
RepresentationFigure 2.5: The front-end analyzes and prepares the program for optimization.Lexi
al AnalysisThis phase reads the stream of
hara
ters that make up the input program andgroups them into tokens. Tokens are symbols with a predetermined meaningin the grammar of the input language (i.e., the words of the language). Thistokenization pro
ess produ
es a more syntheti
 version of the input programthat simpli�es the task of subsequent phases. For example, given the followingstream of
hara
ters representing an assignment statementfoo = bar + 30.4 - fooa lexi
al analyzer might produ
e the following seven tokensIDENT ASSIGN IDENT PLUS NUM MINUS IDENTfoo = bar + 30.4 - fooLimited error
he
king is performed at this phase. Basi
ally, the lexi
alanalyzer
an only determine whether a string of
hara
ters is a valid tokenof the input language. The hierar
hi
al grouping of tokens into statements isperformed by the syntax analyzer.

2.2 Optimizing Compilers 19
assignment

IDENT = expression

foo expression + expression

IDENT

bar

expression - expression

NUM

30.4

IDENT

fooFigure 2.6: Parse tree for the statement foo = bar + 30.4 - foo.Syntax and Semanti
 AnalysisThe syntax analyzer, also known as parser, uses the grammar rules of the inputlanguage to group the tokens into statements. Statements are hierar
hi
algroupings often represented by parse trees. Information
ontained in parsetrees is used to validate the syntax of the input program and generateintermediate
ode used for optimization and �nal obje
t
ode generation.Figure 2.6 shows the parse tree
orresponding to the statement foo = bar+ 30.4 - foo. Interior nodes of the tree
orrespond to grammar
onstru
ts(e.g., statements, expressions, de
larations, et
); leaves
orrespond to theindividual tokens re
ognized by the lexi
al analyzer.Grammar rules are de�ned re
ursively in terms of statements, expressions,pro
edures and
ontrol stru
tures. Semanti
 analysis is also performed duringthis phase. It mainly involves
he
king expressions to dete
t operations thatare not allowed by the typing rules of the language (e.g., multiplying a stringby a
oating point number).Intermediate Code GenerationOn
e the program syntax has been veri�ed, the
ompiler generatesintermediate
ode whi
h is a more syntheti
 representation of the originalprogram. The intermediate representation used by the
ompiler often

20 Ba
kgroundresembles assembly language for an abstra
t ma
hine. By separating thelanguage (front-end) from the ar
hite
ture (ba
k-end), it is possible to re-usethe same optimization and
ode generation te
hniques for a variety of inputlanguages. Furthermore, the simpler form of this intermediate languagesimpli�es the task of optimizing and generating obje
t
ode. Returning toour running example, the expression foo = bar + 30.4 - foo is translatedto the following intermediate form in SUIF (Stanford University IntermediateForm) (Hall et al. 1996):1: ld
 nd#4 = 3.04e+01 /* Load nd#4 with
onstant 30.4 */2: add nd#3 = .bar, nd#4 /* Add nd#3 = bar + nd#4 */3: sub .foo = nd#3, .foo /* Subtra
t foo = nd#3 - foo */In this
ode fragment, the symbols nd#i are temporary variables usedinternally by the
ompiler and a
tual program variable names are pre
ededby a \.". All the analysis and transformation te
hniques performed by the
ompiler are applied to this intermediate representation. The amount ofdetail provided by the intermediate representation depends on the type ofoptimization being performed. Optimizing
ompilers typi
ally have more thanone intermediate representation, ea
h suited for di�erent transformations. Forexample, high-level transformations like loop transformations are typi
allyperformed by the front-end while low-level transformations like
ode s
hedulingare typi
ally done by the ba
k-end (
ode s
heduling reorders the generatedinstru
tions to take advantage of the target pro
essor).2.2.2 Ba
k-EndThe
ompiler ba
k-end is responsible for applying optimizing transformationsto the intermediate
ode and generating the obje
t
ode that will exe
uteon the real ma
hine. The front-end for
ompilers for both sequential andparallel languages use similar methodologies. The te
hniques for re
ognizingand validating the input program are well-known and do not vary mu
h whenmoving from the sequential to the parallel
ase. However, fundamental
hangesare ne
essary to the
ompiler's ba
k-end when moving from the sequential tothe parallel
ase.

2.2 Optimizing Compilers 21There are also signi�
ant di�eren
es between
ompiler te
hniques forexpli
itly parallel languages (like the ones developed in this thesis) and thete
hniques used in parallelizing
ompilers. Parallelizing
ompilers analyzesequential programs to generate parallel
ode with sequential semanti
s. Onthe other hand,
ompilers for expli
itly parallel languages analyze and optimizeprograms that already have parallel semanti
s.Optimizing TransformationsThe
ompiler front-end a
quires very little knowledge of what the programa
tually does. Optimization is possible when the
ompiler understands the
ow of
ontrol in the program (
ontrol-
ow analysis) and how the data istransformed as the program exe
utes (data-
ow analysis). Both types ofanalysis are dis
ussed in Se
tions 2.4 and 2.5.Analysis of the
ontrol and data-
ow of the program allows the
ompiler toimprove the runtime performan
e of the
ode. Many di�erent optimizationsare possible on
e the
ompiler understands the
ontrol and data-
ow of theprogram. The following are a few of the more popular optimization te
hniquesused in standard optimizing
ompilers:Algebrai
 simpli�
ations. Expressions are simpli�ed using algebrai
properties of their operators and operands. For instan
e, i + 1 � i is
onverted to 1. Other properties like asso
iativity,
ommutativity anddistributivity are also used to simplify expressions.Constant folding. Expressions for whi
h all operators are
onstant
an beevaluated at
ompile time and repla
ed with their value. For instan
e,the expression a = 4 + 3 � 8
an be repla
ed with a = �1. Thisoptimization (usually performed by the front-end) yields best resultswhen
ombined with
onstant propagation (page 23).Redundan
y elimination. There are several te
hniques that deal with theelimination of redundant
omputations. Some of the more
ommon onesin
lude:

22 Ba
kgroundLoop-invariant
ode motion. Computations inside loops that produ
ethe same result for every iteration are moved outside the loop.Common sub-expression elimination. If an expression is
omputed morethan on
e on a spe
i�
 exe
ution path and its operands are nevermodi�ed, the repeated
omputations are repla
ed with the result
omputed in the �rst one.Partial redundan
y elimination. A
omputation is partially redundantif some exe
ution path
omputes the expression more than on
e.This optimization adds and removes
omputations from exe
utionpaths to minimize the number of redundant
omputations in theprogram. It en
ompasses the e�e
ts of loop-invariant
ode motionand
ommon sub-expression elimination.Register allo
ation. Registers are memory lo
ations inside the pro
essoritself that are extremely fast and s
ar
e. Register allo
ation tries to keepmemory traÆ
 within the CPU registers as mu
h as possible.Code GenerationFinal target
ode
onsists of ma
hine or assembly
ode for the targetar
hite
ture. Further optimizations are enabled during this translation.Register allo
ation and
ode s
heduling are typi
ally applied during this phase.Code s
heduling refers to a family of instru
tion re-ordering te
hniques thattake advantage of spe
i�
 features of the pro
essor (e.g., pipelining, VLIW,super-s
alar features, et
).2.3 Analysis and Optimization of Expli
itlyParallel ProgramsIn 1990 Midki� and Padua published a study that showed how optimizingtransformations designed for sequential programs may fail when applied toexpli
itly parallel
ode (Midki� and Padua 1990). The
ore of the problem isthat te
hniques for sequential languages have no
on
ept of
on
urrent a
tivity,

2.3 Analysis and Optimization of Expli
itly Parallel Programs 23they assume a single thread of exe
ution. Consequently, they
annot assertwhether it is safe to apply the transformations.Current work-arounds to this problem involve disabling optimizations inparallel se
tions of the program and/or restri
ting data sharing betweenthreads. Both are inappropriate be
ause they are too restri
tive. This meansthat the
ompiler
an only optimize the sequential parts of the program.The
ompiler should \understand" parallel
ode and be able to make validoptimizing transformations. A
lassi
 example of how sequential
ompilersfail on expli
itly parallel
ode is shown in Figure 2.7. The program shows twothreads sharing a
ommon array. Thread T0 (the produ
er)
reates new valueswhile thread T1 (the
onsumer) waits for T0 to generate all the values beforedoing its work. The two threads are syn
hronized using a busy-wait loop onvariable done. When thread T0 �nishes updating the array, it sets variabledone to 1 whi
h terminates the while loop in thread T1.A
ommon transformation used in optimizing
ompilers is
alled
onstantpropagation. Basi
ally, a
onstant propagation algorithm repla
es variablesby their values if they are known to be
onstant. Consider variable done;sin
e a sequential
onstant propagation analyzer does not know about theparallel stru
ture of the program, it will produ
e in
orre
t transformations.If the
ompiler
onsiders that T0 and T1 exe
ute in sequen
e, it will
on
ludethat variable done is always 1 when
ontrol rea
hes the while loop in T1.Therefore,
onstant propagation will e�e
tively remove the busy-wait loopand the program will likely produ
e the wrong results at runtime.This example illustrates the fundamental reason why we need
ompilersto understand expli
itly parallel
ode. Con
urrent threads of a
tivity onshared data introdu
e data dependen
ies that a sequential
ompiler
annotsee be
ause it assumes a single thread of exe
ution.There are other elements in a parallel program that a
ompiler mustunderstand, namely the syn
hronization and memory models. Di�erentsyn
hronization s
hemes will impose di�erent
onstraints on how data isshared. As we will see in later se
tions this
an
reate more opportunitiesfor the
ompiler to apply more aggressive optimizations.

24 Ba
kgrounddone = 0;
obeginT0: beginfor (i = 0; i < N; i++)A[i℄ = produ
e(i);done = 1;endT1: beginwhile (done == 0); =� busy-wait �=for (i = 0; i < N; i++)print(A[i℄);end
oend(a) Original program.

done = 0;
obeginT0: beginfor (i = 0; i < N; i++)A[i℄ = produ
e(i);done = 1;endT1: beginwhile (1 == 0) =� Always false! �=; =� busy-wait never exe
uted �=for (i = 0; i < N; i++)print(A[i℄);end
oend(b) Constant propagation eliminates syn
hronization.Figure 2.7: Constant propagation problems in an expli
itly parallel program.2.4 Control-Flow AnalysisThe goal of
ontrol-
ow analysis is to dis
over the
ontrol stru
ture of theprogram. This task might seem trivial when one examines the original sour
e
ode, but re
all that the
ompiler does not deal with the original
ode.Depending on the intermediate representation used, when the
ode is
onvertedto its intermediate form, all the high-level
ontrol
onstru
ts like loops and
onditionals are sometimes lost. Even if the
ontrol information was preserved,programmers
an still write obfus
ated
ode that hide the high-level
ontrolstru
tures of the program.The
ontrol-
ow of the program is often represented in a graphi
al form
alled the
ontrol-
ow graph. The nodes of the graph,
alled basi
 blo
ks,represent a non-bran
hing sequen
e of statements (i.e., exe
ution starts withthe �rst instru
tion in the group and it only leaves the blo
k after the lastinstru
tion has been exe
uted). The edges of the graph represent possibleexe
ution paths in the
ow of
ontrol (i.e.,
onditionals, loops, et
.).2.4.1 The Control-Flow GraphThe
ontrol-
ow graph (also known as the
owgraph) is a graphi
alrepresentation of the
ontrol stru
ture of the program. Its nodes represent

2.4 Control-Flow Analysis 25
omputations and its edges represent the
ow of
ontrol. The nodes of a
owgraph are
alled basi
 blo
ks.De�nition 2.1 (Basi
 blo
k) A basi
 blo
k is a sequen
e of
onse
utivestatements in whi
h
ow of
ontrol enters at the beginning and leaves at theend without any possibility of bran
hing ex
ept at the end (Aho et al. 1986).2Formally, a
ontrol-
ow graph is de�ned as a dire
ted graph G =hN;E; begin; endi su
h that N is the set of basi
 blo
ks (or nodes), E � N�Nis the set of
ontrol-
ow edges, begin is the unique entry point to the graph andend is the unique exit point from the graph. An edge between basi
 blo
ks nand m is denoted n! m. We say that node n is the immediate prede
essor ofm and node m is the immediate su

essor of n. Similarly we de�ne the sets ofSu

(n) and Pred(n) to be the sets of immediate su

essors and prede
essorsof n respe
tively.
a = f();b = g();
 = h();if (a + b <
) fd =
;g else fd = a + b;
 = a � b;g

begin

a = f();
b = g();
c = h();

if (a + b < c)

d = c;

then

d = a + b;
c = a * b;

else

endif

endFigure 2.8: A sequential program and its
ontrol-
ow graph.

26 Ba
kgroundFigure 2.8 shows a sample
owgraph for a sequential program. While thereis little variation in the
onventions used to represent
owgraphs for sequentialprograms, there does not exist a unique notation to represent
owgraphsfor parallel programs. The di�erent representations share
ommonalities,but some in
lude extra edges to represent syn
hronization and have di�erentnotions of basi
 blo
ks.Parallel Flow GraphSrinivasan and Grunwald introdu
e the Parallel Flow Graph (PFG) (Grunwaldand Srinivasan 1993). In their language model syn
hronization is spe
i�edusing Post and Wait statements and parallel se
tions in the
ode are spe
i�edusing
obegin/
oend or parallel se
tions/end parallel se
tions.The nodes of a PFG represent extended basi
 blo
ks. An extended basi
blo
k is a basi
 blo
k with at most one Wait statement at the start of the blo
kand at most one Post statement at the end of the blo
k. Statements demarkingparallel se
tions are denoted by
obegin and
oend nodes in the graph. Thereare three types of edges: a sequential
ontrol-
ow edge represents sequential
ow of
ontrol within sequential parts of the program. A parallel
ontrol-
owedge represents parallel
ontrol
ow. It
onne
ts a
obegin node with itsimmediate su

essors and a
oend node with its immediate prede
essors. Asyn
hronization edge is a dire
ted edge between a node
ontaining a Poststatement to a node
ontaining the
orresponding Wait statement.Extended Flow GraphSrinivasan, Hook and Wolfe introdu
e the Extended Flow Graph (EFG)(Srinivasan et al. 1993). Parallel a
tivity is spe
i�ed using ParallelSe
tions. Ea
h se
tion within a Parallel Se
tions
onstru
t has its ownidentifying name. The only syn
hronization supported is the Wait(se
)
lausewhi
h
an only be used at the beginning of a se
tion. The Wait(se
)
ommand
auses the invoking se
tion to wait until se
tion se
 has �nished.The EFG is
omposed of two separate abstra
tions; the Parallel ControlFlow Graph (PCFG) whi
h represents the sequential se
tions of the
odeand the Parallel Pre
eden
e Graph whi
h represents the parallel se
tions.

2.4 Control-Flow Analysis 27The PCFG is a standard
ontrol-
ow graph with one spe
ial node
alledsupernode that represents an entire Parallel Se
tions
onstru
t. Ea
hse
tion within a Parallel Se
tions is a node of a Parallel Pre
eden
e Graph.Syn
hronization between parallel se
tions is represented with dire
ted edgesbetween the
orresponding nodes in the PPG. In turn, ea
h node of the PPGis expanded into a PCFG representing the
ode inside the se
tion.Con
urrent Control Flow GraphLee, Midki� and Padua introdu
e the Con
urrent Control Flow Graph (CCFG)(Lee et al. 1997b). It is similar to the Parallel Flow Graph but sin
ethe memory model that they use allows
on
urrent modi�
ations to sharedmemory lo
ations, the CCFG also
ontains
on
i
t edges between basi
 blo
ksthat
ontain
on
i
ting memory referen
es (i.e., at least one of the basi
 blo
ksis attempting to modify that lo
ation).The nodes of a CCFG are
alled
on
urrent basi
 blo
ks and are exa
tly likethe extended basi
 blo
ks of a PFG. The
owgraph representation used in thisthesis is based on the CCFG. We will des
ribe CCFGs in detail in Chapter 3.2.4.2 Common Graph Con
eptsIn this se
tion we de�ne several relations between nodes in a
ontrol-
ow graphthat are
ommonly used by the analysis algorithms. In what follows we assumea
ontrol-
ow graph G = hN;E;EntryG;ExitGi and two nodes x; y 2 G.De�nition 2.2 (Dominan
e) Node x dominates node y, denoted x DOM y,if every
ontrol path from EntryG to y
ontains x. Node x is in the setof dominators of y, denoted x 2 DOM (y). Node y is in the set of nodesdominated by x, denoted y 2 DOM�1(x). Note that every node alwaysdominates itself. 2De�nition 2.3 (Stri
t dominan
e) Node x stri
tly dominates node y,denoted x SDOM y, if x DOM y and x 6= y. Node x is in the set ofstri
t dominators of y, denoted x 2 SDOM (y). Node y is in the set of nodesstri
tly dominated by x, denoted y 2 SDOM�1(x). 2

28 Ba
kgroundDe�nition 2.4 (Post-dominan
e) Node y post-dominates node x, denotedy PDOM x, if every
ontrol path from x to ExitG
ontains y. Node y is in theset of post-dominators of x, denoted y 2 PDOM (x). Node x is in the set ofnodes post-dominated by y, denoted x 2 PDOM�1(y). Note that every nodealways post-dominates itself. 2De�nition 2.5 (Stri
t post-dominan
e) Node y stri
tly post-dominatesnode x, denoted y SPDOM x, if y PDOM x and x 6= y. Node y is in theset of stri
t post-dominators of x, denoted y 2 SPDOM (x). Node x is in theset of nodes stri
tly post-dominated by y, denoted x 2 SPDOM�1(y). 2De�nition 2.6 (Dominan
e frontier) The dominan
e frontier for node x,denoted DF (x) is the set of all nodes y in the
owgraph su
h that x dominatesan immediate prede
essor of y but it does not dominate y. 2De�nition 2.7 (Immediate dominator) If x DOM y, we say that node xis the immediate dominator of node y, denoted x IDOM y, if x is the lastdominator of y on any path from the entry node to y. 2De�nition 2.8 (Dominator tree) The dominator tree is de�ned re
ursivelyusing the dominan
e relation between the nodes in the graph. The root of thedominator tree is the entry node to the graph. The
hildren of a node n in thedominator tree are the nodes immediately dominated by n in the
owgraph.2We illustrate these
on
epts using the
owgraph shown in Figure 2.9(a).The entry node (node 0) dominates every node in the graph. Consequently itsdominan
e frontier is empty. Nodes 1; 2; 6 and 7 post-dominate node 0 be
auseevery path 0 ! 7 must go through those nodes. The dominan
e frontier fornode 4 is node 6 be
ause node 4 dominates an immediate prede
essor of node6 (i.e., node 5), but it does not dominate node 6 itself (i.e., there is a pathfrom 0 to 6 that does not in
lude node 4). Using the dominan
e relation onthe nodes of the graph we obtain the dominan
e tree shown in Figure 2.9(b).The tables in Figures 2.10 and 2.11 show the dominan
e and post-dominan
erelations for the nodes in the example
owgraph.

2.5 Data-Flow Analysis 29
0

1

2

3 4

6

5

7(a) Flowgraph.

0

1

2

3 4 6

5 7(b) Dominator tree.Figure 2.9: An example
owgraph and its dominator tree.2.5 Data-Flow AnalysisA data-
ow analyzer explores all the possible exe
utions of the program todetermine how it transforms the data it manipulates. A fundamental propertyof data-
ow analysis is that it must guarantee that the information it gathers isvalid for every possible exe
ution of the program. Otherwise, de
isions basedon this analysis
ould yield erroneous results.This se
tion des
ribes some of the more
ommon data-
ow analyses foundin optimizing
ompilers. Two popular data-
ow analysis frameworks aredis
ussed: iterative data-
ow analysis and the Stati
 Single Assignment form.We also survey proposed analysis te
hniques for expli
itly parallel languagesbased on these data-
ow frameworks.

30 Ba
kgroundNode (n) DOM (n) DOM�1(n) DF (n)0 f0g f0; 1; 2; 3; 4; 5; 6; 7g ;1 f0; 1g f1; 2; 3; 4; 5; 6; 7g ;2 f0; 1; 2g f2; 3; 4; 5; 6; 7g ;3 f0; 1; 2; 3g f3g f6g4 f0; 1; 2; 4g f4; 5g f6g5 f0; 1; 2; 4; 5g f5g f6g6 f0; 1; 2; 6g f6g ;7 f0; 1; 2; 6; 7g f7g ;Figure 2.10: Dominan
e sets and dominan
e frontiers for Figure 2.9.Node (n) PDOM (n) PDOM�1(n)0 f0; 1; 2; 6; 7g f0g1 f1; 2; 6; 7g f0; 1g2 f2; 6; 7g f0; 1; 2g3 f3; 6; 7g f3g4 f4; 5; 6; 7g f4g5 f5; 6; 7g f4; 5g6 f6; 7g f0; 1; 2; 3; 4; 5; 6g7 f7g f0; 1; 2; 3; 4; 5; 6; 7gFigure 2.11: Post-dominan
e sets for the
owgraph in Figure 2.9.2.5.1 Common Data-Flow ProblemsData-
ow problems model properties about various program obje
ts at spe
i�
points in the program. The information gathered when solving a spe
i�
problem is then used by the optimizer to make the a
tual transformations.Rea
hing De�nitionsA variable v is de�ned (denoted Dv) every time a new value is assigned to it.We say that a de�nition Dv of v rea
hes a
ertain point p in the program ifthere exists a path r between Dv and p su
h that r
ontains no de�nitions to v.For example, the program in Figure 2.12
ontains three de�nitions of variablea, namely D1a at line 1, D2a at line 4 and D3a at line 7. Rea
hing de�nitionanalysis on this program should determine that de�nition D1a rea
hes the useof a at lines 2, 4 and 6 but it does not rea
h line 8 be
ause of de�nition D3a atline 7.

2.5 Data-Flow Analysis 31

1: a = 4; =� Da1 �=2: b = a + 3; =� Ua1 �=3: if (b > 10) f4: a = b � 2; =� Da2 �=5: g6: print a; =� Ua2 �=7: a = a + 10; =� Da3; Ua3 �=8: print a; =� Ua4 �=

Entry

a = 4;
b = a + 3;

if (b > 10)

a = b * 2;

then

endif

print a;
a = a + 10;

print a;

ExitFigure 2.12: Example of the rea
hing de�nitions problem.
Def rea
hed-usesD1a fU1a ; U2a ; U3agD2a fU2a ; U3agD3a fU4ag(a) Rea
hed uses for ea
h de�nition of a.

Use rea
hing-defsU1a fD1agU2a fD1a; D2agU3a fD1a; D2agU4a fD3ag(b) Rea
hing de�nitions for ea
h use of a.Figure 2.13: Rea
hing de�nitions and rea
hed uses sets for the program in Figure2.12.

32 Ba
kgroundDe�nition 2.9 (Use-def
hains) Rea
hing de�nition information is usuallystored in use-def
hains or ud-
hains whi
h are lists of de�nitions rea
hing aparti
ular use of a variable. 2Use-def
hains for variable a are shown as dashed arrows in the
ontrol-
owgraph for the program (Figure 2.12). Other data stru
tures of interest in
luderea
hed-uses and rea
hing-defs sets whi
h are de�ned as follows:De�nition 2.10 (Rea
hed-uses set) Given a de�nition Dv for variable v,the set rea
hed-uses for Dv is the set of all uses of v that are rea
hed by Dv. 2De�nition 2.11 (Rea
hing-defs) Given a use Uv of variable v, the setrea
hing-defs for Uv is the set of all de�nitions for v that
an rea
h Uv. 2Note that in
olle
ting rea
hing de�nition information for this program wehave said that de�nitionD1a rea
hes line 6. This might appear
ounter-intuitivebe
ause there appears to be another de�nition in the path from line 1 to line6, namely de�nition D2a at line 4. However, de�nition at line 4 is not alwaysexe
uted therefore the
onservatively
orre
t de
ision is to assume that bothde�nitions, D1a and D2a, rea
h line 6. Rea
hing de�nitions and rea
hed usessets for variable a are shown in Figure 2.13.Live VariablesA variable v is live at a
ertain point p in the program if the value of v atp
ould be used along some path starting at p. Otherwise, we say that v isdead at p. Going ba
k to the example program in Figure 2.12, the value of b
omputed at line 2 is live at line 3 but it be
omes dead at line 5 be
ause it isnot used anymore.Available ExpressionsAn expression a + b is available at a point p in the program if all the pathsfrom the entry node to point p in the graph
ompute a + b. The notionof availability is used in optimizations like redundan
y elimination. If anexpression is repeatedly
omputed without its operands being modi�ed, thenredundant
omputations
an be removed.

2.5 Data-Flow Analysis 332.5.2 Iterative Data-Flow AnalysisIterative data-
ow analysis is the traditional method for solving data-
owproblems. Data-
ow information is
olle
ted in sets that represent theinformation needed by ea
h parti
ular problem. Traditionally, optimizingtransformations are phrased in terms of data-
ow problems. For instan
e, inthe
ase of
onstant propagation ea
h element of the data-
ow set
orrespondsto a di�erent variable in the program.The analysis is performed by setting up and solving systems of equations,known as data-
ow equations, that des
ribe the lo
al e�e
ts that ea
h basi
blo
k has on the data-
ow sets. The propagation of data-
ow properties isdone lo
ally to ea
h basi
 blo
k and the results are aggregated over all thebasi
 blo
ks to determine global properties of the program. Ea
h data-
owproblem must de�ne appropriate data-
ow sets and equations needed to gatherthe required information.Data-
ow information is typi
ally stored in four main sets: in is the setrepresenting information entering the blo
k, out is the information that exitsthe blo
k, kill is the information invalidated (or killed) by the blo
k and genis the information generated lo
ally by the blo
k. In general, the equationsare set up so that they follow the natural
ow of
ontrol of the program. Inother words, the set out is de�ned in terms of in, gen and kill. These areknown as forward data-
ow problems. But for some other problems, knownas ba
kward data-
ow problems, the data-
ow equations and their asso
iatediterations pro
eed ba
kwards.On
e set up, data-
ow equations are solved iteratively from an initial setof values. The most
ommon implementation of iterative data-
ow analyzersuses bit-ve
tors to represent the sets in the data-
ow equations. This is whythis is sometimes
alled bit-ve
tor analysis. More information about thesete
hniques
an be found in (Aho et al. 1986) and (Mu
hni
k 1997).Iterative Data-Flow Analysis for Expli
itly Parallel ProgramsGrunwald and Srinivasan developed data-
ow equations to
ompute rea
hingde�nition information on expli
itly parallel programs with
obegin/
oend

34 Ba
kgroundparallel se
tions (Grunwald and Srinivasan 1993). They assume a weakmemory
onsisten
y model in whi
h parallel se
tions are required to be dataindependent; memory updates are done at spe
i�
 points in the program using
opy-in/
opy-out semanti
s. They support event-based syn
hronizationsyn
hronization using set and wait operations.Knoop, Ste�en and Vollmer developed a bit-ve
tor analysis framework forparallel programs with interleaving memory semanti
s (Knoop et al. 1996).They show how to adapt standard optimization algorithms to their framework.However, they do not in
orporate syn
hronization operations in their analysis.They use this framework to adapt lazy
ode motion optimization whi
h is aredundan
y elimination method.2.5.3 Stati
 Single Assignment FormStati
 Single Assignment (SSA) is a relatively new intermediate representationthat is be
oming in
reasingly popular be
ause it leads to eÆ
ient algorithmi
implementations of data-
ow analyzers and optimizing transformations(Cytron et al. 1991). The SSA form is based on the premise that programvariables are only assigned on
e. Multiple assignments to the same variable
reate new versions of the variable. In essen
e, the SSA form makes all theuse-def
hains expli
it in the program, be
ause every use of a variable is rea
hedby exa
tly one de�nition.A
tual programs are seldom in SSA form initially be
ause variables tend tobe assigned multiple times; not just on
e. An SSA-based
ompiler modi�es theprogram representation so that every time a variable is assigned in the
ode, anew version of the variable is
reated. Di�erent versions of the same variableare distinguished by subs
ripting the variable name with its version number.Variables used in the right-hand side of expressions are renamed so that theirversion number mat
hes that of the most re
ent assignment. Noti
e that it isnot always possible to stati
ally determine what is the most re
ent assignmentfor a given use. These ambiguities are the result of bran
hes and loops in theprogram
ow of
ontrol. To solve this ambiguity, the SSA form introdu
esthe so-
alled � fun
tions. � fun
tions merge multiple in
oming assignments togenerate a new de�nition; they are pla
ed at points in the program where the

2.5 Data-Flow Analysis 351: a = 42: b = a + 33: if (a > 3) f4: print a5: a = a + 36: g7:8: b = 59: print a + b(a) Original program.
1: a1 = 42: b1 = a1 + 33: if (a1 > 3) f4: print a15: a2 = a1 + 36: g7: a3 = �(a1, a2)8: b2 = 59: print a3 + b2(b) Program in SSA form.Figure 2.14: An example sequential program and its SSA form.
ow of
ontrol
auses more than one assignment to be available (essentially, a� fun
tions are needed at dominan
e frontier nodes).Figure 2.14 shows a sequential program and its
orresponding SSA form(Figures 2.14(a) and 2.14(b) respe
tively). Noti
e that every assignmentin the program introdu
es a new version number for the
orrespondingvariable. Every time a variable is used, its name is repla
ed with the version
orresponding to the most re
ent assignment for the variable. Now
onsiderthe use of variable a in line 9. There are two assignments to a that
ould rea
hline 9; the assignment at line 1 and the assignment inside the if statementat line 5. To solve this ambiguity, SSA introdu
es a � fun
tion for a whi
hmerges both assignments to
reate a new version of a (a3). The semanti
s ofthe � fun
tion di
tate that a3 will take the value from one of the fun
tion'sarguments. The spe
i�
 argument returned by the � fun
tion is not knownuntil runtime.Stati
 Single Assignment for Expli
itly Parallel ProgramsSrinivasan, Hook and Wolfe developed a Stati
 Single Assignment (SSA)framework for expli
itly parallel programs (Srinivasan et al. 1993). Theiranalysis framework works on the Parallel Se
tions model (page 26). Twodi�erent merge operators are used; � and fun
tions. A � fun
tion serves thesame purpose as in sequential programs, it is pla
ed at nodes that representmerge points in the program. fun
tions model multiple parallel updates;they are pla
ed at syn
hronization points in the program if two or more

36 Ba
kground
on
urrent se
tions modify the same variable.Lee, Midki� and Padua propose a Con
urrent SSA framework (CSSA) forexpli
itly parallel programs and interleaving memory semanti
s (Lee et al.1997b). Our work builds on the CSSA form; a more detailed des
ription
anbe found in Chapter 4. Lee et al. also adapt some sequential optimizingtransformations to the parallel
ase using CSSA (Lee et al. 1998; Lee et al.1999).2.5.4 Other Approa
hes to Optimizing Expli
itlyParallel ProgramsShasha and Snir proposed an analysis te
hnique
alled
y
le dete
tion thatallows re-ordering of memory referen
es in a program to in
rease
on
urren
ywhile maintaining the sequential
onsisten
y di
tated by the
ode (Shasha andSnir 1988).Krishnamurthy and Yeli
k extended
y
le dete
tion analysis to in
orporateadditional information from syn
hronization in the program (Krishnamurthyand Yeli
k 1996). Although their work supports post/wait, barrier andmutual ex
lusion syn
hronization, they only fo
us on optimizing remotememory referen
es on a spe
i�

lass of expli
itly parallel programs.Re
ent resear
h e�orts in the area have fo
used on the Java language. Sin
eJava is a multi-threaded language, its
lass libraries must support
on
urrenta

esses by multiple threads of exe
ution. This is supported at the languagelevel using syn
hronized methods, also known asmonitors, whi
h are a variationof the traditional mutual ex
lusion se
tion. An important aspe
t of optimizingJava programs is redu
ing the overhead imposed by the thread-safe nature ofJava's libraries. Diniz, Rinard and Whaley have developed several te
hniquesto redu
e the impa
t of syn
hronization in Java programs (Whaley and Rinard1999; Diniz and Rinard 1998).

2.6 Summary 372.6 SummaryModern
ompilers are organized around two major phases: analysis andsynthesis. During analysis, the
ompiler extra
ts detailed information aboutthe program. In parti
ular the analysis phase dis
overs how the program isstru
tured and how it manipulates its data. The optimization phase usesthis information to transform the original program into an equivalent butmore eÆ
ient version. In this
ontext, eÆ
ien
y is usually asso
iated withperforman
e; we want to produ
e
ode that exe
utes as fast as possible on thetarget ar
hite
ture. Finally, the synthesis phase generates obje
t
ode that
an be exe
uted on the target ma
hine.While analysis and optimization te
hniques for sequential languages arewell-known, these te
hniques
annot be used in expli
itly parallel programsthat share memory. Con
urrent exe
ution, data sharing and syn
hronizationoperations a�e
t the
ontrol and data
ow of the program in ways thatthe sequential te
hniques are unable to handle. There have been re
entadvan
es in developing analysis frameworks for expli
itly parallel programsand adapting traditional optimization te
hniques su
h as
onstant propagationand dead-
ode elimination to the parallel
ase. However, there has beenless emphasis on optimizing the parallel and syn
hronization stru
ture of theprogram itself.In the following
hapters we introdu
e novel analysis te
hniques thatin
orporate both the parallel and syn
hronization stru
ture of the program intoa uni�ed framework for analyzing and optimizing expli
itly parallel programs.

38 Ba
kground

Chapter 3Analyzing Expli
itly ParallelProgramsIn an expli
itly parallel program with shared memory semanti
s, the useof a shared variable v
an be rea
hed by any de�nition of v in another
on
urrent thread. However, syn
hronization
onstru
ts may prevent somevariable de�nitions from being visible to other threads. For example,
onsiderthe program in Figure 3.1. If the
ompiler ignores the mutual ex
lusionregions
reated by the lo
k operations, it will
on
lude that the de�nitionfor variable a in thread T0
an rea
h both uses of a in thread T1. However,the syn
hronization used in the program serializes the referen
es to a so thatthe assignment to a in T0
annot rea
h the se
ond use of a in T1. Therefore,the
all to fun
tion g() in T1 will always be exe
uted with a = 3.This
hapter introdu
es the foundations for the analysis frameworkdeveloped in Chapter 4. We start with a des
ription of the Con
urrent ControlFlow Graph (CCFG) (Se
tion 3.1). Se
tion 3.2 des
ribes the pro
ess used tobuild the CCFG for a given program. We then use the CCFG to analyzethe syn
hronization patterns in the program to gather non-
on
urren
yinformation. As observed in Figure 3.1, syn
hronization
an redu
e datadependen
ies a
ross
on
urrent threads in the program. This redu
tion ofdata dependen
ies may allow more aggressive optimization in subsequenttransformation passes. In this work we support three types of syn
hronizationoperations: events, mutual ex
lusion and barriers (Se
tion 3.3).39

40 Analyzing Expli
itly Parallel Programs
obegin =� Begin
on
urrent exe
ution �=T0: begin =� Laun
h thread T0 �=if (b > 0) fb = 3 = a;glo
k(L);a = a + b;unlo
k(L);endT1: begin =� Laun
h thread T1 �=f(a);lo
k(L);a = 3; =� This kills the assignment to a in T0 �=b = b + g(a); =� Variable a is always 3 �=unlo
k(L);end
oendFigure 3.1: Mutual ex
lusion
an redu
e data dependen
ies a
ross threads in aparallel program.3.1 Con
urrent Control Flow GraphA Con
urrent Control Flow Graph (CCFG) (Lee et al. 1997b) is similar to itssequential
ounterpart, the Control Flow Graph (Aho et al. 1986). It representsthe
ontrol stru
ture of a parallel program in
luding the parallel
onstru
ts
obegin/
oend and parloop. In addition, a CCFG
ontains edges to representmemory
on
i
ts a
ross
on
urrent threads and event syn
hronization. Weextend the CCFG so that ea
h lo
k, unlo
k and barrier operation isrepresented by a separate node.De�nition 3.1 (Variable referen
es) Variables are referen
ed every timetheir values are read or modi�ed by the program. Read referen
es are alsoknown as uses, while write referen
es are also known as de�nitions. 2De�nition 3.2 (Shared variable referen
e
on
i
ts) Two variablereferen
es in di�erent threads
on
i
t if (a) both referen
e the same variable,(b) one of them is a write referen
e, and, (
) the threads
an exe
ute
on
urrently. 2De�nition 3.3 (Con
urrent basi
 blo
k) A
on
urrent basi
 blo
k is abasi
 blo
k (Aho et al. 1986) with the following additional properties:1. Only the �rst statement of the blo
k
an be a wait statement or
ontain

3.1 Con
urrent Control Flow Graph 41a use of a
on
i
ting variable.2. Only the last statement of the blo
k
an be a set statement or
ontaina de�nition of a
on
i
ting variable.3. Syn
hronization operations lo
k, unlo
k and barrier are pla
ed intheir own blo
k.4. Parallel
ontrol instru
tions
obegin,
oend and parloop are pla
ed intheir own blo
k. 2De�nition 3.4 (Con
i
ts between
on
urrent basi
 blo
ks) Two
on
urrent basi
 blo
ks a and b in di�erent threads
on
i
t if they
anexe
ute
on
urrently and
ontain
on
i
ting variable referen
es. 2De�nition 3.5 (Con
urrent Control Flow Graph (CCFG))A Con
urrent Control Flow Graph (CCFG) is a dire
ted graphG = hN;E;EntryG;ExitGi su
h that:1. N is the set of nodes in the graph. Ea
h node in N
orresponds to a
on
urrent basi
 blo
k.2. EntryG and ExitG are the unique entry and exit points of the program.3. E = Ef SEsSE
 is the set of edges in the graph su
h that:(a) Ef is the set of
ontrol
ow edges. These edges have the samemeaning as in a sequential Control Flow Graph.(b) Es is the set of edges representing event syn
hronization. These aredire
ted edges that join related set and wait nodes in
on
urrentthreads.(
) E
 is the set of
on
i
t edges. Con
i
t edges are bi-dire
tional edgesthat join any two
on
urrent basi
 blo
ks that
on
i
t. There is alabel on a
on
i
t edge that represents the memory operations doneat ea
h end of the edge. There are two kinds of
on
i
ts:i. def-use: one of the nodes writes to the shared variable andthe other one reads from it. These
on
i
ts are labeled DU(v),where v is the name of the variable being a

essed.

42 Analyzing Expli
itly Parallel Programsii. def-def : both nodes write to the shared variable. These
on
i
ts are labeled DD(v), where v is the name of the variablebeing modi�ed. 2De�nition 3.6 (Entry and exit nodes) Given a thread T , beginT is theentry node for T , endT is the exit node for T ,
obeginT is the
obegin nodefor the innermost
obegin/
oend stru
ture
ontaining T , and
oendT is the
orresponding
oend node for
obeginT . 2De�nition 3.7 (Control path) Given two nodes x and y in a CCFG G, apath from x to y is a
ontrol path if it only
ontains edges in Ef . 23.1.1 Graphi
al Representation of a CCFGThis se
tion des
ribes the graphi
al notation we use to represent CCFGs.Figures 3.2(a) and 3.2(b) show the representation for
obegin/
oend andparloop
onstru
ts respe
tively. Figure 3.2(
) illustrate the representation ofevent syn
hronization edges.Graph nodes are represented using three di�erent shapes. Ellipses represententry and exit nodes for the graph, loops, parallel stru
tures (
obegin/
oendand parloop) and nested s
opes in the sour
e program. Header nodes for
onditional statements are represented using diamonds. Finally, re
tanglesrepresent
on
urrent basi
 blo
ks. Control
ow edges are represented usingsolid lines. Con
i
t edges are represented with dotted lines. Dashed linesrepresent event syn
hronization edges.Ea
h
obegin node has one outgoing
ontrol edge for ea
h
hild thread itlaun
hes. Graphi
ally, ea
h thread is represented as a sub-graph rooted at the
obegin node (Figure 3.2(a)). All the
hildren threads join at the
oend node.Con
i
t edges always join nodes in threads that share at least one
ommon
obegin node.We experimented with two di�erent ways of representing parallel loops.Sin
e a parallel loop is not really an iterative
ontrol stru
ture, we initiallyrepresented parallel loops as a
obegin/
oend with one thread. Ea
h nodeinside the parloop stru
ture had the property of being
on
urrent with itself.Therefore, the algorithms and data stru
tures have to support self-referen
ing

3.1 Con
urrent Control Flow Graph 43
begin

cobegin

begin begin

...

begin

stmts;

end

coend

stmts;

end

stmts;

end

end(a)
obegin/
oend
onstru
t.

Original Replica

begin

parloop (i, 1, N)

stmts; stmts’;

stmts;

parend

stmts’;

end(b) parloop
onstru
t.
begin

cobegin

stmts wait(e)

stmts

set(e)

coend

stmts

stmts

end(
) Event syn
hronization edges.Figure 3.2: Representation of parallel
onstru
ts and syn
hronization in a CCFG.

44 Analyzing Expli
itly Parallel Programs
on
i
t edges. This is parti
ularly important in building the CSSAME formfor the program (Chapter 4).Although this representation was enough for our purposes, it
an be
onfusing to visualize and it does not permit
ertain analyses used in theliterature (like
y
le dete
tion (Shasha and Snir 1988)). The other methodto represent parallel loops is to repli
ate the body of the loop and
onsiderit like a
obegin/
oend stru
ture with two threads: the original and therepli
a (Figure 3.2(b)). This representation is identi
al to the
obegin/
oendrepresentation,
on
i
t edges join distin
t nodes (there are no self-referen
ing
on
i
ts) and it fa
ilitates the design of some of the analysis algorithmsproposed in the literature (Krishnamurthy and Yeli
k 1996; Lee et al. 1999).From an implementation point of view, this representation has the drawba
k ofpotentially doubling the memory requirements. In subsequent se
tions we usethis representation to simplify the explanation of some algorithms. However,in our
urrent implementation we do not
reate repli
as of parallel loop bodies.Event syn
hronization operations (set and wait) are represented in the
owgraph using dire
ted edges from set nodes to the
orresponding wait node.Noti
e that set and wait are the only syn
hronization operations that
reateadditional edges in the CCFG. This is used during syn
hronization analysisto
ompute guaranteed pre
eden
e ordering (Se
tion 3.3.3). Mutual ex
lusionand barrier syn
hronization are supported but no additional edges are requiredby the syn
hronization analysis phase. An example of an expli
itly parallelprogram and its CCFG are illustrated in Figures 3.3 and 3.4.3.2 Building the CCFGAlgorithm 3.1 builds the
on
urrent
ontrol
ow graph for an expli
itly parallelprogram P . It
onsists of three phases: (a) pla
ement of nodes and
ontroledges, (b) pla
ement of
on
i
t edges and (
) pla
ement of syn
hronizationedges.Graph nodes and
ontrol edges are
reated using a slightly modi�ed versionof a standard algorithm to build
ontrol
ow graphs (Aho et al. 1986). Themodi�
ation allows the original algorithm to re
ognize the
obegin/
oend

3.2 Building the CCFG 45a = 0;b = 0;
obeginT0: beginlo
k(L);a = 5;b = a + 3;if (b > 4) fa = a + b;gx = a;unlo
k(L);endT1: beginlo
k(L);a = b + 6;y = a;unlo
k(L);end
oendprint(x, y);Figure 3.3: A task parallel program.and parloop
onstru
ts. Basi
 blo
ks are built using a linear s
an of all thestatements in the program. This step builds basi
 blo
ks, not
on
urrent basi
blo
ks. Subsequent phases of the algorithm will split the basi
 blo
ks to
reate
on
urrent basi
 blo
ks, and in
orporate
on
i
t and syn
hronization edges tothe base graph.Algorithm 3.1 Build a Con
urrent Control Flow Graph.input: An expli
itly parallel program Poutput: The
on
urrent
ontrol
ow graph G = hN;E;EntryG;ExitGi for P1: Build maximal basi
 blo
ks and
ontrol edges (Aho et al. 1986).2: Add
on
i
t edges (Algorithm 3.3).3: Add syn
hronization edges (Algorithm 3.4).On
e the basi
 stru
ture of the
owgraph has been built,
on
i
t andsyn
hronization edges are added to the graph. To add
on
i
t edges, thegraph is traversed looking for nodes that
an exe
ute
on
urrently and a

essthe same memory lo
ation in a
on
i
ting manner. Algorithm 3.2 is used todetermine whether two arbitrary nodes in the graph
an exe
ute
on
urrently.The algorithm assumes the existen
e of two data stru
tures:Thread(n) is the thread that
ontains node n. Threads are assumed to have

46 Analyzing Expli
itly Parallel Programs
begin

a = 0;
b = 0;

cobegin

begin begin

lock(L);

a = 5;

b = a + 3;

if (b > 4) {

a = a + b;

endif

a = b + 6;

DU(a)

y = a;

DU(a)

x = a;

unlock(L);

DU(a)

end

coend

lock(L);

DD(a)

DU(a)DU(b)DU(a)

unlock(L);

end

print(x);
print(y);

end

Control flow edge

Conflict edge

Figure 3.4: Con
urrent Control Flow Graph for the program in Figure 3.3.

3.2 Building the CCFG 47a unique id
omputed automati
ally by the
ompiler. The sequentialparts of the program are always exe
uted by thread Tseq .ParAn
estors(n) is the set of
obegin and parloop nodes that
an berea
hed in a ba
kwards traversal of the dominator tree from node nto the entry node of the CCFG.Algorithm 3.2 Con
urren
y relation.input: Two
on
urrent basi
 blo
ks a; b 2 G = hN;E;EntryG;ExitGi.output: true if a and b
an exe
ute
on
urrently, false otherwise.1: fun
tion
on
(a; b)2: /* If a or b are in a sequential region, they
annot be
on
urrent. */3: if Thread(a) = Tseq _ Thread (b) = Tseq then4: return false5: end if6:7: /* If a and b have a
ommon parloop node in their ParAn
estors set, they are
on
urrent. */8: if 9n 2 ParAn
estors(a) s.t. n = parloop ^ n 2 ParAn
estors(b) then9: return true10: end if11:12: /* If a and b have a
ommon
obegin node in their */13: /* ParAn
estors set and they are on di�erent threads */14: /* and they are not the same node, then they are
on
urrent. */15: if 9n 2 ParAn
estors(a) s.t. n =
obegin ^Thread(a) 6= Thread(b) ^ a 6= b then16: return true17: end if18:19: /* None of the previous tests su

eeded. The nodes are not
on
urrent. */20: return falseCon
urrent nodes with memory
on
i
ts are marked as
on
i
ting and splitup to
reate
on
urrent basi
 blo
ks a

ording to the rules given in De�nition3.3. Con
i
t edges are
reated to join the
on
i
ting nodes (Algorithm 3.3).Noti
e that at this stage we do not use the non-
on
urren
y information that
an be gathered from the syn
hronization stru
tures of the program. As wewill dis
uss in Se
tion 3.3, it is generally more
onvenient for syn
hronizationanalysis to have the basi
 CCFG already built. In pra
ti
e, however, thisanalysis
ould be performed in
onjun
tion with syn
hronization analysis.When implementing the
ompiler, we dis
overed that it is easier to build
on
urrent basi
 blo
ks from the outset than it is to build maximal basi
 blo
ksand then split them up. The main reason is that when splitting basi
 blo
ksone must take
are of boundary
onditions so that no empty basi
 blo
ks are

48 Analyzing Expli
itly Parallel Programs
reated. What we implemented is a two pass algorithm that will �rst s
anthe program and determine
on
i
t lists at the level of instru
tions. Duringthe
on
urrent basi
 blo
k building pass, the
on
i
t list in ea
h instru
tionis
he
ked to see if the instru
tion should be added to the
urrent blo
k or anew blo
k be
reated. This is more memory intensive, but it simpli�ed ourimplementation. For
larity of presentation we have de
ided to des
ribe themas two separate phases.Algorithm 3.3 Add
on
i
t edges.input: An in
omplete
on
urrent
ontrol
ow graph G = hN;E;EntryG;ExitGi with no
on
i
tedges.output: The CCFG G given as input with
on
i
t edges E
 added.1: E
 ;2: forea
h a 2 N do3: forea
h b 2 N do4: /* Call Algorithm 3.2 (
on
) to determine whether a and b are
on
urrent */5: if (
on
(a; b) = true) ^ (a
on
i
ts with b) then6: E
 E
Sf(a; b)g7: end if8: end for9: end for10: forea
h (a; b) 2 E
 do11: Split blo
ks a and b to
omply with de�nition 3.3.12: end forThe last step in the
onstru
tion of the CCFG is to add dire
tedsyn
hronization edges for related set and wait operations in the program(Algorithm 3.4). For every pair of nodes set and wait the algorithm
he
ksif they
an exe
ute
on
urrently and operate on the same syn
hronizationvariable. If so, a dire
ted edge from the set node to the wait node is added.Algorithm 3.4 Add syn
hronization edges.input: An in
omplete
on
urrent
ontrol
ow graph G = hN;E;EntryG;ExitGi with nosyn
hronization edges.output: The graph G with syn
hronization edges Es added.1: Es ;2: /* For every event variable v add an edge from ea
h set(v) to every wait(v). */3: forea
h a 2 N do4: forea
h b 2 N do5: if
on
(a; b) = true then6: if (a = set(v)) ^ (b = wait(v)) then7: Es EsS f(a; b)g8: end if9: end if10: end for11: end for

3.3 Syn
hronization Analysis 493.3 Syn
hronization AnalysisParallel programs use syn
hronization to order the a

ess to shared databy the di�erent threads in the program. Typi
ally, syn
hronizationoperations introdu
e non-
on
urren
y among otherwise
on
urrent regions ofthe program. The goal of syn
hronization analysis is to determine whi
h nodesin
on
urrent se
tions of the program will not exe
ute
on
urrently. Thisinformation is used to disregard memory
on
i
ts from the CCFG that
annoto

ur at runtime due to syn
hronization restri
tions. Redu
ing the number ofmemory
on
i
ts gives more freedom to the
ompiler when applying optimizingtransformations. Furthermore, information about syn
hronization semanti
sallows the development of te
hniques to validate the syn
hronization stru
tureof the program.In this work we support three types of syn
hronization: mutual ex
lusion,events and barriers. Se
tion 3.3.1 develops new te
hniques to analyze mutualex
lusion syn
hronization patterns in parallel programs. Te
hniques forstati
ally validating mutual ex
lusion are dis
ussed in Se
tion 3.3.2. Weuse existing syn
hronization analysis te
hniques to gather non-
on
urren
yinformation for set/wait and barrier operations (Jeremiassen and Eggers1994; Lee et al. 1997b) (Se
tions 3.3.3 and 3.3.4).3.3.1 Mutex Syn
hronizationGiven an arbitrary statement s in a program and a lo
k variable L, a mutexstru
ture analyzer should be able to answer the question \does s exe
ute underthe prote
tion of lo
k L?". The answer to that question should be one ofalways, never or sometimes.In the
ontext of this work, the answers never and sometimes areequivalent. If the
ompiler
annot assert that statement s will always beprote
ted by L at runtime then the
onservatively
orre
t de
ision is to assumethat s is never prote
ted by L. Furthermore, if the analysis determines that sis sometimes prote
ted and sometimes not, this information
ould be used towarn the user about an anomalous lo
king pattern.

50 Analyzing Expli
itly Parallel ProgramsMotivationExisting work on mutual ex
lusion syn
hronization is based on a stru
turalde�nition of mutex bodies (Krishnamurthy and Yeli
k 1996; Masti
ola andRyder 1993; Novillo et al. 1998). A mutex body is indi
ated by a pair of lo
kand unlo
k nodes. All the graph nodes dominated by the lo
k node andpost-dominated by the unlo
k node are part of the mutex body. Although
orre
t, this notion of mutex body fails to identify some valid lo
king patternspresent in some programs (i.e., the mutex body re
ognizer responds never toooften).Initially, we had only
onsidered traditional single-entry, single-exit mutexbodies (Novillo et al. 1998) but we soon dis
overed that some programs
ontainmutex bodies that do not �t that stru
ture. For instan
e,
onsider the
odefragment in Figure 3.5. This routine is part of a qui
ksort algorithm taken fromthe sample appli
ation programs bundled with the TreadMarks DSM system(Keleher et al. 1994). This routine grabs a pie
e of work to be done from ashared sta
k. We are interested in the mutual ex
lusion se
tions
reated bythe lo
k variable TSL.Noti
e that a stru
tural de�nition of mutex bodies will identify no mutexbodies in this fun
tion. The only lo
k/unlo
k pair that might qualify asa mutex body are the statements L1 and U3 (lines 6 and 48 respe
tively).However, the presen
e of other lo
k and unlo
k operations in between thesestatements for
es the
ompiler to disregard this pair as a valid mutex body.Despite the irregular lo
king pattern present in this
ode fragment, it ispossible to identify se
tions that will always exe
ute under the prote
tion of theTSL variable. A
loser inspe
tion of the
ode reveals that the only statementthat exe
utes without lo
k prote
tion is the busy wait statement S1 (line 31).Informally, we modify every lo
k or unlo
k node for lo
k variable L sothat they
ontain a de�nition and a use for L. All the other nodes in the graphare modi�ed to
ontain a use for lo
k variable L. To determine whether ornot a
ow graph node n is prote
ted by lo
k L we
ompute rea
hing de�nitioninformation for the use of L at n. If at least one of the rea
hing de�nitions
omes from an unlo
k node or if there are no rea
hing de�nitions, then noden is not prote
ted by lo
k L.

3.3 Syn
hronization Analysis 51
1 #de�ne NPROCS 52 #de�ne DONE �134 int PopWork(TaskElement �task)5 f6 L1) lo
k(TSL);78 while (TaskSta
kTop == 0) f9 if (++NumWaiting == NPROCS) f10 =� All the threads are waiting for work.11 � We are done.12 �=13 lo
k(pause lo
k);14 pause
ag = 1;15 unlo
k(pause lo
k);1617 U1) unlo
k(TSL);18 return DONE;19 g else f20 if (NumWaiting == 1) f21 lo
k(pause lo
k);22 pause
ag = 0;23 unlo
k(pause lo
k);24 g2526 U2) unlo
k(TSL);2728 =� Wait for work. This is the only29 � statement not prote
ted by TSL.30 �=31 S1) while (!pause
ag) ; =� busy-wait �=3233 L2) lo
k(TSL);3435 if (NumWaiting == NPROCS) f36 U3) unlo
k(TSL);37 return DONE;38 g39 ��NumWaiting;40 g41 g =� while task-sta
k empty �=4243 =� Pop a pie
e of work from the sta
k �=44 TaskSta
kTop��;45 task�>left = TaskSta
k[TaskSta
kTop℄.left;46 task�>right = TaskSta
k[TaskSta
kTop℄.right;4748 U3) unlo
k(TSL);4950 return 0;51 gFigure 3.5: Lo
king pattern in fun
tion PopWork().

52 Analyzing Expli
itly Parallel Programs
0: Entry

2: while (...)

3: if (...)

16: endwhile

4: ... 7: ...

6: return DONE;

Exit

9: while (!pause_flag) ;

11: if (...)

13: return DONE;

17: ...

PSfrag repla
ements

1: lo
k(TSL1);TSL2 = �(TSL1, TSL6)

TSL8 = �(TSL1, TSL6)

5: unlo
k(TSL4);

19: TSL9 = �(TSL4, TSL6, TSL7, TSL8)

8: unlo
k(TSL5);
10: lo
k(TSL6);

12: unlo
k(TSL7);

18: unlo
k(TSL8);
Figure 3.6: Partial SSA form for fun
tion PopWork().

3.3 Syn
hronization Analysis 53The pro
ess is illustrated in Figure 3.6. For simpli
ity, the graph onlyshows the SSA information related to the lo
k variable TSL. Consider, forinstan
e, node 7. A use of TSL in that node
an be rea
hed by de�nitions TSL1and TSL6. Sin
e both de�nitions
ome from a lo
k operation, we
on
ludethat node 7 is prote
ted by the lo
k TSL. Similarly, if we
ompute rea
hingde�nition information for node 9, we
on
lude that the only de�nition for TSLthat
an rea
h it is TSL5. Sin
e TSL5
omes from an unlo
k operation, node9 is not prote
ted by the lo
k.Dete
ting Mutex Stru
turesThe dete
tion of mutex stru
tures is redu
ed to the problem of
omputingrea
hing de�nitions for the lo
k variables in the program. The Con
urrentControl Flow Graph (CCFG) for the program is modi�ed so that:1. every graph node
ontains a use for ea
h lo
k variable in the program,2. every lo
k and unlo
k node for lo
k variable L
ontains a de�nition forL, and3. for ea
h lo
k variable L the entry node of the graph is assumed to
ontainan unlo
k(L) operation (this assumption
an be overridden using
allgraph information).De�nition 3.8 (Lo
k-prote
ted nodes) We say that a
owgraph node bis lo
k-prote
ted by lo
k L if, and only if, the use of L at b is only rea
hed byde�nitions of L in lo
k(L) nodes. Therefore, if at least one of those sequentialrea
hing de�nitions
omes from an unlo
k(L) node, then b is not prote
tedby L. 2Mutex bodies are de�ned in terms of lo
k-prote
ted nodes. For instan
e,in Figure 3.7(a), the
all to a() at line 4 is prote
ted by lo
k L be
ause it isonly rea
hed by the lo
k operation at line 1 and the lo
k operation at line 7.In general, a mutex body is a multiple-entry, multiple-exit region of the graphthat en
ompasses all the
owgraph nodes that are rea
hed by a
ommon setof lo
k nodes. In
ontrast, previous work (Krishnamurthy and Yeli
k 1996;

54 Analyzing Expli
itly Parallel Programs
1 lo
k(L);2 while (expr) f34 a();5 unlo
k(L);6 b();7 lo
k(L);8
();9 g1011 unlo
k(L);(a) Original program. a() and
() areprote
ted by L. b() is not.

1 lo
k(L1);2 while (expr) f3 L5 = �(L1, L3);4 a();5 unlo
k(L2);6 b();7 lo
k(L3);8
();9 g10 L6 = �(L1, L3);11 unlo
k(L4);(b) SSA form for the program. b() is notprote
ted be
ause it is rea
hed by anunlo
k operation.Figure 3.7: Dete
ting irregular mutex stru
tures in a parallel program.Masti
ola and Ryder 1993) has treated mutex bodies as single-entry, single-exitregions.De�nition 3.9 (Mutex body) Given a lo
k variable L and a set of lo
k(L)nodes N = fn1; n2; : : : ; nrg known as the lo
k nodes, a mutex body BL(N) =fb1; b2; : : : ; bsg is a set of nodes su
h that:1. Every node in fb1; b2; : : : ; bsg is rea
hed by at least one node ni 2 N .2. There exists at least one node bi 2 BL(N) that is rea
hed by all thenodes in N .3. For every node ni 2 N , there exists at least one node xi = unlo
k(L)su
h that xi is rea
hed by ni. All the unlo
k(L) nodes are known as theunlo
k nodes of the mutex body.4. No node ni 2 BL(N)
an be a lo
k(L) node. 2The �rst two
onditions establish that the nodes in a mutex body mustbe related in two ways. First, all the nodes in the body must be rea
hedby a
ommon set of lo
k(L) nodes. Se
ond, all the lo
k nodes must rea
hat least one
ommon node in the mutex body. Without this restri
tion, theanalysis would
onsider two disjoint sets of nodes to be the same mutex body.

3.3 Syn
hronization Analysis 55This
learly makes no sense be
ause they have nothing in
ommon. The third
ondition de�nes the exit points of a mutex body. There must be a \way out"of the mutex body from every entry point.Finally, the fourth
ondition expli
itly ex
ludes lo
k nodes from the mutexbody. This is an important distin
tion be
ause of the serialization semanti
simposed by lo
k operations. A fundamental property of mutex bodies isthat given two nodes a and b in two di�erent mutex bodies for the same lo
kvariable, a and b
annot exe
ute
on
urrently. If the lo
k nodes were
onsideredpart of the mutex body, the
ompiler would think that two
on
urrent threads
an never exe
ute di�erent lo
k(L) nodes at the same time. This is in
orre
tand therefore not allowed.Subsequent to this work, Hendren (Hendren 2000) proposed an alternativede�nition of mutex bodies. For every lo
k(L) node n, all the nodes rea
hablefrom n are marked in one
olor. For every unlo
k(L) node x, all the nodesrea
hable from x are marked in another
olor. The mutex body is the setof nodes that are marked in both
olors. This is a mu
h simpler alternativethat should lead to more eÆ
ient implementations of mutex syn
hronizationanalysis.De�nition 3.10 (Mutex stru
ture) A mutex stru
ture ML for lo
kvariable L is the set of all the mutex bodies BL(N) in the program. 2Mutex stru
tures are dete
ted using sequential rea
hing de�nitioninformation for ea
h lo
k variable L. Nodes that are only rea
hed by de�nitionsof L
oming from lo
k(L) nodes are prote
ted by L. Nodes that
an berea
hed by at least one unlo
k(L) node are not prote
ted by L. Using thisinformation Algorithm 3.5 builds an initial set of mutex for ea
h individuallo
k(L) node in the graph. It then re�nes this initial set by merging mutexbodies with
ommon nodes (see Algorithm 3.5).We illustrate the pro
ess using the SSA form for the sample program inFigure 3.7(b). For simpli
ity, assume that ea
h line of the program
orrespondsto a node in the program's
owgraph. The mutex stru
ture for lo
k L initially
ontains one mutex body for ea
h lo
k(L) node. In this
ase there are twomutex bodies for L: BL(f1g) and BL(f7g). Node 1 de�nes L1 while node 7de�nes L3 (Figure 3.7(b)).

56 Analyzing Expli
itly Parallel ProgramsUsing rea
hed-uses information for de�nitions L1 and L3 we determinewhi
h nodes are rea
hed by ea
h lo
k operation. Consider for instan
e thenode holding the
all to a() (node 4). The use of L at node 4
an be rea
hedby de�nitions L1 and L3. Sin
e both de�nitions
ome from lo
k(L) nodes,node 4 is added to both mutex bodies for L. Now
onsider the
all to b() atnode 6. The use of L at this node
an be rea
hed by de�nition L2 whi
h isan unlo
k(L) node. Therefore, node 6 is not prote
ted and it is not added toany mutex body.Pro
eeding in this fashion for all the nodes in the rea
hed-uses set for L,Algorithm 3.5 produ
es two mutex bodies for L (underlined node numbersrepresent unlo
k nodes in the mutex body): BL(f1g) = f2; 3; 4; 5; 9; 10; 11gand BL(f7g) = f8; 9; 10; 11; 2; 3; 4; 5g.Noti
e that these two mutex bodies have several nodes in
ommon.Therefore, it is possible to merge them into one mutex body. The resultingmutex stru
ture for L for the program in Figure 3.7(a)
ontains only one mutexbody: BL(f1; 7g) = f2; 3; 4; 5; 8; 9; 10; 11g.3.3.2 Validating Mutex Syn
hronizationThe framework des
ribed in the previous se
tion
an be used as a validationtool in a
ompiler. Using this analysis, a
ompiler
an dete
t irregularitieslike lo
k tripping, deadlo
k patterns, in
omplete mutex bodies, dangling lo
kand unlo
k operations and partially prote
ted
ode (i.e.,
ode that may notalways exe
ute under the prote
tion of a lo
k).In this se
tion we des
ribe several di�erent illegal lo
king patterns that
an be in
orporated into the
ompiler as
ompile-time warnings. We say thata lo
k(L) node n rea
hes another node m if and only if the set of rea
hingde�nitions for the use of L at m in
ludes the de�nition in node n.Lo
k TrippingWe say that a lo
k has been tripped over if the same thread tries to a
quire itmore than on
e without releasing it �rst. This is important to dete
t be
ausein some systems lo
k tripping
an
ause the program to deadlo
k.

3.3 Syn
hronization Analysis 57
Algorithm 3.5 Identi�
ation of mutex stru
tures.input: A CCFG G = hN;E;EntryG;ExitGi in CSSA form, a set L = fL1; L2; : : : ; Lmg
ontainingall the lo
k variables used in the programoutput: A set of mutex stru
tures M = fM1;M2; : : : ;Mmg where Mi is the set of mutex bodies forlo
k variable Li.Compute sequential rea
hing de�nitions for G./* Find
andidate mutex bodies and mutex stru
tures. */forea
h lo
k variable Li doMi ;forea
h
owgraph node n su
h that n = lo
k(Li) do
reate mutex body BLi(fng) = ; and add it to Miend forend for/* Determine nodes prote
ted by ea
h lo
k. In this phase mutex bodies are single-node sets. */forea
h mutex stru
ture Mi doforea
h mutex body BLi (fng) 2Mi dod de�nition of Li in nif no node in SeqRea
hedUses(d) is an unlo
k(Li) node thendisregard BLi(fng)elseforea
h use u 2 SeqRea
hedUses(d) donode node(u)prote
ted trueforea
h de�nition d 2 SeqRea
hingDefs(u) doif node(d) is unlo
k(Li) thenprote
ted falseend ifend forif prote
ted thenadd node to mutex body BLi(fng)end ifend forend ifend forend for/* Merge mutex bodies that have
ommon nodes. Lo
k nodes
an now have more than one node. */forea
h mutex stru
ture Mi doforea
h mutex body B1Li (N1) 2Mi doforea
h mutex body B2Li (N2) 2Mi doif B1Li (N1)TB2Li (N2) 6= ; thenBLi (N1SN2) B1Li (N1)SB2Li(N2)remove B1Li (N1) and B2Li (N2) from Miend ifend forend forend forreturn fM1;M2; : : : ;Mmg

58 Analyzing Expli
itly Parallel Programs
if (expr) flo
k(L1);. . .g else f. . .lo
k(L2);gL3 = �(L1, L2);. . .lo
k(L4);. . .unlo
k(L);(a) Lo
k L will be tripped atruntime.

lo
k(L1);. . .if (expr) funlo
k(L2);. . .gL3 = �(L1, L2);. . .lo
k(L4);(b) Lo
k L may be tripped atruntime.Figure 3.8: Some lo
k tripping s
enarios.Let L be a lo
k variable and n be a lo
k(L) node. Re
all that n
ontainsboth a de�nition and a use for L. Suppose that n is rea
hed by other lo
k(L)nodes (Figure 3.8)1. If all the de�nitions
ome from other lo
k(L) nodes(Figure 3.8(a)), the program is guaranteed to trip over lo
k L at runtime. Ifonly some de�nitions
ome from other lo
k(L) nodes, the program may ormay not trip over lo
k L (Figure 3.8(b)). Depending on the runtime semanti
sof lo
k tripping, a
ompiler may warn the user about the potential problem.Deadlo
kLet L and M be two di�erent lo
k variables su
h that in thread T1 there is alo
k(L) node that rea
hes a lo
k(M) node. In another thread T2 a lo
k(M)node rea
hes a lo
k(L) node. If both T1 and T2
an exe
ute
on
urrently,then the program may deadlo
k at runtime.Two di�erent deadlo
k s
enarios are illustrated in Figure 3.9. Bothprograms laun
h two threads that satisfy the deadlo
k requirement des
ribedpreviously. The program in Figure 3.9(a) may or may not deadlo
k be
ausethe mutex body for M in T1 is not always exe
uted. However, the programin Figure 3.9(b) is likely to deadlo
k be
ause both threads will exe
ute the1The subs
ripts in the �gure refer to SSA numbering. They do not represent di�erentvariables.

3.3 Syn
hronization Analysis 59mutex bodies for L and M for every exe
ution of the program.Noti
e that even if these
onditions hold, the program may or maynot deadlo
k at runtime. Other
onditions like the s
heduling of threadsor additional syn
hronization might prevent deadlo
k situations. A
omprehensive deadlo
k analysis is beyond the s
ope of our resear
h. Masti
oladeveloped te
hniques that deal spe
i�
ally with stati
 deadlo
k dete
tion(Masti
ola and Ryder 1993).

obeginT1: begin. . .lo
k(L);. . .if (expr) flo
k(M);. . .unlo
k(M);g. . .unlo
k(L);endT2: begin. . .lo
k(M);. . .lo
k(L);. . .unlo
k(L);. . .unlo
k(M);end
oend

obeginT1: begin. . .lo
k(L);. . .lo
k(M);. . .unlo
k(M);. . .unlo
k(L);endT2: begin. . .lo
k(M);. . .lo
k(L);. . .unlo
k(L);. . .unlo
k(M);end
oendFigure 3.9: Some deadlo
k s
enarios.Other Lo
king IrregularitiesIn
omplete mutex bodies. Let BL(n) be a partially built mutex body forL su
h that no node in BL(n) is an unlo
k(L) node. At runtime, if lo
kL is a
quired at n, it will not be released. In the presen
e of in
ompletemutex bodies, the
ompiler may still
hoose to regard in
omplete mutexbodies as
omplete when optimizing. Nodes that belong to in
omplete

60 Analyzing Expli
itly Parallel Programsmutex bodies are still prote
ted by the lo
k. Optimizations that targetmutual ex
lusion syn
hronization might be applied provided that theydo not require the existen
e of exit nodes in the mutex body.Dangling unlo
k operations. Let x be an unlo
k node for L su
h thatthe set of rea
hing de�nitions for L at x does not in
lude a lo
k(L)node. This indi
ates that the
alling thread is releasing a lo
k thatit has not a
quired. Although releasing an unheld lo
k might not have
onsequen
es at runtime, it indi
ates a problem with the syn
hronizationstru
ture of the program.Partially prote
ted nodes. Let b be a
owgraph node and L be a lo
kvariable. The framework for building mutex stru
tures guarantees thatthe set of rea
hing de�nitions RD for the use of L at b is not empty.If all the de�nitions in RD
ome from unlo
k(L) nodes, then b is neverprote
ted. Conversely, if all the de�nitions in RD
ome from lo
k(L)nodes, node b is always prote
ted. However, if some de�nitions in RD
ome from a mix of lo
k(L) and unlo
k(L) nodes, then b is onlypartially prote
ted be
ause it will only be prote
ted on
ertain exe
utionsof the program.A mutex body with partially prote
ted nodes is said to be an impuremutex body. A mutex stru
ture
ontaining impure mutex bodies isalso
onsidered an impure mutex stru
ture and may indi
ate a possiblesyn
hronization problem in the input program.Unprote
ted shared variable referen
es. Using
on
urrentrea
hing-de�nition information (Algorithm 5.1) it is possible todetermine whether all the rea
hing de�nitions for a given sharedvariable use
ome from mutex bodies in the same mutex stru
ture.For instan
e, in the
ode fragment in Figure 3.10(d) variable a is readand modi�ed by the three threads in the program. Threads T1 and T2prote
t the a

ess to a using lo
k L. However, thread T0 does not. Usingthe
on
urrent rea
hing-de�nition algorithm developed in Se
tion 5.2 the
ompiler
an determine that at least one of the rea
hing de�nitions for

3.3 Syn
hronization Analysis 61a in thread T0
omes from within a mutex body. Sin
e the referen
e toa made by T0 is not prote
ted and the other
on
urrent referen
es are,then the
ompiler
an issue a message warning the programmer aboutthe mismat
h.The
ode fragments shown in Figure 3.10 illustrate ea
h of the lo
kingirregularities previously des
ribed.3.3.3 Event Syn
hronizationEvent syn
hronization imposes exe
ution pre
eden
e between related set andwait nodes. Pre
eden
e between set and wait nodes will also establishpre
eden
e for other nodes in the program. Intuitively, nodes pre
eding theset node will exe
ute before nodes after the wait node.The method developed by Lee et al. (Lee et al. 1997b) provides a
onservative approximate solution to the problem of �nding the guaranteedordering between nodes in the CCFG. In general this problem has been shownto be
o-NP hard (Netzer and Miller 1990). For referen
e, we in
lude theiralgorithm as Algorithm 3.6.For ea
h node n in the CCFG of the program, Algorithm 3.6
omputespre
(n), the set of nodes guaranteed to exe
ute before n. Noti
e that thisparti
ular algorithm has some limitations on the types of programs that it
ananalyze (Lee et al. 1997b):1. The body of a sequential loop may not
ontain the
obegin/
oend
onstru
t.2. Parallel loops may not
ontain set/wait
onstru
ts.3.3.4 Barrier Syn
hronizationSimilar to event-based syn
hronization, barriers impose ordering
onstraintsin a parallel program. To gather non-
on
urren
y information from barriersyn
hronization in the program we use the analysis developed by Jeremiassenand Eggers (Jeremiassen and Eggers 1994). This analysis was developed

62 Analyzing Expli
itly Parallel Programs

obeginT0: begin. . .lo
k(L1);. . .=� These statements are� prote
ted by L but the lo
k� is never released. �=. . .endT1: . . .
oend
(a) In
omplete mutex bodies.

obeginT0: begin. . .=� There is no
orresponding� lo
k(L) operation.�=unlo
k(L1);. . .endT1: . . .
oend
(b) Dangling unlo
k operations.
obeginT0: beginif (expr) flo
k(L1);g. . .=� These statements may or� may not be prote
ted� depending on 'expr'�=. . .if (expr) funlo
k(L2);gendT1: . . .
oend(
) Partially prote
ted nodes (impuremutex bodies).

a = 0;
obeginT0: begin=� These referen
es to a� are not prote
ted by lo
k L�=a = a + 5;endT1: beginlo
k(L);a = b + 3;unlo
k(L);endT3: beginlo
k(L);print(a);unlo
k(L);end
oend(d) Unprote
ted shared variablereferen
es.Figure 3.10: Lo
king irregularities.

3.3 Syn
hronization Analysis 63Algorithm 3.6 Guaranteed partial exe
ution ordering.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGioutput: pre
(n) for ea
h node n 2 N1: /* Fold loop bodies into a representative node. */2: /* Loop(n) is a fun
tion that returns the set of nodes in a loop whose header is n. */3: Build a sub-graph of G su
h that:N 0 N � fn : m;n 2 N ^ n 2 Loop(m) ^m is a loop header ^m 6= ngE0 (Ef [Es)� f(m;n) : m;n 2 N ^ (m 62 N 0 _ n 62 N 0)g4: forea
h n 2 N 0 do5: pre
(n) ;6: end for7: Initialize work queue Q with the immediate su

essors of EntryG8: while Q 6= ; do9: Remove some node n from Q10: pre
old pre
(n)11: if n is
oend then12: pre
f(n) S(m;n)2E
t pre
(m) [fng13: else14: pre
f(n) T(m;n)2E
t pre
(m) [fng15: end if16: pre
s T(m;n)2Es pre
(m) [fng17: pre
(n) pre
f(n) [pre
s(n)18: if pre
old 6= pre
(n) then19: Put immediate
ontrol
ow and syn
hronization su

essors of n in Q20: end if21: end while22: forea
h n 2 N �N 0 do23: /* header(n) is a fun
tion that returns the header node */24: /* of the outermost loop en
losing n */25: pre
(n) pre
(header(n))26: end forfor expli
itly parallel programs that
onform to the SPMD (Single-ProgramMultiple-Data) model whi
h is
ompatible to the parloop model used in thisthesis. In their analysis barriers are assumed to be global: when a threadrea
hes a barrier it must wait until all the other threads in the program
rossthe same barrier.The barrier analysis algorithm divides the program into a set ofnon-
on
urrent phases. This information is used later on to disregard memory
on
i
ts between nodes in di�erent phases. In what follows we have adaptedsome of the notation developed in (Jeremiassen and Eggers 1994) to use
owgraph nodes instead of statements.We denote barrier nodes B(i; x), where i is a unique integer identifyingthe barrier
all site and x is the name of the barrier variable being
rossed(Figure 3.11, adapted from Jeremiassen's paper (Jeremiassen and Eggers

64 Analyzing Expli
itly Parallel Programs

obegin fT0: begin =� Workers �=parloop (i, 0, N � 1) fwhile (!
onverged) fbarrier(a, N);partA();barrier(b, N);partB();barrier(
, N);ggendT1: begin =� Master �=while (
onverged == 0) fprodu
eA();barrier(a, N);produ
eB();barrier(b, N);
onverged = has
onverged();barrier(
, N);gendg

Original Replica

begin

cobegin

begin begin

parloop (...)

while (...) while (...)

B(1, a)

partA();

B(2, b)

partB();

B(3, c)
=SynchVar3
SynchVar1 =
SynchVar2=
SynchVar3=
SynchVar4=
SynchVar5=
SynchVar6=

endwhile

parend

B(1, a)

partA();

B(2, b)

partB();

B(3, c)
=SynchVar3
SynchVar1 =
SynchVar2=
SynchVar3=
SynchVar4=
SynchVar5=
SynchVar6=

endwhile

end

coend

while (...)

produceA();

B(4, a)

produceB();

B(5, b)

has_converged();

B(6, c)

endwhile

end

endFigure 3.11: An example of barrier syn
hronization.

3.3 Syn
hronization Analysis 651994)). Barrier nodes de�ne pro
ess segments. A pro
ess segment is the setof all the
owgraph nodes along barrier free
ontrol paths between one barriernode B(i; x) and another barrier node B(j; y). Pro
ess segments are denotedusing the barrier
all sites at either end of the segment: (Bi; Bj). There is animpli
it barrier at the start of the program denoted S.A phase of the program is the set of pro
ess segments that may exe
ute
on
urrently between two global barriers. The goal of the barrier analysisalgorithm is to divide the
owgraph into a set of pro
ess segments and partitionthese segments into a set of phases. Nodes in segments from two di�erentphases
annot exe
ute
on
urrently.There are two stages to the algorithm. The �rst stage divides the programinto sets of pro
ess segments by
omputing whi
h other barriers
an be rea
hedfrom ea
h barrier. This is similar to the problem of mat
hing lo
k and unlo
koperations des
ribed in Se
tion 3.3.1 but they use a di�erent approa
h. Forea
h barrier node B(n; x) in the CCFG a variable Syn
hVarn is
reated. Then,ea
h barrier node B(n; x) is modi�ed so that right after the barrier
all thenode
ontains a use of variable Syn
hVarn followed by a de�nition of all thevariables Syn
hVar i.The next step is to determine whi
h of the Syn
hVar i variables are liveat the end of ea
h barrier node. If variable Syn
hVar j is live at barrier nodeB(i; x) (i.e., its value is going to be used again along some program pathstarting at that node), then we
reate the pro
ess segment (Bi; Bj).We illustrate this pro
ess using the program in Figure 3.11. Consider thebarrier node B(3;
). We modify the node so that it
ontains a use of variableSyn
hVar3 followed by de�nitions of six other Syn
hVar variables used for thisprogram. Variable Syn
hVar1 is live at node B(3;
) be
ause its value is usedagain at node B(1; a). Therefore, (B3; B1) is a pro
ess segment of the program.Pro
eeding in this fashion we obtain the
omplete set of pro
ess segments forthe program: (S;B1), (S;B4), (B1; B2), (B2; B3), (B3; B1), (B4; B5), (B5; B6)and (B6; B4).The se
ond stage of the algorithm partitions the pro
ess segments intonon-
on
urrent phases using a work queue approa
h. The initial set of phasesis
reated by assuming that all the pro
ess segments that start at the same

66 Analyzing Expli
itly Parallel ProgramsInitial state Iteration 1 Iteration 2 Final statePhase 1 f(S;B1); (S;B4)g f(S;B1); (S;B4)g f(S;B1); (S;B4)g f(S;B1); (S;B4)gPhase 2 f(B1; B2)g f(B1 ; B2); (B4; B5)g f(B1 ; B2); (B4; B5)g f(B1; B2); (B4; B5)gPhase 3 f(B2; B3)g f(B2 ; B3)g f(B2 ; B3); (B5; B6)g f(B2; B3); (B5; B6)gPhase 4 f(B3; B1)g f(B3 ; B1)g f(B3 ; B1)g f(B3; B1); (B6; B4)gPhase 5 f(B4; B5)gPhase 6 f(B5; B6)g f(B5 ; B6)gPhase 7 f(B6; B4)g f(B6 ; B4)g f(B6 ; B4)gFigure 3.12: Partition of pro
ess segments into phases for the program in Figure3.11.barrier
all site and end at barrier nodes that
ross the same variable
anexe
ute
on
urrently. The initial set of phases is re�ned in an iterative pro
essby merging phases that
an exe
ute
on
urrently. Ea
h phase Pi is examined sothat for ea
h pair of pro
ess segments (B(j; x); B(k; y)) and (B(r; z); B(s; y))in Pi it
reates a new phase with all the phases that start with B(k; y) orB(s; y) in any of their pro
ess segments and whose pro
ess segments end inthe same barrier node. Figure 3.12 illustrates this iterative pro
ess applied tothe example program in Figure 3.11.The algorithm stops when the work queue is empty (i.e., no more phases
an be merged into a new one). The output of the algorithm is a set ofnon-
on
urrent phases P1; P2; : : : Pm. Ea
h phase Pi
ontains a set of pro
esssegments whi
h, in turn, delimit sets of CCFG nodes. The data-
ow analysiste
hniques developed in Chapter 4 will use this information to determinewhether two arbitrary CCFG nodes
an exe
ute
on
urrently. If nodes a and bbelong to pro
ess segments from two di�erent phases then they
annot exe
ute
on
urrently.3.4 SummaryThe Con
urrent Control Flow Graph (CCFG) is the basi
 data stru
tureused to analyze and optimize an expli
itly parallel program. It des
ribes the
ontrol stru
ture of the program as well as memory
on
i
ts and event-basedsyn
hronization. We then use the CCFG to gather non-
on
urren
yinformation. First, the parallel stru
ture of the CCFG determines an initialset of graph nodes that may exe
ute
on
urrently (Algorithm 3.2).

3.4 Summary 67The initial set of
on
urrent
owgraph nodes is then re�ned by analyzingthe syn
hronization stru
ture of the program (Se
tion 3.3). We have developeda new te
hnique to analyze non-
on
urren
y for mutex syn
hronization that
an handle lo
king patterns not supported by existing te
hniques. Thisis a signi�
ant improvement that allows the analysis of more
omplexmutual ex
lusion syn
hronization patterns in expli
itly parallel programs.We also adapt existing te
hniques that analyze set/wait and barriersyn
hronization.Non-
on
urren
y te
hniques are important in the
ontext of an optimizing
ompiler for expli
itly parallel programs. Sin
e the problem of analyzingnon-
on
urren
y is orthogonal to the data-
ow framework, as new te
hniquesare dis
overed they
an be readily in
orporated into the
ompiler with littleor no modi�
ations to the overlying data-
ow framework. In the next
hapterwe develop an SSA-based data-
ow framework that uses the syn
hronizationanalyses developed in this
hapter to determine whether some memory
on
i
ts
an be disregarded be
ause of syn
hronization
onstraints.

68 Analyzing Expli
itly Parallel Programs

Chapter 4The CSSAME FormThis
hapter des
ribes the CSSAME form, a data-
ow framework for analyzingexpli
itly parallel programs. The CSSAME form builds on and extends theCSSA form (Lee et al. 1997b) whi
h is des
ribed in Se
tion 4.1. Se
tion4.2 introdu
es the extensions ne
essary to build the CSSAME form. Theextensions allow the framework to handle parallel loops1, mutual ex
lusionand barrier syn
hronization in expli
itly parallel programs.Algorithms and time
omplexity analyses are in
luded in the dis
ussion.We point out that algorithmi
 design de
isions have been made to favor
larity of presentation, they should not be an indi
ation of how an a
tualimplementation should be organized. In parti
ular, an implementation mightde
ide to perform all the � rewriting a
tions of Se
tions 4.2.4 and 4.2.5 priorto the pla
ement of
on
i
t edges to simplify the task of pla
ing � fun
tionsin the �rst pla
e.4.1 The CSSA FormA program in SSA form has the property that ea
h use of a variable isrea
hed by exa
tly one de�nition. When the
ow of
ontrol
auses morethan one de�nition to rea
h a parti
ular use, a � fun
tion is introdu
edto resolve the ambiguity. The � fun
tion merges all the in
oming rea
hing1In re
ent work, Lee et al. have independently in
orporated parallel loops into theirframework (Lee et al. 1999). 69

70 The CSSAME Formde�nitions to
reate a new de�nition for the variable (Cytron et al. 1991).In a parallel program, the single assignment property is disrupted by thepresen
e of
on
urrent de�nitions to the variable be
ause de�nitions made in
on
urrent threads may be observed at the thread reading the shared variable.The CSSA framework solves this ambiguity with � fun
tions. A � fun
tionmerges the de�nitions
oming from the
urrent thread via
ontrol paths andother
on
urrent threads via
on
i
t edges.This se
tion des
ribes the algorithms needed to build the CSSA form asdes
ribed in (Lee et al. 1997b). Algorithm 4.1
omputes the CSSA form of aprogram. The algorithms to pla
e � fun
tions and build fa
tored use-def
hains
ompute the sequential SSA form (Wolfe 1996). Note that all the algorithmsin this se
tion are unmodi�ed versions of the original referen
es. They areonly in
luded to fa
ilitate an implementation of the CSSAME framework andsimplify the dis
ussion of the
omplexity analysis of the CSSAME algorithm.Algorithm 4.1 Build the CSSA form.input: An expli
itly parallel program P and its CCFGoutput: The program P in CSSA form1: Find guaranteed exe
ution ordering using Algorithm 3.6.2: Build sequential SSA form using Algorithms 4.2 and 4.3.3: Pla
e � fun
tions using Algorithm 4.4.4.1.1 Computing the Sequential SSA FormThe CSSA algorithm
alls for the
omputation of the sequential SSA form forthe program. We
ompute the sequential SSA form using fa
tored use-def
hains (Wolfe 1996). Algorithm 4.2 adds � fun
tions to the graph andAlgorithm 4.3 builds the use-def
hains that link every variable use to itsunique
ontrol rea
hing de�nition. These algorithms assume the existen
e ofthe following data stru
tures:
hild(n) is the set of dominator
hildren for node n.su

(n) is the set of immediate su

essors of node n.whi
hPred(n ! m) is an index telling whi
h immediate prede
essor of m
orresponds to the
ontrol edge from n.

4.1 The CSSA Form 71DF (n) is the dominan
e frontier for node n 2 G.D(v) is the set of nodes in G that
ontain a de�nition for variable v.Symbols is the set of variables used in the program.Algorithm 4.2 Pla
e � fun
tions.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGioutput: Graph G with � fun
tions added at join nodes1: forea
h n 2 N do2: inWork(n) ?3: added(n) ?4: end for5: workList ;6: forea
h v 2 Symbols do7: forea
h n 2 D(v) do8: workList workList [fng9: inWork(n) v10: end for11: while workList 6= ; do12: Remove some node n from workList13: forea
h w 2 DF (n) do14: if added(w) 6= v then15: Add � fun
tion for v at w16: added(w) v17: if inWork(w) 6= v then18: workList workList [fwg19: inWork(w) = v20: end if21: end if22: end for23: end while24: end for4.1.2 Pla
ing � Fun
tionsThe �nal phase of the CSSA algorithm traverses the graph pla
ing � fun
tionsat every node that
ontains one or more
on
i
ting variable uses. Algorithm4.4 adds the required � fun
tions to the graph. The basi
 prin
iple isstraightforward, if a shared variable is used in a node and there exist
on
urrentde�nitions for that variable, a � fun
tion is needed in the node where thevariable is read.Re
all from se
tion 3.1 that nodes with
on
i
ting use referen
es forvariable v have one DU(v)
on
i
t edge for ea
h de�nition of v in
on
urrentthreads. Furthermore, there will be a de�nition of v
oming from the in
oming

72 The CSSAME FormAlgorithm 4.3 Build FUD
hains.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGi with � fun
tions addedoutput: The graph with fa
tored use-def
hains1: forea
h v 2 Symbols do2:
urrDef(v) ?3: end for4:
all sear
h(EntryG)5: pro
edure sear
h(x)6: forea
h variable use or def or � fun
tion r 2 x do7: m variable referen
ed at r8: if r is a use then9:
hain(r)
urrDef(m)10: else if r is a def or a � fun
tion then11: saveChain(r)
urrDef(m)12:
urrdef(m) r13: end if14: end for15: forea
h y 2 su

(x) do16: j whi
hPred(x! y)17: forea
h � fun
tion r in y do18: m variable referen
ed at r19: ��
hain(r)[j℄
urrDef(m)20: end for21: end for22: forea
h y 2
hild(x) do23:
all sear
h(y)24: end for25: forea
h variable use or def or � fun
tion r 2 x in reverse order do26: m variable referen
ed at r27: if r is a def or a � fun
tion then28:
urrDef(m) saveChain(r)29: end if30: end for
ontrol edge. Therefore, Ea
h � fun
tion has n + 1 arguments; the uniquein
oming
ontrol
ow edge and the n in
oming
on
i
t edges. As we willdis
uss later in this do
ument, some of these arguments to a � fun
tion maybe proven redundant be
ause of syn
hronization operations in the program.4.1.3 Time Complexity of the CSSA AlgorithmThe
omputation of the CSSA form is done in three phases. The �rst phase
omputes guaranteed partial exe
ution ordering for all the nodes in the graph(Algorithm 3.6). In the worst
ase, every node will have to be
ompared toevery other node in the graph. Hen
e,
omputing partial orderings
an bedone in O(jN j2).The se
ond phase
omputes the sequential SSA form for the program

4.2 The CSSAME Form 73Algorithm 4.4 Pla
e � fun
tions.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGi with FUD
hainsoutput: The graph G with � fun
tions added1: forea
h b 2 N do2: forea
h DU
on
i
t edge e = (a; b) do3: v variable de�ned in a4: if b does not have a � fun
tion for v then5: Insert a new � fun
tion for v in b6: u
on
i
ting use of v in b7: �(v)[0℄
hain(u)8: end if9: if n 62 pre
(s) then10: d
on
i
ting def of v in s11: append d to �(v)12: end if13: end for14: end for(Algorithms 4.2 and 4.3). This phase
omputes the SSA form in O(r3) time,where r is the maximum of the number of nodes (jN j), number of
ontroledges (jEf j), number of assignments and number of variable referen
es in theprogram (Brandis and Moessenboe
k 1994; Cytron et al. 1991). Note that itis possible to pla
e � fun
tion using the linear time algorithms in (Johnsonet al. 1994) and (Sreedhar and Gao 1995). We use the algorithms from (Wolfe1996) solely be
ause they are easier to implement.The third phase of the
omputation of the CSSA form pla
es � fun
tionsat the
on
urrent join nodes of the graph (Lee et al. 1997b). By examiningthe � pla
ing algorithm (Algorithm 4.4) we
on
lude that this phase
an be
omputed in O(jN j2) time.In
on
lusion, the CSSA form
an be
omputed in O(jN j2) time when usingthe linear time algorithms for pla
ing � fun
tions. If the traditional � pla
ingalgorithms are used, then the CSSA form
an be
omputed in O(r3) time.4.2 The CSSAME FormMutual ex
lusion analysis identi�es memory interleavings that are not possibleat runtime due to the syn
hronization stru
ture of the program. This analysisallows the
ompiler to redu
e the number of in
oming
on
i
t edges to nodes inthe CCFG that use shared variables. This se
tion des
ribes our re�nements tothe CSSA framework (Lee et al. 1997b). We
all this new form CSSAME

74 The CSSAME Form(Con
urrent SSA with Mutual Ex
lusion syn
hronization). While CSSAonly re
ognizes set/wait syn
hronization, CSSAME extends it to in
ludelo
k/unlo
k syn
hronization. Note that although we in
lude lo
k variablesin our analysis, for
larity of presentation we will not use SSA numberingfor lo
k variables in the example programs. Sin
e lo
k operations typi
allyread and write to the lo
k variable and unlo
k operations only write to it, animplementation should
reate � fun
tions for every lo
k node in the graph.The key observation that gives rise to the CSSAME form is that � fun
tionsinside mutual ex
lusion se
tions might have one or more arguments for memoryinterleavings that
annot o

ur at runtime. We have developed two suÆ
ient
onditions,
alled
onse
utive kills and prote
ted uses, for the removal ofarguments from � fun
tions inside mutex bodies (Se
tions 4.2.2 and 4.2.3).This analysis is important be
ause it allows the removal of redundant
on
i
tedges whi
h in turn allows the optimizer to safely apply more aggressivetransformations and generate faster
ode. Both removal
onditions
an beimplemented as predi
ates
alled by the
ompiler when analyzing mutexbodies.4.2.1 Parallel LoopsParallel loops are treated similarly to
obegin/
oend stru
tures. Theloop body is repli
ated to allow the parallel loop to be
onsidered like a
obegin/
oend stru
ture with two identi
al bodies. This is enough for thepurposes of this analysis be
ause we are only interested in determining whetherthere is a memory referen
ing
on
i
t or not. It is not ne
essary to determinehow many threads parti
ipate in the
on
i
t. Knowing that there is atleast two threads in
on
i
t is enough.2 A similar approa
h is taken in(Krishnamurthy and Yeli
k 1996) and (Lee et al. 1999). The pro
ess of adding� fun
tions does not need to be modi�ed to handle parallel loops be
ause everynode in the loop body is
on
urrent with its repli
a and with every other nodeinside the parallel loop.All the transformations to � fun
tions due to syn
hronization are performed2This of
ourse may have to be revised if other analyses need more spe
i�
 informationabout the
on
i
t.

4.2 The CSSAME Form 75

parloop (i, 1, N) fa = . . .;. . . = a + 4;g
Original Replica

begin

parloop (i, 1, N)

DU(a) DU(a)

parend

end

PSfrag repla
ements
a1 = : : :

a2 = �(a1; a01);: : : = a2 + 4;
a01 = : : :

a02 = �(a01; a1);: : : = a02 + 4;
Figure 4.1: � fun
tions inside a parallel loop.on the original loop body. For instan
e,
onsider the
ode fragment in Figure4.1. The
on
i
t analysis algorithm has determined that there is a
on
i
tbetween the node that de�nes a and the node that uses a to
ompute a +4. Noti
e that the � fun
tion generated for the se
ond node
ontains thearguments a1 and a01. The �rst a1 is the de�nition inherited via the
ontrolpath. The se
ond a01 is the de�nition
oming from the loop body's repli
a.This repli
a represents one of the N
on
urrent threads exe
uting the body ofthe parallel loop.

76 The CSSAME Form
obeginT0: beginlo
k(L);a1 =a2 = . . .unlo
k(L);endT1: beginlo
k(L);. . .=� De�nition a1
annot �==� rea
h this use. �=a3 = �(a0, a1, a2);) a3 = �(a0, a2);. . . = a3;unlo
k(L);end
oend (a) Conse
utive kills.

obeginT0: beginlo
k(L);. . .a1 = . . .=� De�nition a1 prote
ts further �==� uses of a in this mutex body. �=a3 = �(a1, a2);) a3 = �(a1);. . . = a3;unlo
k(L);endT1: beginlo
k(L);. . .a2 = . . .unlo
k(L);end
oend (b) Prote
ted uses.Figure 4.2: Removing memory
on
i
ts.4.2.2 Conse
utive KillsIf a variable is de�ned more than on
e inside a mutex body b, the onlyde�nitions that
an be observed by other mutex bodies (in the same mutexstru
ture) are those that rea
h the exit node of b. This is be
ause all the mutexbodies in the same mutex stru
ture are serialized and exe
ute atomi
ally. Thissituation is illustrated in Figure 4.2(a) where de�nition a1 in thread T0 isoverridden by de�nition a2 in the same thread. Therefore, the read referen
ea3 in thread T1
an only be rea
hed by de�nition a2.De�nition 4.1 (Rea
hability) Given a CCFG G, a de�nition Dv for avariable v rea
hes node n 2 G if there is a
ontrol path from the node
ontaining Dv to n su
h that there is no other de�nition of v along that path(Aho et al. 1986). 2Theorem 4.1 (Conse
utive kills) Let ML be a mutex stru
ture for lo
kvariable L. Let DBa be a de�nition for a shared variable a inside a mutex bodyBL(N) 2 ML. If DBa does not rea
h any exit node x 2 BL(N) then DBa
anbe removed from all the � fun
tions in any other mutex body B0L(N 0) 2 MLthat have DBa as an argument. 2Proof Let UB0a be a use of a in B0L(N 0). Let d be the node
ontaining DBa .

4.2 The CSSAME Form 77Let u be the node
ontaining UB0a . Sin
e d and u are inside mutex bodies in thesame mutex stru
ture they
annot exe
ute
on
urrently. Therefore, for everyexe
ution of the program that in
ludes both mutex bodies there
an only betwo possible partial orderings between them:1. BL(N) exe
utes to
ompletion before B0L(N 0). Even though noded exe
utes before node u, the de�nition DBa
annot rea
h UB0abe
ause it is always killed by some other de�nition before itrea
hes one of the exit nodes of BL(N).2. B0L(N 0) exe
utes to
ompletion before BL(N). Node u exe
utesbefore node d, therefore DBa
annot rea
h UB0a .Sin
e it is impossible for the de�nition DBa to rea
h the use UB0a thenthe argument representing DBa for the � fun
tion in UB0a is not ne
essary.Therefore, it
an be safely removed and the DU(a)
on
i
t edge between d andu
an be eliminated from the CCFG. �4.2.3 Prote
ted UsesThe se
ond
on
i
t removal opportunity is for uses that
annot be a�e
tedby de�nitions in other mutex bodies be
ause they are prote
ted by a lo
alde�nition. Suppose that a
on
i
ting variable a is used inside a mutex bodyB but its
ontrol rea
hing de�nition is inside B (Figure 4.2(b)). Sin
e a isde�ned inside the mutex body, de�nitions made in other mutex bodies arekilled by the internal de�nition of a.De�nition 4.2 (Upward exposure for mutex bodies) Given a mutexbody B, a use UBv in B for a variable v is upward-exposed (Aho et al. 1986)from B if UBv may use a de�nition outside of B. 2Theorem 4.2 (Prote
ted uses) Let ML be a mutex stru
ture for lo
kvariable L. Let UBa be a
on
i
ting use for a shared variable a inside amutex body BL(N) 2 ML. If UBa is not upward-exposed from BL(N) thenthe arguments for the � fun
tion for a
oming from any other mutex bodyB0L(N 0) 2ML
an be removed. 2Proof Let DB0a be a de�nition for variable a in mutex body B0L(N 0). Let d

78 The CSSAME Formbe the node in B0L(N 0) that
ontains the de�nition DB0a . Let u be the nodein mutex body BL(N) that
ontains the use UBa . Sin
e d and u are insidemutex bodies in the same mutex stru
ture they
annot exe
ute
on
urrently.Therefore, for every exe
ution of the program that in
ludes both mutex bodiesthere
an only be two possible partial orderings between them:1. BL(N) exe
utes to
ompletion before B0L(N 0). This means thatnode u exe
utes before node d, therefore DB0a
annot rea
h UBa .2. B0L(N 0) exe
utes before BL(N). Sin
e UBa is not upward-exposedfrom BL(N), any de�nitions of a made before BL(N) startsexe
uting are guaranteed to be killed by some other de�nitioninside BL(N). Therefore, DB0a
annot rea
h UBa .Sin
e the de�nition DB0a
annot rea
h the use UBa then the argumentrepresenting DB0a for the � fun
tion in UBa is not ne
essary. Therefore, it
an be safely removed and the DU(a)
on
i
t edge between d and u
an beeliminated from the CCFG. �4.2.4 Modifying � Fun
tions Inside Mutex BodiesUsing the properties of
onse
utive kills and prote
ted uses inside mutexbodies, we now examine every mutex body of the program trying to removearguments from ea
h of its � fun
tions. Algorithm 4.5 traverses all the mutexbodies in the graph looking for � fun
tions to rewrite. There are three mainsteps to the algorithm:1. Lines 1{6 traverse all the mutex bodies in the program. For ea
h mutexbody b, it invokes the analysis routine in lines 7{27.2. Lines 9{20 analyze all the � fun
tions inside a mutex body b. For ea
h� fun
tion, ea
h of its arguments d is analyzed for
omplian
e withTheorems 4.1 and 4.2.Che
king for prote
ted uses is a simple matter of
he
king whether the
ontrol rea
hing de�nition for the � fun
tion is rea
hed by at least onelo
k node in N . This information has already been
omputed by the

4.2 The CSSAME Form 79mutex stru
ture dete
tion algorithm (Se
tion 3.3.1). Therefore, it
anbe a

essed in essentially
onstant time.Che
king for
onse
utive kills
an be done in O(j
onfdefsj2) time, wherethe value j
onfdefsj represents the number of
on
i
ting de�nitions madein the program. To
he
k if a de�nition d rea
hes the exit node of a mutexbody we traverse the post-dominator tree for d looking for a de�nitionthat post-dominates d and is post-dominated by some exit node (i.e., we
he
k whether there is another de�nition d0 on every path from d to anexit node that kills d).3. Lines 21{25 remove any � fun
tions with no arguments for
on
i
tingreferen
es.Examining the nesting stru
ture of the � rewriting algorithm we
on
ludethat the total time
omplexity of the algorithm is O(m�mb �mbsz � j�j �j
onfdefsj2), were m is the number of lo
k variables in the program, mb is thetotal number of mutex bodies in the program, mbsz is the maximum numberof nodes that a mutex body
an
ontain, j�j is the number of � fun
tionsin the program and j
onfdefsj is the number of
on
i
ting de�nitions in theprogram. A worst
ase s
enario with a
on
i
ting de�nition in every node anda
on
i
ting use in every node will yield a time
omplexity of O(jN j3).Lemma 4.1 (Corre
tness of the � rewriting algorithm) The onlyarguments from � fun
tions removed by Algorithm 4.5 represent memoryinterleavings that
annot o

ur at runtime. 2Proof The algorithm only examines � fun
tions inside mutex bodies. Forea
h � fun
tion found it
he
ks all the arguments that
ome from other mutexbodies in the same mutex stru
ture. These are the only potential
andidatesfor removal be
ause they represent memory referen
es prote
ted by the samelo
k (line 15).If d
omplies with one of the two suÆ
ient
onditions given by Theorems4.1 and 4.2 then it may be safely removed be
ause the de�nition representedby d
annot rea
h that parti
ular use.Finally, if after this analysis is done a � fun
tion p
ontains exa
tly oneargument, it must be the argument for the in
oming
ontrol edge to the node

80 The CSSAME Formbe
ause this is the only argument that is never removed by Algorithm 4.5.Hen
e, this � fun
tion p
an be removed from the graph. Before removing p,the algorithm updates the use-def pointer of the use a�e
ted by p (
hain(u))so that it points to p's
ontrol rea
hing de�nition (line 23). �Algorithm 4.5 Rewrite � fun
tions to a

ount for mutual ex
lusion.input: A CCFG G = hN;E;EntryG;ExitGi in CSSA formoutput: The graph G in CSSAME form1: /* Traverse all the mutex bodies in the graph looking for � fun
tions to rewrite. */2: forea
h lo
k variable Li do3: forea
h mutex body b 2 MutexStru
t(Li) do4:
all rewrite(b)5: end for6: end for7: /* Examine all the � fun
tions in b. */8: pro
edure rewrite(b)9: forea
h node n 2 b do10: forea
h � fun
tion p 2 n do11: v is the variable referen
ed by p12: /* If an argument of the � fun
tion p
omplies with Theorems 4.1 or 4.2, */13: /* then we may safely remove the argument from p fun
tion. */14: forea
h argument d of p
oming from a
on
i
t edge do15: if d
omes from another mutex body b0 2MutexStru
t(b) then16: if (the use of v is not upward-exposed from b) or (d does not rea
h any exit node of b0) then17: remove d from p18: end if19: end if20: end for21: /* If p is left with only one argument, remove p. */22: if p has only one argument then23:
hain(u) �rst argument of p24: remove p from n25: end if26: end for27: end for4.2.5 Modifying � Fun
tions A�e
ted by BarriersBarrier syn
hronization o�er another sour
e of non-
on
urren
y information inparallel programs. Using the barrier analysis algorithm des
ribed in Se
tion3.3.4 it is possible to remove �-fun
tion arguments for some
on
i
t edgesthat
ross phase boundaries. Sin
e nodes in di�erent phases of the programare guaranteed to exe
ute in sequen
e, some of the
on
i
ts that might existbetween these nodes
an be eliminated.Barrier syn
hronization is \weaker" than mutex syn
hronization in thesense that it does not serialize the exe
ution of threads. The ordering
reated

4.2 The CSSAME Form 81by barriers
reate phases in the exe
ution of the program. Within a phase,threads exe
ute
on
urrently. Consider for instan
e the parallel loop in Figure4.3. If we disregard the presen
e of the barrier, then both de�nitions a1 anda2
an rea
h the use of a (a3) at line 10. However, the presen
e of the barrierat line 5 guarantees that de�nition a1 will be killed by all the threads before
rossing the barrier. Therefore, a1
annot rea
h the use of a at line 10. Thesame
annot be said about de�nition a2. Although all threads join at thebarrier, we
annot stati
ally determine whi
h thread will be the last to rea
hthe barrier. This means that there are two de�nitions for variable a that
ould rea
h a3: the
ontrol rea
hing de�nition (i.e., a2, the sequential rea
hingde�nition) and the de�nition made by the last thread to join the barrier (a02).In general, in the presen
e of barriers the only arguments that
an be removedfrom a � fun
tion are those that represent de�nitions from a di�erent phaseand do not rea
h the � fun
tion via
ontrol edges.Theorem 4.3 (Barrier prote
tion) Let Uv be a
on
i
ting use for sharedvariable v. Let Dv be a de�nition for v su
h that Dv rea
hes Uv via a
on
i
tedge and Dv does not sequentially rea
h Uv. If Dv and Uv are in di�erentphases due to barrier syn
hronization, then Dv
an be removed from the �fun
tion asso
iated with Uv. 2Proof Sin
e Dv rea
hes via a
on
i
t edge, there is a � fun
tion asso
iatedwith Uv that has Dv as one of its arguments. If Dv and Uv are on di�erentphases as determined by barrier syn
hronization analysis (Se
tion 3.3.4), thenthey
annot exe
ute
on
urrently. Furthermore, sin
e Dv does not rea
h Uvvia
ontrol edges, it means that there exists at least one other de�nition for vthat kills Dv. Sin
e Dv
annot rea
h Uv via
ontrol edges nor
on
i
t edges,it is safe to remove it from the � fun
tion asso
iated with Uv. �Algorithm 4.6 rewrites � fun
tions to a

ount for barrier syn
hronization.It assumes that program phases have already been
omputed (Se
tion 3.3.4).The algorithm traverses all the � fun
tions in the program. For every argumentdi of a � fun
tion p it
he
ks whi
h node
ontains di. If the node of di is insidea di�erent phase than the node holding p and di does not sequentially rea
hthe use asso
iated with p, then di
an be removed from the argument list.Figure 4.3 shows a program fragment with its CSSAME form partially

82 The CSSAME Form1 parloop (i, 1, N) f2 a1 =
1 + 5;3 . . .4 a2 = a1 +
1;5 barrier(B, N);6 . . .7 =� Argument a1'
an be safely8 removed from this � fun
tion. �=9 a3 = �(a2, a1', a2');10 b1 = a3 + 3;11 gFigure 4.3: E�e
ts of barrier syn
hronization on � fun
tions.built. The assignment to b in line 10 makes a
on
i
ting use of variable a.Hen
e the � fun
tion at line 9
ontains only two arguments and both
ome fromthe same de�nition (a1 is both the
ontrol-rea
hing and the
on
i
t-rea
hingde�nition). The
omputation of phases for this program will result in twophases, one
ontaining lines 1 � 4 and the other one
ontaining lines 6 � 10.Therefore, de�nitions a1 and a2 will be in one phase and use a3 will be inanother one. Sin
e de�nition a1 is killed by a2 and it is in a di�erent phasethan the use a3, we
an remove the se
ond argument of the � fun
tion at line9 be
ause a1
annot rea
h this use.Noti
e that unlike mutex syn
hronization, this pruning pro
ess will neverlead to the elimination of � fun
tions. The reason is that inside a parallel loop� fun
tions have two arguments
oming from the same de�nition, namely the
ontrol rea
hing de�nition. The
ontrol rea
hing de�nition appears twi
e inthe � argument list be
ause it rea
hes the use via
ontrol and
on
i
t edges.The argument
oming via
ontrol edges
annot be eliminated be
ause it isnot a�e
ted by syn
hronization and the argument
oming via a
on
i
t edge
annot be eliminated be
ause it is not possible to determine whi
h threadwas the last one to make that de�nition. It might be possible to eliminatea � fun
tion if one
ould prove that both arguments are always the samevalue using te
hniques like value numbering,
opy propagation or
onstantpropagation. We have not
onsidered these extensions in this do
ument.

4.2 The CSSAME Form 83Algorithm 4.6 Rewrite � fun
tions to a

ount for barrier syn
hronization.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGi in CSSA formoutput: The graph G in CSSA form with � fun
tions modi�ed to a

ount for barriersyn
hronization1: /* This algorithm assumes that phases due to barrier */2: /* syn
hronization have already been
omputed (Se
tion 3.3.4). */3:
ompute sequential rea
hing de�nitions (SeqRea
hingDefs)4: forea
h �-fun
tion p do5: u use referen
e asso
iated with p6: forea
h parallel argument d of p do7: if node(p) and node(d) are in di�erent phases and d 62 SeqRea
hingDefs(u) then8: remove d from p9: end if10: end for11: end for4.2.6 Computing the CSSAME FormAlgorithm 4.7 transforms an expli
itly parallel program P to its CSSAMEform. The algorithm is a dire
t extension of the CSSA algorithm (Lee et al.1997b). Steps 2 and 4 in
orporate the modi�
ations needed to handle mutualex
lusion syn
hronization.The algorithm starts by building the
on
urrent
ontrol
ow graph forP using the algorithms des
ribed in Se
tion 3.2. On
e the CCFG has beenbuilt, the algorithm
reates the mutex stru
tures for the mutual ex
lusionsyn
hronization used in the program. The next step builds the CSSA formusing the algorithms des
ribed in Se
tion 4.1. On
e the CSSA form has been
omputed, � fun
tions are modi�ed to a

ount for any mutex and/or barriersyn
hronization in the program. Noti
e that it might be possible to
omputethe CSSAME form dire
tly, without
omputing the CSSA form �rst. Wede
ided to use this approa
h be
ause the analysis needed to remove super
uoussyn
hronization edges is simpler if CSSA is
omputed �rst.Theorem 4.4 (Corre
tness of the CSSAME algorithm) A program inCSSAME form is also in CSSA form and retains the single assignmentproperty: every use is rea
hed by exa
tly one de�nition. 2Proof The CSSAME form is a dire
t extension of the CSSA form. The
omputation of the CSSA form is done using existing algorithms known tobe
orre
t (Lee et al. 1997a; Wolfe 1996). Lemma 4.1 proves that the only

84 The CSSAME FormAlgorithm 4.7 Build the CSSAME form.input: An expli
itly parallel program Poutput: The program P in CSSAME form1: Build the CCFG G for P using Algorithm 3.1.2: Identify mutex stru
tures using Algorithm 3.5.3: Compute the CSSA form for the graph using Algorithm 4.1.4: Rewrite � fun
tions using Algorithm 4.5.5: Rewrite � fun
tions using Algorithm 4.6.transformation done to the underlying CSSA form does not alter the singleassignment property. Therefore, a program in CSSAME form is also in CSSAform and retains the single assignment property. �4.2.7 Time Complexity of the CSSAME AlgorithmComputing the CSSAME form does not in
rease the
omplexity of the CSSAalgorithm signi�
antly. The two major modi�
ations to the original algorithmare steps 2 (
omputation of mutex stru
tures) and 4 (rewriting of � fun
tions).As dis
ussed in Chapter 3, the identi�
ation of mutex stru
tures
an be donein O(jEf j) time. The CSSA form is
omputed in O(r3) time, where r isthe maximum of the number of nodes (jN j), number of
ontrol edges (jEf j),number of assignments and number of variable referen
es in the program(Se
tion 4.1.3). Finally, rewriting � fun
tions
an be done in O(jN j3) time.Therefore, the CSSAME algorithm has a worst time
omplexity of O(jN j3).4.3 SummaryIn this
hapter we have developed a new data-
ow framework for expli
itlyparallel programs: the CSSAME form. It supports both task and data parallelprograms that share memory and syn
hronize using three types of me
hanisms:mutual ex
lusion, barriers and events.The CSSAME form represents a signi�
ant step towards an integratedanalysis framework that
an be adapted to support various types of parallel
onstru
ts, memory semanti
s and syn
hronization
onstru
ts. For instan
e,to add a new type of syn
hronization me
hanism, we only need to gathernon-
on
urren
y information due to syn
hronization and modify the �

4.3 Summary 85fun
tions appropriately. Di�erent memory semanti
s
an be supported ina similar fashion. Memory
on
i
ts a
ross
on
urrent threads need onlybe added if the memory semanti
s of the target ar
hite
ture allow su
hinterleaving. For instan
e, in a release-
onsistent memory (Keleher et al. 1994)memory
on
i
ts need only be added at syn
hronization points in the program.In the following
hapter we use the CSSAME framework to optimizeparallel programs. We will
onsider two types of optimization, the adaptationof sequential te
hniques to the parallel
ase and the dire
t optimization ofthe syn
hronization stru
ture of a parallel program. Emphasis will be on theoptimization of mutual ex
lusion patterns.

86 The CSSAME Form

Chapter 5Optimizing expli
itly parallelprogramsUsing the CSSAME form, new optimization opportunities are now possible.This se
tion des
ribes six optimization te
hniques. The �rst two areadaptations of well-known sequential optimizations:
onstant propagation(Se
tion 5.1) and dead
ode elimination (Se
tion 5.2). The other four arenew optimizations spe
i�
ally designed for expli
itly parallel programs: lo
kpi
king (Se
tion 5.3), lo
k-independent
ode motion (Se
tion 5.4), mutexbody lo
alization (Se
tion 5.5) and single-writer multiple-readers
ode motion(Se
tion 5.5.1). All the mutual ex
lusion transformations in this
hapterassume that the program
ontains well-formed mutex stru
tures.5.1 Constant PropagationLee et al. (Lee et al. 1997b) adapted the sequential Sparse ConditionalConstant propagation (SCC) algorithm (Wegman and Zade
k 1991) to workwith expli
itly parallel programs; Con
urrent Sparse Conditional Constantpropagation (CSCC). We will use the program in Figure 5.1(a) to show howour extensions to the original CSSA framework
an be used to improve the
onstant propagation algorithm when mutual ex
lusion is taken into a

ount.Figure 5.1(b) is the original CSSA form without mutual ex
lusion extensions.Figure 5.2(a) shows the CSSAME form built using the algorithms in Se
tion87

88 Optimizing expli
itly parallel programs4.2. Noti
e that the CSSAME form has fewer � fun
tions than the CSSAform. a = 0;b = 0;
obeginT0: beginlo
k(L);a = 5;b = a + 3;if (b > 4) fa = a + b;gx = a;unlo
k(L);endT1: beginlo
k(L);a = b + 6;y = a;unlo
k(L);end
oendprint(x, y);
(a) Original program.

a1 = 0;b1 = 0;
obeginT0: beginlo
k(L);a2 = 5;a3 = �(a2, a6);b2 = a3 + 3;if (b2 > 4) fa4 = �(a2, a6);a5 = a4 + b2;ga7 = �(a2, a5);a8 = �(a7, a6);x1 = a8;unlo
k(L);endT1: beginlo
k(L);b3 = �(b1, b2);a6 = b3 + 6;a9 = �(a6, a2, a5);y1 = a9;unlo
k(L);end
oenda10 = �(a7, a6);print(x1, y1);(b) CSSA form.Figure 5.1: Constant propagation example (CSSA).We now apply the CSCC algorithm to both the original CSSA form and thenew CSSAME form. Noti
e that sin
e CSSA does not re
ognize the mutualex
lusion semanti
s of the program, the
onstant propagation algorithm
annotpropagate any
onstants. On the other hand, translating the program toCSSAME allows the
ompiler to remove all the � fun
tions for variable a inthread T0. The key fa
tor that allows the
ompiler to do this optimization isthe assignment to variable a in thread T0 immediately after the lo
k operation.Sin
e all the statements in thread T0 exe
ute indivisibly, uses of variable a afterthe �rst assignment
annot possibly be a�e
ted by de�nitions of a made bythread T1. This allows the
ompiler to propagate
onstants inside thread T0 as

5.1 Constant Propagation 89if it were a sequential program. Figure 5.2(b) shows the results of applying theCSCC algorithm using CSSAME. Noti
e that we also in
lude the results of the
onstant folding and unrea
hable
ode elimination. Both passes are possibleusing information gathered by the
onstant propagation algorithm (Wegmanand Zade
k 1991). Sin
e we have not modi�ed the CSCC algorithm, theoptimizations performed are still
orre
t as proved in (Lee et al. 1997b).Further optimizations
an still be done in this example program. Theredundant assignments in Figure 5.2(b) are the result of applying the
on
urrent
onstant propagation on the program in Figure 5.2(a). Theseredundant assignments
an be removed using the
on
urrent dead-
odeelimination algorithm developed in Se
tion 5.2.a1 = 0;b1 = 0;
obeginT0: beginlo
k(L);a2 = 5;b2 = a2 + 3;if (b2 > 4) fa3 = a2 + b2;ga4 = �(a2, a3);x1 = a4;unlo
k(L);endT1: beginlo
k(L);b3 = �(b1, b2);a5 = b3 + 6;y1 = a5;unlo
k(L);end
oenda6 = �(a4, a5);print(x1, y1);(a) CSSAME form for programin Figure 5.1(a).

a1 = 0;b1 = 0;
obeginT0: beginlo
k(L);a2 = 5;b2 = 8;a3 = 13;a4 = 13;x1 = 13;unlo
k(L);endT1: beginlo
k(L);b3 = �(b1, b2);a5 = b3 + 6;y1 = a5;unlo
k(L);end
oenda6 = �(a4, a5);print(x1, y1);(b) Constant propagation using CSSAME.Figure 5.2: Constant propagation example (CSSAME).

90 Optimizing expli
itly parallel programs5.2 Con
urrent Dead Code EliminationDead
ode refers to program statements that have no e�e
t on the programoutput (Cytron et al. 1991). Although it is not
ommon for the programmer tointrodu
e dead
ode intentionally, dead
ode may be generated by optimizingtransformations (Aho et al. 1986). We introdu
e the Con
urrent Dead CodeElimination algorithm (CDCE), an extension of the dead
ode eliminationalgorithm proposed by Cytron et al. (Cytron et al. 1991) to work on expli
itlyparallel programs. The algorithm starts by marking as dead all the statementsof the program ex
ept those that are assumed to a�e
t the program outputsu
h as I/O statements or assignments to variables outside the
urrent s
ope.This initial set of live statements is used to seed the work list maintained bythe algorithm. The list is updated with every new statement that is markedlive. When the list empties, all the statements still marked dead are removedfrom the program. A statement will be marked live if it satis�es one of thefollowing
onditions (Cytron et al. 1991):1. The statement is assumed to a�e
t the program output. Examplesin
lude I/O statements,
alls to pro
edures that may have side e�e
ts,et
.2. The statement
ontains a de�nition that rea
hes a use in a statementalready marked as live.3. The statement is a
onditional bran
h and there is a live statement thatis
ontrol dependent on this
onditional bran
h.The CDCE algorithm is the same algorithm developed by Cytron et al.(Cytron et al. 1991) with the following modi�
ations:� Condition 2 of Cytron et al.'s algorithm
alls for the
omputation ofrea
hing de�nition information for ea
h live statement of the program.The rationale is that if statement s is live then any other statementthat makes de�nitions with rea
hed uses in s must also be marked live.We in
orporate rea
hing de�nition and rea
hed uses information in ourCSSAME framework. We have adapted the
orresponding sequential

5.2 Con
urrent Dead Code Elimination 91algorithms (Wolfe 1996) by in
orporating additional tests for � fun
tionswhen traversing the SSA use-def
hains. Con
urrent rea
hing de�nitioninformation is
omputed by Algorithm 5.1.� A
obegin statement will be marked live if there is at least one statementin two or more of its threads marked live. If the transformation leavesonly one thread with live statements, the
obegin/
oend
onstru
t willbe repla
ed by the sequential
ode
orresponding to the live thread.Serializing this live thread will
ause all the syn
hronization operationsin the thread to be
ome dead. Hen
e, they
an be safely removed.These modi�
ations to the sequential DCE algorithm are ne
essary toa

ount for the
on
urrent a
tivity in the program. Sin
e rea
hing de�nitionand rea
hed uses information will be
omputed using both � and � fun
tions,a live use u in one thread will keep
on
urrent de�nitions that rea
h ualive. Furthermore, the redu
tion of dependen
ies made possible by CSSAMEdire
tly bene�ts the elimination of dead
ode in the program. Most notably,the dete
tion of
onse
utive kills inside a mutex body (Theorem 4.1) will helpthe dete
tion of dead
ode inside mutex bodies.To show the e�e
ts of CDCE,
onsider the program in Figure 5.1(a) after
onstant propagation has been performed (Figure 5.2(b)). As
an be seen inthe example program, all the assignments to variable a in T0 are dead be
ausethey do not a�e
t the output of the program (i.e., they do not rea
h any otheruse of a in the program). On the other hand, the assignment to b in T0
annotbe
onsidered dead be
ause it is used by T1. Note that a sequential dead
ode elimination algorithm would have erroneously marked the assignment tob dead be
ause it la
ks the appropriate rea
hing de�nition information. Figure5.3 shows the result of a dead
ode pass on the
ode in Figure 5.2(b).Theorem 5.1 (Corre
tness of the CDCE algorithm) The
on
urrentdead
ode elimination algorithm is
orre
t. It only removes
ode that has noe�e
t on program output. 2Proof We will show that the CDCE algorithm does not mark deadstatements that are really live. Sin
e the sequential version is known tobe
onservative, we only need to
onsider the two modi�
ations we have

92 Optimizing expli
itly parallel programsb1 = 0;
obeginT0: beginlo
k(L);b2 = 8;x1 = 13;unlo
k(L);endT1: beginlo
k(L);b3 = �(b1, b2);a4 = b3 + 6;y1 = a4;unlo
k(L);end
oendprint(x1, y1);Figure 5.3: Con
urrent Dead Code Elimination for program in Figure 5.2(b).introdu
ed.Let Dv be a de�nition of variable v in thread T0. Let Uv be a use ofv in thread T1. Assume that there is a
on
i
t edge between the node
ontaining Dv and the node holding Uv (i.e., the threads are
on
urrentand no syn
hronization prevents both memory operations from exe
uting
on
urrently). Sin
e the rea
hing de�nition information in
ludes de�nitionsrea
hing through
on
i
t edges, if the statement holding Uv is marked livethen the statement that
ontains Dv will also be marked live. The se
ond
ondition is guaranteed by simply
onsidering
obegin/
oend stru
tures as
onditional bran
hes. �5.3 Lo
k Pi
kingSometimes it is possible to remove syn
hronization operations from aprogram without a�e
ting its semanti
s. For example, mutual ex
lusionsyn
hronization is unne
essary in a sequential program and
an be safelyremoved. In this se
tion we des
ribe lo
k pi
king, a transformation that �ndsand removes super
uous lo
k and unlo
k operations. We say that a mutexbody
an be lo
k-pi
ked if its lo
k and unlo
k nodes
an be removed. An

5.3 Lo
k Pi
king 93Algorithm 5.1 Con
urrent rea
hing de�nitions.input: A CCFG G in CSSAME formoutput: The set of rea
hing de�nitions for ea
h variable used in the program and the set of rea
heduses for ea
h variable de�ned in the program/* marked(d) is used to mark visited de�nitions *//* uses(d) is the set of uses rea
hed by d */forea
h variable de�nition d in the program domarked(d) ?uses(d) ;end forforea
h variable use u in the program dodefs(u) ;
all followChain(
hain(u), u)end for/* Re
ursively follow use-def
hains set up by the CSSAME algorithm */pro
edure followChain(d; u)if marked(d) = u thenreturnend ifmarked(d) u/* If the referen
e d is a de�nition, add it to the set of *//* rea
hing de�nitions for u, and add u to the set of rea
hed uses of d */if d is a de�nition for u thenAdd d to defs(u)Add u to uses(d)end if/* If the referen
e d is a � or a � fun
tion, follow the arguments */if (d is a � fun
tion) or (d is a � fun
tion) thenforea
h fun
tion argument j do
all followChain(j, u)end forend ifimportant property of lo
k pi
king is that it does not need to examine themutex bodies of the program. Only the lo
k and unlo
k nodes are analyzed.Lo
k pi
king uses rea
hing de�nition information for all the lo
k variablesto determine whether a mutex body
an be lo
k-pi
ked or not. The algorithmfor re
ognizing mutex bodies developed in Se
tion 3.3.1 modi�es the
owgraphso that every lo
k(L) node
ontains one de�nition of variable L and a use forea
h lo
k variable used in the program (in
luding L). As su
h, the CSSAMEform will initially pla
e a � fun
tion for all the uses of lo
k variables atea
h mutex body's lo
k node. However, if the program
ontains additionalsyn
hronization, it is possible that some of these � fun
tions will be removedby the CSSAME � pruning phase. Furthermore, in the
ase of sequentialse
tions of the program, � fun
tions will not be pla
ed at all.The lo
k pi
king algorithm (Algorithm 5.2) examines the lo
k nodes forevery mutex body in the program. The de
ision to lo
k-pi
k a mutex body

94 Optimizing expli
itly parallel programs
double Sum = 0;parloop (p, 0, N) f. . .for (i = 0; i < M; i++) fS3 = �(S0, S1, S2);R3 = �(R0, R1, R2);lo
k(R1);for (j = 0; j < M; j++) fsum redu
tion(A[i℄[j℄);gunlo
k(R2);g. . .gsum redu
tion(double x)f S4 = �(S0, S1, S2)R4 = �(R0, R1, R2)lo
k(S1);Sum = Sum + x;unlo
k(S2);g(a) Original CSSAME form.double Sum = 0;parloop (p, 0, N) f. . .for (i = 0; i < M; i++) fS3 = �(S0, S1, S2)R3 = �(R0, R1, R2)lo
k(R1);for (j = 0; j < M; j++) fS4 = �(S0, S1, S2)lo
k(S1);Sum = Sum + A[i℄[j℄;unlo
k(S2);gunlo
k(R2);g. . .g(b) CSSAME form after inlining and �pruning.

double Sum = 0;parloop (p, 0, N) f. . .for (i = 0; i < M; i++) fR3 = �(R0, R1, R2)lo
k(R1);for (j = 0; j < M; j++) fSum = Sum + A[i℄[j℄;gunlo
k(R2);g. . .g
(
) After lo
k pi
king.Figure 5.4: E�e
ts of lo
k pi
king on nested mutex bodies.

5.3 Lo
k Pi
king 95is based on the absen
e of � fun
tions for one or more lo
k variables at ea
hmutex body lo
k node. Re
all that the absen
e of � fun
tions for lo
k variablesat lo
k nodes means that there are no
on
urrent threads trying to a
quire thatlo
k. This might make the lo
k operation unne
essary. These
onditions aretypi
ally dis
overed using whole program analysis. For example,
onsider theprogram in Figure 5.4(a). The inner loop
alls the fun
tion sum redu
tion toupdate a global redu
tion variable. Sin
e sum redu
tion is a generi
 redu
tionfun
tion, it lo
ks the variable before doing the redu
tion. However, as a resultof inlining, redu
tion lo
k S is no longer ne
essary be
ause the redu
tion isalways prote
ted by lo
k R (Figure 5.4(b)). When fun
tion sum redu
tion isinlined, the use of lo
k R at the lo
k node of the mutex body for S be
omes aprote
ted use and its � fun
tion
an be removed (Novillo et al. 1998) (Figure5.4(b)).Lemma 5.1 (Nested mutex stru
tures) Let L = fL1; L2; : : : ; Lmg be theset of lo
k variables used in the program. Let MLj be the mutex stru
turefor lo
k variable Lj. If all the lo
k nodes in every mutex body of MLj arelo
k-prote
ted by the same lo
k variable Li, then the lo
k and unlo
k nodesfor mutex bodies in MLj are unne
essary and
an be removed. In this
ase,we say that mutex stru
ture MLj is nested inside mutex stru
ture MLi . 2Proof Sin
e all the lo
k nodes in all the mutex bodies in MLj arelo
k-prote
ted by the same lo
k variable Li, all the lo
k operations on Ljare serialized by lo
k Li. Therefore, they are unne
essary be
ause they arealways guaranteed to su

eed. Consequently, all the lo
k and unlo
k nodes forLj
an be safely removed. �The se
ond opportunity to lo
k-pi
k mutex bodies is when a parti
ularmutex body
annot exe
ute
on
urrently with any other mutex body of itssame mutex stru
ture. If this happens, we say that the mutex body isnon-
on
i
ting. Typi
ally, a mutex body will be non-
on
i
ting when itappears in sequential se
tions of a parallel program or if the program itselfis sequential. Non-
on
i
ting mutex bodies
an also be dis
overed if all themutex bodies in the same mutex stru
ture are totally ordered by some othersyn
hronization me
hanism (e.g., set/wait, barriers,
oend nodes). All thesequential programs des
ribed in Se
tion 6.2 had their lo
ks pi
ked be
ause

96 Optimizing expli
itly parallel programsAlgorithm 5.2 Lo
k-pi
king.input: A CCFG in CSSAME formoutput: The graph with unne
essary lo
k and unlo
k operations removedrepeat/* First phase. Find nested mutex bodies. */forea
h lo
k variable Li doforea
h mutex body BLi (N) 2MLi doforea
h lo
k variable Lj donested trueforea
h node n 2 N doif n
ontains a � fun
tion for Lj thennested falseend ifend forif nested thenProte
tors(N) Ljend ifend forend forif TN Prote
tors(N) 6= ; thenremove all lo
k and unlo
k nodes for mutex bodies in MLiupdate CSSAME information for Liend ifend for/* Se
ond phase. Find non-
on
i
ting mutex bodies. */forea
h lo
k variable Li doforea
h mutex body BLi (N) 2MLi dohasCon
i
ts falseforea
h node n 2 N doif n
ontains a � fun
tion for Li thenhasCon
i
ts trueend ifend forif not hasCon
i
ts thenremove all lo
k and unlo
k nodes for BLi (n)update CSSAME information for Liend ifend forend foruntil no more
hanges have been madethey had no
on
i
ts.Lemma 5.2 (Non-
on
i
ting mutex bodies) Let ML be the mutexstru
ture for lo
k variable L. Let BL(N) be a mutex body in ML. If no lo
knode n 2 N
ontains a � fun
tion for L then the lo
k and unlo
k operationsfor mutex body BL(N) are unne
essary and
an be removed. 2Proof If no lo
k node n 2 N
ontains a � fun
tion for L then no de�nitionfor L
omes from other
on
urrent threads. Sin
e lo
k variables are de�nedat lo
k(L) nodes, this means that no other lo
k(L) node
an exe
ute
on
urrently with the lo
k nodes of BL(N). Therefore, the mutex body BL(N)

5.4 Lo
k-Independent Code Motion 97is not ne
essary be
ause all its lo
k nodes are guaranteed to a
quire L everytime it exe
utes. �The
onditions for lo
k pi
king given by these two lemmas have subtledi�eren
es that are worth noting. The
onditions for Lemma 5.2 are onlyrequired to be met by a single mutex body. In
ontrast, Lemma 5.1 needsto
he
k all the mutex bodies in the same mutex stru
ture. It is not enoughfor one mutex body to be nested inside another. The whole mutex stru
turemust be nested inside the same lo
k. Otherwise, the transformation
annotbe done.5.4 Lo
k-Independent Code MotionBe
ause of the sequential semanti
s imposed by mutual syn
hronizationoperations, it is desirable to minimize the time spent inside mutex bodiesin the program. To a
hieve this goal we
an optimize the
ode inside mutexbodies as mu
h as possible. Alternatively, we
an minimize the amount of
ode exe
uted inside a mutex body by moving
ode that does not need to belo
ked outside the mutex body.Lo
k-Independent Code Motion (LICM) is a
ode motion te
hnique thatattempts to minimize the amount of
ode exe
uted inside a mutex body. Thisoptimization di�ers from lo
k pi
king in that it does not target the lo
koperations dire
tly. Rather, it analyzes the mutex body itself to �nd
ode that
an be moved outside. If at the end of the transformation a mutex body only
ontains unlo
k nodes, then the lo
k and unlo
k instru
tions are removed.De�nition 5.1 (Lo
k-independen
e) An expression E inside a mutexbody BL is lo
k-independent with respe
t to L if moving E outside BL doesnot
hange the meaning of the program. Similarly, a statement (or group ofstatements) S is lo
k independent with respe
t to L if all the expressions andde�nitions in S are lo
k-independent. A
owgraph node n is lo
k independentif all its statements are lo
k-independent. 2Lo
k-independent
ode is moved to spe
ial nodes
alled premutex andpostmutex nodes. For every mutex body BL(N) there is a premutex node,denoted premutex (ni), for ea
h lo
k node ni 2 N . Premutex nodes are
reated

98 Optimizing expli
itly parallel programsas immediate dominators of ea
h lo
k node ni. Similarly, there is a postmutexnode, denoted postmutex (xi) for every unlo
k node xi. Postmutex nodes are
reated as immediate post-dominators of ea
h exit node xi.The
on
ept of lo
k-independen
e is similar to the
on
ept of loop-invariant
ode for standard loop optimization te
hniques (Aho et al. 1986). However,the
onditions that make
ode to be lo
k-independent are di�erent from thosethat make it loop invariant. Lo
k-independent
ode
omputes the sameresult whether it is inside a mutex body or not. For instan
e, a statementthat referen
es variables private to the thread will
ompute the same valuewhether it is exe
uted inside a mutex body or not. This is also true if thestatement referen
es variables not modi�ed by any other
on
urrent thread inthe program.5.4.1 Moving Lo
k-Independent StatementsLo
k-independen
e is a ne
essary
ondition for moving a statement outsidethe mutex body, but it is not suÆ
ient. The suÆ
ient
ondition is that afterthe motion, the statement should preserve all its original
ontrol and datadependen
ies. For instan
e, if the statement is inside a loop it
annot bemoved out unless it is also loop invariant. This se
tion develops an algorithm todete
t and move lo
k-independent statements outside mutex bodies. Se
tions5.4.2 extends this to
ontrol stru
tures and 5.4.3 deals with lo
k-independentexpressions.Moving Statements to Premutex NodesGiven a lo
k-independent statement s inside a mutex body BL(N), LICM willattempt to move s to premutex or postmutex nodes for BL(N). This se
tiondes
ribes the
onditions required when attempting to move s to premutexnodes for BL(N). The sele
tion of lo
k nodes to re
eive statement s in theirpremutex node is done satisfying the following
onditions:Prote
tion. Candidate lo
k nodes are initially sele
ted amongall the lo
k nodes in N that rea
h the node
ontaining s(denoted node(s)). For instan
e,
onsider the program in Figure

5.4 Lo
k-Independent Code Motion 99
1 A = 0;2
obegin3 T0: begin4 x = 1;5 y = 0;6 done = 0;7 lo
k(L);8 while (!done) f9 y = y + 3;10 A = A + x;11 unlo
k(L);12 x = x + 1;13 if (x > 0) f14 lo
k(L);15 done = 1;16 x = x � A;17 g else f18 lo
k(L);19 A = A � x;20 x = x + 5;21 g22 y = y � 2;23 g24 if (A < x) f25 A = A + x;26 unlo
k(L);27 x �= 3;28 g else f29 A = A � x;30 unlo
k(L);31 g32 print(A, x, y);33 end3435 T1: begin36 lo
k(L);37 A += f();38 unlo
k(L);39 end40
oend(a) Original program.

1 A = 0;2
obegin3 T0: begin4 x = 1;5 y = 0;6 done = 0;7 lo
k(L);8 while (!done) f9 A = A + x;10 unlo
k(L);11 x = x + 1;12 if (x > 0) f13) y = y + 3;14) done = 1;15 lo
k(L);16 x = x � A;17 g else f18) y = y + 3;19 lo
k(L);20 A = A � x;21 x = x + 5;22 g23 y = y � 2;24 g25 if (A < x) f26 A = A + x;27 unlo
k(L);28 x �= 3;29 g else f30 A = A � x;31 unlo
k(L);32 g33 print(A, x, y);34 end3536 T1: begin37 lo
k(L);38 A += f();39 unlo
k(L);40 end41
oend(b) After LICMS.Figure 5.5: Moving lo
k-independent statements. Moved statements are markedwith arrows ()).

100 Optimizing expli
itly parallel programs5.5(a). Thread T0
ontains one mutex body BL(f7; 14; 18g) =f8; 9; 10; 11; 15; 16; 19; 20; 21; 22; 23; 24; 25; 28; 29g1. Statement A = A+xat line 10 is rea
hed by the lo
k nodes at lines 7, 14 and 18. However,statement x = x + 5 at line 20 is only rea
hed by the lo
k node at line18. This
ondition provides an initial set of
andidate lo
k nodes
alledprote
tors(s).Rea
hability. Sin
e s is rea
hed by all the nodes in prote
tors(s), thereis a
ontrol path between ea
h lo
k node in prote
tors(s) and node(s).Therefore, when statement s is removed from its original lo
ation, thestatement must be repla
ed on every path from ea
h lo
k node tonode(s). This implies that s may need to be repli
ated to more thanone premutex node.To determine whi
h lo
k nodes
ould re
eive a
opy of s we performrea
hability analysis among the lo
k nodes rea
hing s (prote
tors(s)).This analysis
omputes a partition of prote
tors(s),
alled re
eivers(s),that
ontains all the lo
k nodes that may re
eive a
opy of statements. The sele
tion of re
eiver nodes is done so that (a) there exists a pathbetween s and every lo
k node in prote
tors(s), and (b) instan
es ofs o

ur only on
e along any of these paths (i.e., s is not unne
essarilyrepli
ated).Besides having multiple premutex nodes that
ould re
eive s, a mutexbody
ould have multiple
ombinations of re
eiver nodes for s. Forinstan
e, in the program fragment of Figure 5.5(a), lo
k-independentstatement s : y = y + 3 at line 9 is rea
hed by lo
k nodes 7,14 and 18. For the purpose of this dis
ussion we disregard other
onsiderations that might prevent moving s outside the mutex body(e.g., data dependen
ies). Noti
e that moving s to all three premutexnodes is not a valid option be
ause this
reates dupli
ate instan
es of son a single
ontrol path. There are two sets of re
eiver nodes for s inthis program, namely f7g and f14; 18g. Further analysis will determinewhi
h of these re
eiver sets is the better
hoi
e.1For simpli
ity we are assuming that ea
h line
orresponds to a node in the CCFG.

5.4 Lo
k-Independent Code Motion 101Algorithm 5.3
omputes all the di�erent sets of lo
k nodes thatmay re
eive a lo
k-independent statement s in their premutex nodes.Basi
ally, the algorithm
omputes rea
hability sets among the nodesin prote
tors(s). The set prote
tors(s) is partitioned into k partitionsP1; P2; : : : Pk. Nodes in ea
h partition Pj
annot rea
h ea
h other but puttogether they rea
h or are rea
hed by every other node in prote
tors(s).These partitions are the sets of lo
k nodes that
an re
eive a
opy of sin their premutex nodes.Data Dependen
ies. When moving a statement s to one of the re
eiversets for s, the motion must not alter the original data dependen
ies forthe statement and other statements in the program. If Pj is the sele
tedre
eiver set for s, two restri
tions must be observed:1. No variable de�ned by s may be used or de�ned along any pathfrom node(s) to every node in Pj.2. No variable used by s may be de�ned along any path from node(s)to every node in Pj.These two restri
tions are used to prune the set of re
eiver nodes
omputed in Algorithm 5.3. Noti
e that sin
e the program is in CSSAMEform, � fun
tions are also
onsidered de�nitions and uses for a variable.In the example program of Figure 5.5(a) the re
eiver node for statementx = x+5 at line 20 is node 18, whi
h
annot re
eive it be
ause x is usedat line 19. Statement y = y + 3 has two sets of re
eiver nodes: f7g andf14; 18g. Node 7
annot be used be
ause of the � fun
tion for y at thehead of the while loop. However, both nodes 14 and 18
ould re
eive a
opy of the statement.When more than one statement is moved to the same premutex node, theoriginal data dependen
ies among the statements in the same premutexnode must also be preserved. This is a

omplished by maintaining theoriginal
ontrol pre
eden
e when moving statements into the premutexnode.

102 Optimizing expli
itly parallel programsAlgorithm 5.3 Compute
andidate premutex nodes (re
eivers).input: A mutex body BL(N) and a lo
k-independent statement s.output: A list of re
eiver sets. Ea
h re
eiver set Pi
ontains the lo
k nodes whose premutex nodesmay re
eive s.1: prote
tors(s) set of lo
k nodes that rea
h s.2: Q prote
tors(s)3: k 14: while Q 6= ; do5: ni �rst node in Q6: P (k) fnig7: remove ni from Q /* Add to P (k) all the nodes that are not
onne
ted with ni */8: forea
h node nj 2 Q and Q 6= ; do9: if (there is no path ni ! nj) and (there is no path nj ! ni) then10: P (k) P (k)Sfnjg11: remove nj from Q12: end if13: end for14: k k + 115: end while16: return re
eivers P (1); P (2); : : : ; P (k � 1)Theorem 5.2 (Hoistable statements) Let s be a lo
k-independentstatement s inside a mutex body BL(N). Let prote
tors(s) be a set of lo
knodes in N su
h that:1. 8ni 2 prote
tors(s) : node ni rea
hes node(s),2. there exist k partitions P : P1; P2; : : : ; Pk (k � 1) of the setprote
tors(s)
omputed as per Algorithm 5.3, and3. there exists a partition Pj 2 P for whi
h (a) no variable de�nedby s is de�ned nor used in any path between node(s) and nodes inPj, and (b) no variable used by s is de�ned in any path betweennode(s) and nodes in Pj.If these
onditions hold for at least one partition Pj then it is possible tomove s to the premutex nodes for the lo
k nodes in Pj. 2Proof Sin
e node(s) is rea
hed by every node ni 2 prote
tors(s), there existsa path between ni and node(s). Let Pj be a set of nodes that
omplies with thethree
onditions in the theorem. The nodes in Pj have the following properties:

5.4 Lo
k-Independent Code Motion 1031. 8ni; nk 2 Pj su
h that ni 6= nk, there is no
ontrol path betweenni and nk. This is immediate from the way the algorithm sele
tsthe nodes (lines 9-10 of Algorithm 5.3).2. 8ni 2 prote
tors(s) : if ni 62 Pj then 9nk 2 Pj su
h that thereis a path between ni and nk. Suppose that there is a node ni 2prote
tors(s) that
annot be rea
hed by any node in Pj then thealgorithm would have pla
ed ni in Pj, whi
h is a
ontradi
tion.The previous two
onditions guarantee that if s is removed from node(s)and repli
ated to every node in Pj then one and only one instan
e of s willstill be available on paths leading to or from nodes in prote
tors(s). Finally,let Ds be the set of variables de�ned in s. Sin
e no path between node(s) andthe nodes in Pj de�nes or uses a variable in Ds, moving s will not alter datadependen
ies for s. Similarly, let Us be the set of variables used in s. Sin
e nopath between node(s) and ni de�nes de�nes variables in Us, it is safe to moves. �Moving Statements to Postmutex NodesThe LICM transformation may also move statements to postmutex nodes ofa mutex body BL(N). The analysis for postmutex nodes is similar to theprevious
ase. The
onditions are essentially the reverse of the
onditionsrequired for premutex nodes.Prote
tion. Unlo
k node xi must be rea
hed by the same lo
k nodes thatrea
h statement s. This guarantees that there exists a
ontrol pathbetween node(s) to xi. This
ondition provides an initial set of unlo
knodes to
onsider as
andidates. In the example program in Figure5.5(a), the statement y = y + 3 at line 9 is rea
hed by lo
k nodes 7, 14and 18 whi
h also rea
h unlo
k nodes 11, 26 and 30.Rea
hability. Algorithm 5.4
omputes all the di�erent sets of unlo
k nodesthat may re
eive a lo
k-independent statement s in their postmutexnodes. The algorithm performs the same rea
hability analysis doneby Algorithm 5.3. The set releasers(s)
ontains all the unlo
k nodes

104 Optimizing expli
itly parallel programsrea
hed by the same lo
k nodes that rea
h s. The set releasers(s) ispartitioned into k partitions X1; X2; : : :Xk. Nodes in ea
h partition Xj
annot rea
h ea
h other but put together they rea
h or are rea
hed byevery other node in releasers(s). These partitions are the sets of unlo
knodes that
an re
eive a
opy of s in their postmutex nodes.Data dependen
ies. The same requirements needed for premutex nodesare ne
essary for postmutex nodes. If any variable de�ned by s is de�nedor used in any path from s to a node in releasers(s) then s may not bemoved. Similarly, if any variable used by s is de�ned in any path from sto a node in releasers(s) then s may not be moved.Algorithm 5.4 Compute
andidate postmutex nodes (releasers).input: A mutex body BL(N) and a lo
k-independent statement s.output: A list of releaser sets. Ea
h releaser set Xi
ontains the unlo
k nodes whose postmutexnodes may re
eive s.1: prote
tors(s) set of lo
k nodes that rea
h s.2: Q fxi 2 BL(N) su
h that xi is rea
hed by a node in prote
tors(s)g3: k 14: while Q 6= ; do5: xi �rst node in Q6: X(k) fxig7: remove xi from Q /* Add to X(k) all the nodes that are not
onne
ted with xi */8: forea
h node xj 2 Q and Q 6= ; do9: if (there is no path xi ! xj) and (there is no path xj ! xi) then10: X(k) X(k)Sfxjg11: remove xj from Q12: end if13: end for14: k k + 115: end while16: return releasers X(1); X(2); : : : ;X(k � 1)Theorem 5.3 (Downward-movable statements) Let s be alo
k-independent statement s inside a mutex body BL(N). Let releasers(s)be a set of unlo
k nodes in BL su
h that:

5.4 Lo
k-Independent Code Motion 1051. 8xi 2 releasers(s) : node xi is rea
hed by a node in prote
tors(s),2. there exist k subsets X : X1; X2; : : : ; Xk (k � 1) of the setreleasers(s)
omputed as per Algorithm 5.4, and3. there exists a partition Xj 2 X for whi
h (a) no variable de�nedby s is de�ned nor used in any path between node(s) and nodes inXj, and (b) no variable used by s is de�ned in any path betweennode(s) and nodes in Xj.If these
onditions hold for at least one partition Xj then it is possible tomove s to the postmutex nodes for the unlo
k nodes in Xj. 2Proof Similar to the proof for Theorem 5.2. �LICM for Statements (LICMS)Theorems 5.2 and 5.3 are used as the basis for the algorithm to movestatements outside mutex bodies (Algorithm 5.5). Noti
e that even though werefer to hoistable statements for statements that
an be moved to a premutexnode, the movement is not ne
essarily made against the
ow of
ontrol. Thename was
hosen be
ause that is what happens in the most general
ase.Similarly, downward-movable statements may be moved up.The LICMS algorithm s
ans all the mutex bodies in the program lookingfor lo
k-independent statements to move outside the mutex body. Ea
hlo
k-independent statement s is
he
ked against the
onditions des
ribedpreviously. Lines 8 � 15 in Algorithm 5.5 determine the sets of premutexre
eivers for s. The initial set of
andidates
omputed by Algorithm 5.3
he
ksevery lo
k node in a mutex body against ea
h other looking for paths betweenthem. If mb is the number of mutex bodies in the program, this
an bea

omplished in O(mb2) time. To
he
k data dependen
ies ea
h statementhas to be
ompared with all the statements in paths to ea
h premutex node(lines 9 � 15). Given that there may be up to mb premutex nodes, datadependen
ies
an be
he
ked in O(mb�jSj2), where S is the set of statementsin the program. This yields a total time
omplexity for lines 8 � 15 ofO(mb2+mb�jSj2). Similarly, lines 16�24
ompute sets of postmutex re
eiversin time O(mb2 +mb � jSj2).

106 Optimizing expli
itly parallel programsNoti
e that it might be possible that a statement
an be moved to boththe premutex and the postmutex nodes. In that
ase a
ost model shoulddetermine whi
h node is more
onvenient. We will base our
ost model on thee�e
ts of lo
k
ontention. Suppose that there is high
ontention on a parti
ularlo
k. All the statements moved to premutex nodes will not be a�e
ted byit be
ause they exe
ute before a
quisition of the lo
k. However, statementsmoved to the postmutex node will be delayed if there is
ontention be
ausethey exe
ute after the lo
k has been released. Therefore, when a statement
an be moved to both the premutex and postmutex nodes, the premutex nodeis sele
ted.When more than one set of premutex or postmutex nodes
an re
eive astatement s a
ost model should be use to sele
t the more pro�table target.Although not addressed in this do
ument,
ost models may in
lude simplefa
tors like
he
king that statements are not moved into loops or even delayingall the hoisting de
isions until the algorithm has �nished analyzing all thestatements in a single mutex body.Finally, if the mutex body is empty at the end of the transformation, thelo
k and unlo
k nodes are removed (lines 36�39). The total time
omplexityfor the LICMS algorithm is then O(m�mb�(mb2+mb�jSj2)). In general, weexpe
t the
ost to be dominated by jSj be
ause m (number of lo
k variables)and mb (number of mutex bodies in the program) will be relatively small
ompared to jSj. The e�e
ts of LICMS on the program in Figure 5.5(a) areshown in Figure 5.5(b). Noti
e that the statement y = y+3 at line 9 in Figure5.5(a) as been repli
ated into lines 13 and 18 in the transformed programof Figure 5.5(b). It is ne
essary to repli
ate the statement, otherwise thetransformed program will not
ompute the same value of y than the originalone.5.4.2 LICM for Control Stru
turesThe basi
 me
hanism for moving statements outside mutex bodies
an be usedto move lo
k-independent
ontrol stru
tures. Control stru
tures are handledby
he
king and aggregating all the nodes
ontained in the stru
ture into asingle super-node and treating it like a single statement. After this pro
ess,

5.4 Lo
k-Independent Code Motion 107
Algorithm 5.5 Lo
k-Independent Code Motion for Statements (LICMS).input: A CCFG G = hN;E;EntryG;ExitGi in CSSAME form with pre and postmutex nodesinserted in every mutex bodyoutput: The program with lo
k-independent statements moved to the
orresponding premutex andpostmutex nodes1: forea
h lo
k variable Li do2: forea
h mutex body BLi (N) 2MutexStru
t(Li) do3: ni node(Li)4: forea
h lo
k-independent statement s rea
hed by ni do5: Ds variables de�ned by s6: Us variables used by s7: /* Determine whi
h premutex nodes
an re
eive s. */8: P re
eivers of s at premutex nodes (Algorithm 5.3)9: forea
h Pi 2 P do10: forea
h node n 2 Pi do11: if (any path between n and node(s) de�nes or uses a variable in Ds)or (any path between n and node(s) de�nes a variable in Us) then12: remove Pi from P13: end if14: end for15: end for16: /* Determine whi
h postmutex nodes
an re
eive s. */17: X re
eivers of s at postmutex nodes (Algorithm 5.4)18: forea
h Xi 2 X do19: forea
h node x 2 Xi do20: if (any path between x and node(s) de�nes or uses a variable in Ds)or (any path between x and node(s) de�nes a variable in Us) then21: remove Xi from X22: end if23: end for24: end for25: /* Sets P and X
ontain sets of premutex and postmutex nodes that
an re
eive s. */26: if P 6= ; then27: sele
t one Pi 2 P (
ost model or random)28: remove s from its original lo
ation29: repli
ate s to ea
h node n 2 Pi30: else if X 6= ; then31: sele
t one Xi 2 X (
ost model or random)32: remove s from its original lo
ation33: repli
ate s to ea
h node x 2 Xi34: end if35: end for36: /* Remove the mutex body if it is empty. */37: if BLi (N) = ; then38: remove all the lo
k and unlo
k nodes of BLi(N)39: end if40: end for41: end for

108 Optimizing expli
itly parallel programsAlgorithm 5.5
an be used to hoist the stru
tures outside mutex bodies.Algorithm 5.6 looks for
ontrol stru
tures that only
ontainlo
k-independent statements. Control stru
tures are identi�ed usingstandard interval analysis te
hniques (Aho et al. 1986). Basi
ally,
ontrolstru
tures form a single-entry, single-exit region of the graph. An entry nodedominates all the nodes in the
ontrol stru
ture. An exit node post-dominatesall the nodes in the
ontrol stru
ture.On
e identi�ed, sub-graphs inside a mutex body are s
anned to determineif all their interior statements are lo
k-independent. If so, the variables de�nedand used by ea
h statement are aggregated into the sets DH and UH for ea
hsub-graph (lines 9 � 22 in Algorithm 5.6). After all the sub-graphs in everymutex body of the program have been identi�ed, Algorithm 5.5 is used to hoistthem out of mutex bodies. The identi�
ation of lo
k-independent sub-graphs
an be done in O(m�mb�jSj) time. Where m is the number of lo
k variablesused in the program, mb the number of mutex bodies and S is the set ofstatements in the program.Algorithm 5.6 LICM for Control Stru
tures (LICMT).input: A CCFG G = hN;E;EntryG;ExitGi in CSSAME formoutput: The graph with lo
k independent
ontrol stru
tures moved to the
orresponding premutexand postmutex nodes1: build sub-graphs for all
ontrol stru
tures in the program2: forea
h lo
k variable Li do3: forea
h mutex body BLi (N) 2MutexStru
t(Li) do4: /* Build sub-graphs for all the
ontrol stru
tures in the mutex body. */5: /* Find lo
k-independent sub-graphs. */6: forea
h subgraph H inside BLi (N) do7: DH ;8: UH ;9: forea
h statement s in H do10: if s is not lo
k-independent then11: mark H as lo
k-dependent (i.e., it
annot be moved)12:
ontinue with next sub-graph13: else14: /* Add de�nes and uses made by s to the sub-graph. */15: DH DH SDs16: UH UH SUs17: end if18: end for19: mark H as lo
k-independent20: end for21: end for22: end for23: hoist lo
k-independent sub-graphs using Algorithm 5.5

5.4 Lo
k-Independent Code Motion 1095.4.3 LICM for ExpressionsIf hoisting statements or
ontrol stru
tures outside mutex bodies is notpossible, it may still be possible to
onsider moving lo
k-independentsub-expressions outside mutex bodies. This strategy is similar to movingstatements (Algorithm 5.5) with the following di�eren
es:1. Sub-expressions do not de�ne variables. They only read variables orprogram
onstants.2. If a sub-expression is moved from its original lo
ation, the
omputationperformed by the expression must be stored in a temporary variable
reated by the
ompiler. The original expression is then repla
ed bythe temporary variable. This is the same substitution performed by
ommon sub-expression and partial redundan
y elimination algorithms(Aho et al. 1986; Chow et al. 1997).3. Contrary to the
ase with statements and
ontrol stru
tures, expressions
an only be moved against the
ow of
ontrol. The reason is that thevalue
omputed by the expression needs to be available at the statement
ontaining the original expression.Algorithm 5.7 �nds and removes lo
k-independent expressions from mutexbodies in the program. The pro
ess of gathering
andidate expressions issimilar to that of SSAPRE, an SSA based partial redundan
y eliminationalgorithm (Chow et al. 1997). Mutex bodies are s
anned for lo
k-independent�rst-order expressions, whi
h are expressions that
ontain only one operator.Higher order expressions are handled by su

essive iterations of the algorithm.On
e lo
k-independent expressions are identi�ed, the algorithm looks forsuitable premutex or postmutex nodes to re
eive ea
h expression. We observethat sin
e expressions
an only be hoisted up in the graph, it is not ne
essaryto
onsider postmutex nodes when moving lo
k-independent expressions.Theorem 5.4 (Target nodes for lo
k-independent expressions) Let ebe a lo
k-independent expression inside mutex bodyBL(N). If e
an be hoistedto a postmutex node of BL(N) there exists a premutex node of BL(N) that
an also re
eive e. 2

110 Optimizing expli
itly parallel programsAlgorithm 5.7 Lo
k-Independent Code Motion for Expressions (LICME).input: A CCFG in CSSAME formoutput: The graph with lo
k-independent expressions moved to the
orresponding premutex nodes1: repeat2: forea
h lo
k variable Li do3: forea
h mutex body BLi (N) 2MLi do4: E ES set of lo
k-independent expressions in BLi (N).5: if E 6= ; then6: forea
h expression Ej 2 E do7: P premutex re
eivers for Ej (Algorithm 5.3)8:
andidates ;9: forea
h Pi 2 P do10: if 8n 2 Pi : (n DOM node(Ej)) or (node(Ej) PDOM n) then11:
andidates Pi12: stop looking for
andidates13: end if14: end for15: if
andidates 6= ; then16: insert the statement tj = Ej in all the premutex nodes for lo
k nodes in
andidates17: end if18: end for19: end if20: end for21: end for22: /* Repla
e hoisted expressions inside ea
h mutex body. */23: forea
h lo
k variable Li do24: forea
h mutex body BLi (N) 2MLi do25: repla
e hoisted expressions in BLi (N) with their
orresponding temporaries26: end for27: end for28: until no more
hanges have been madeProof Let x be an unlo
k node in BL(N) su
h that postmutex (x)
an re
eivee. Sin
e e
an only be moved against the
ow of
ontrol, there exists a
ontrolpath from x to node(e). Furthermore, sin
e e is inside the mutex body, node(e)must be rea
hed by some lo
k node n 2 N su
h that every path from x tonode(e) goes through n. Therefore, if e
an be pla
ed in postmutex (x) it
analso be moved to premutex (n). �We use the previous result to redu
e the number of
andidate nodes to be
onsidered when moving lo
k-independent expressions. Only lo
k nodes are
onsidered by the algorithm. Furthermore, the
andidate lo
k must dominateor be post-dominated by the node holding the expression (lines 7 � 13 inAlgorithm 5.7).The a

eptable re
eiver sets are stored in the set
andidates. Using asimilar reasoning to Theorem 5.4 it
an be shown that in this
ase, thealgorithm for
omputing re
eiver premutex nodes (Algorithm 5.3) will �nd

5.5 Mutex Body Lo
alization 111none or exa
tly one set of lo
k nodes that
an re
eive the expression in theirpremutex nodes.Figure 5.6 shows an example program before and after running the LICMalgorithm. When LICM is applied to the program in Figure 5.6(a), the �rstphase of the algorithm moves the statement at line 9 and the assignment j = 0to the premutex node. The statement at line 13 is sunk to the postmutexnode resulting in the equivalent program in Figure 5.6(b). There is still somelo
k-independent
ode in the mutex body, namely the expressions j < M atline 11, the statement j++ at line 11 and the expression y[j℄+sqrt(a)�sqrt(b)at line 12. The only hoistable expression is sqrt(a) � sqrt(b) be
ause it is theonly expression with all its rea
hing de�nitions outside the mutex body. Notethat a loop-invarian
e transformation would have dete
ted this expression andhoisted it out of the loop. LICM goes a step further and hoists the expressionoutside the mutex body.5.4.4 Putting it All Together: Lo
k-Independent CodeMotion (LICM)The individual algorithms dis
ussed in previous se
tions
an be
ombined intoa single LICM algorithm (Algorithm 5.8). There are four main phases tothe algorithm. The �rst phase looks for mutex bodies that have nothing butlo
k-independent nodes. These are the simplest
ases. If all the nodes ina mutex body are lo
k-independent, then the lo
k operations at the lo
knodes and the unlo
k operations in the body
an be removed. The nextthree phases move interior lo
k-independent statements,
ontrol stru
tures andexpressions outside the mutex bodies in the program (Algorithms 5.5, 5.6 and5.7). We show the e�e
t of the LICM transformation in several expli
itlyparallel programs in Chapter 6.5.5 Mutex Body Lo
alizationIn this se
tion we dis
uss a transformation te
hnique that may enhan
e theopportunities for further optimization of the program. Consider a mutex body

112 Optimizing expli
itly parallel programs
1 double X[℄; =� shared �=23 parloop (i, 0, N) f4 double a, b; =� lo
al �=5 double y[℄; =� lo
al �=67 . . .8 lo
k(L);9 b = a � sin(a);10 for (j = 0; j < M; j++) f11 X[j℄ = y[j℄ + sqrt(a) � sqrt(b);12 g13 a = y[i℄;14 unlo
k(L);15 . . .16 g(a) Program before LICM.1 double X[℄; =� shared �=23 parloop (i, 0, N) f4 double a, b; =� lo
al �=5 double y[℄; =� lo
al �=67 . . .8 b = a � sin(a);9 j = 0;10 lo
k(L);11 for (; j < M; j++) f12 X[j℄ = y[j℄ + sqrt(a) � sqrt(b);13 g14 unlo
k(L);15 a = y[i℄;16 . . .17 g(b) After LICM on statements.

1 double X[℄; =� shared �=23 parloop (i, 0, N) f4 double a, b; =� lo
al �=5 double y[℄; =� lo
al �=67 . . .8 b = a � sin(a);9 j = 0;10 t1 = sqrt(a) � sqrt(b);11 lo
k(L);12 for (; j < M; j++) f13 X[j℄ = y[j℄ + t1;14 g15 unlo
k(L);16 a = y[i℄;17 . . .18 g(
) After LICM on expressions.Figure 5.6: E�e
ts of lo
k-independent
ode motion (LICM).

5.5 Mutex Body Lo
alization 113Algorithm 5.8 Lo
k-Independent Code Motion (LICM).input: A CCFG in CSSAME formoutput: The graph with lo
k-independent expressions moved to the
orresponding premutex nodes/* First phase. Try to remove lo
k and unlo
k nodes for mutex bodies with nothing but LI nodes. */forea
h lo
k variable Li doforea
h mutex body BLi (N) doif all the nodes a 2 BLi (N) are lo
k independent thenremove all lo
k and unlo
k nodes for BLi (N)end ifend forend for/* Se
ond phase. Move whole
ontrol stru
tures out. */perform LICM on stru
tures (Algorithm 5.6)/* Third phase. Move individual statements out. */perform LICM on statements (Algorithm 5.5)/* Fourth phase. Try to move expressions. */perform LICM on expressions (Algorithm 5.7)BL that modi�es a shared variable V (Figure 5.7(a)). With the ex
eption ofthe de�nition rea
hing the unlo
k node of BL, all the modi�
ations done to Vinside the mutex body
an only be observed by the thread.Given these
onditions, it is possible to
reate a lo
al
opy of V and repla
eall the referen
es to V inside the mutex body to referen
es to the lo
al
opy(Figure 5.7(b)). We
all this transformation mutex body lo
alization (MBL).It is the dual te
hnique to LICM. While LICM looks for lo
k-independent
ode, MBL
reates lo
k-independent
ode by modifying the left-hand side ofstatements. The basi
 transformation is straightforward:1. At the start of the mutex body a lo
al
opy of the shared variableis
reated if there is at least one use for the variable with rea
hingde�nitions outside the mutex body.2. At the mutex body exits, the shared
opy is updated from the lo
al
opyof the variable if at least one internal de�nition of the variable rea
hesthat parti
ular unlo
k node.3. All the interior referen
es to the shared variable are modi�ed so thatthey referen
e the lo
al
opy.Noti
e that this transformation is legal provided that the a�e
ted referen
esare always made inside mutex bodies. Otherwise, the transformation mightprevent memory interleavings that were allowed in the original program.

114 Optimizing expli
itly parallel programs
double V = 0;parloop (i, 0, N) fdouble x, y[℄;int i;. . .lo
k(L);i = 0;while (V <= x) fV = V + y[i++℄;gunlo
k(L);. . .g(a) A mutex body before lo
alization.

double V = 0;parloop (i, 0, N) fdouble x, y[℄, p V;int i;. . .lo
k(L);p V = V;i = 0;while (p V <= x) fp V = p V + y[i++℄;gV = p V;unlo
k(L);. . .g (b) After lo
alization.
double V = 0;parloop (i, 0, N) fdouble x, y[℄, p V;int i;. . .lo
k(L);p V = 0;i = 0;while (p V <= x) fp V = p V + y[i++℄;gV = V + p V;unlo
k(L);. . .g(
) After redu
tion re
ognition.

double V = 0;parloop (i, 0, N) fdouble x, y[℄, p V;int i;. . .p V = 0;i = 0;while (p V <= x) fp V = p V + y[i++℄;glo
k(L);V = V + p V;unlo
k(L);. . .g (d) After LICM.Figure 5.7: Appli
ations of mutex body lo
alization.

5.5 Mutex Body Lo
alization 115Algorithm 5.10 makes lo
al
opies of a variable a inside a mutex bodyBL(N) if the variable
an be lo
alized. To determine whether the variable a
an be lo
alized it
alls Algorithm 5.9 (a subroutine of Algorithm 5.10) whi
hreturns true if a
an be lo
alized inside mutex body BL(N). The lo
alizationalgorithm relies on two data stru
tures that
an be built during the � rewritingphase of the CSSAME algorithm (Algorithm 4.5):exposedUses(N) is the set of upward-exposed uses from the mutex bodyBL(N). This set is asso
iated with the entry nodes in N .rea
hingDefs(X) is the set of de�nitions that
an rea
h the exit nodes X ofBL(N).Algorithm 5.10 starts by
he
king whether the variable
an be lo
alized(lines 1 � 4). It then
he
ks where the lo
al
opies are needed. If there areupward-exposed uses of a, a
opy is needed at the start of the mutex body(lines 5 � 16). If there are de�nitions of a rea
hing an exit node, the shared
opy of a must be updated before exiting the mutex body (lines 17� 29). The�nal phase of the algorithm updates the interior referen
es to a to be referen
esto p a (lines 30 � 34). After this phase, the CSSAME form for the programhas been altered and it should be updated. The simplest way to do this is torun the CSSAME algorithm again (Algorithm 4.7). However, this might beexpensive if the lo
alization pro
ess is repeated many times.An alternate solution is to in
rementally update the CSSAME form afterthe variable has been lo
alized. The following are some guidelines that shouldbe
onsidered when performing an in
remental update of the CSSAME form:1. If the lo
al
opy is
reated at the start of the mutex body, the statementp a = a
ontains a use of a. This use of a will have the same
ontrolrea
hing de�nition that the upward-exposed uses of a have. Noti
ethat all the upward-exposed uses of a have the same
ontrol rea
hingde�nition.Sin
e this statement has a
on
i
ting use of a, it requires a � fun
tion.The argument list to this � fun
tion is the union of all the argumentsto all the � fun
tions for a inside the mutex body. Noti
e that the �

116 Optimizing expli
itly parallel programsfun
tions for a should be for upward-exposed uses of a. This is be
ausethe program is in CSSAME form and all
on
i
ting referen
es to aare made inside mutex bodies of the same mutex stru
ture (i.e., a islo
alizable).2. All the � fun
tions for a inside the mutex body must disappear be
auseall the interior referen
es to a are repla
ed by referen
es to p a.3. All the interior � fun
tions for a must be
onverted into � fun
tions forp a.4. If the shared
opy is updated at the end of the mutex body, the statementa = p a
ontains a use of p a whose
ontrol rea
hing de�nition shouldbe the de�nition of p a rea
hing the exit node x.Algorithm 5.9 Lo
alization test (lo
alizable).input: A variable a and mutex body BL(N)output: true if a
an be lo
alized in BL(N), false otherwise1: ML mutex stru
ture
ontaining BL(N)2: /* Che
k every
on
i
ting referen
e r to a in the program. All the
on
i
ting */3: /* referen
es to a must o

ur inside mutex bodies of ML, otherwise a is not lo
alizable. */4: forea
h
on
i
ting referen
e r 2 Refs(a) do5: /* If we
annot �nd r in any of the mutex bodies of ML, then a is not lo
alizable. */6: prote
ted false7: forea
h mutex body B0L(N 0) 2ML do8: if node(r) is rea
hed by some lo
k node in N 0 then9: prote
ted true10: end if11: end for12: if not prote
ted then13: return false14: end if15: end for16: /* All the referen
es to a are prote
ted. Therefore, a is lo
alizable. */17: return trueThe MBL transformation by itself does not ne
essarily improve theperforman
e of a program but it opens up new optimization opportunities.The main e�e
t of lo
alization is that it might
reate more lo
k-independent
ode. For instan
e, if a thread
ontains read-only referen
es to a variable V ,lo
alizing V will make those reads into lo
k-independent operations whi
h inturn might make the whole statement lo
k-independent. Consider the sampleprogram in Figure 5.7(a). After lo
alization (Figure 5.7(b)), most statements

5.5 Mutex Body Lo
alization 117Algorithm 5.10 Mutex body lo
alization.input: (1) An expli
itly parallel program P in CSSAME form, (2) A variable a to be lo
alized, (3)A mutex body BL(N)output: BL(N) with variable a lo
alized1: /* Che
k if a
an be lo
alized (Algorithm 5.9) */2: if not lo
alizable(a;BL(N)) then3: return4: end if5: /* Che
k for upward-exposed uses of a. Sin
e the program is in CSSAME form, */6: /* upward-exposed uses have already been
omputed (Algorithm 4.5). If there are */7: /* upward-exposed uses of a then we need to make a lo
al
opy of a at the start of BL(N). */8: needEntryCopy false9: forea
h use u 2 exposedUses(N) do10: if u is a use of a then11: needEntryCopy true12: end if13: end for14: if needEntryCopy then15: insert the statement p a = a at the start of the mutex body16: end if17: /* Che
k if any de�nition of a rea
hes the exit nodes of BL(N). */18: /* Sin
e the program is in CSSAME form, the de�nitions that rea
h the exit nodes X */19: /* have already been
omputed (Algorithm 4.5). If a de�nition */20: /* of a rea
hes x, we need to make a
opy of a before leaving the mutex body. */21: needExitCopy false22: forea
h de�nition d 2 rea
hingDefs(X) do23: if d is a de�nition of a then24: needExitCopy true25: end if26: end for27: if needExitCopy then28: insert the statement a = p a at the exit nodes of the mutex body29: end if30: /* Update referen
es to a inside the mutex body to referen
e */31: /* the lo
al version pa instead of the shared version a. */32: forea
h referen
e to a inside BL(N) do33: repla
e a with p a34: end for35: update CSSAME information for all referen
es to p a inside BL(N)inside the mutex body for L are lo
k-independent. However, none
an bemoved outside be
ause of the read and write operations to the shared variableV at the fringes of the mutex body. If the
ompiler in
orporates a redu
tionre
ognition pass, it is possible to do the redu
tion lo
ally and only update Vat the end (Figure 5.7(
)). Now all the lo
k-independent
ode in the mutexbody
an be moved to the premutex node resulting in the equivalent program inFigure 5.7(d). As we will dis
uss in Chapter 6 this is a
ommon transformationperformed manually by programmers. Using these te
hniques, it is possible tomake this transformation automati
ally in the
ompiler.

118 Optimizing expli
itly parallel programs5.5.1 Single Writer, Multiple Readers Lo
k Pi
kingSuppose that a parallel program exhibits an a

ess pattern to a shared variableV su
h that1. V is read and written by exa
tly one thread Tw and it is read-only inall of the threads
on
urrent with Tw (i.e. there is a single writer andmultiple readers for V),2. all the referen
es to V are atomi
 with respe
t to the operation beingperformed (i.e., V is not an aggregate data type that may requiremultiple memory operations to update or retrieve),3. within the
on
urrent threads (i.e., the writer Tw and all the readers),variable V is only a

essed inside
riti
al se
tions of the
ode, and4. the underlying memory model is strongly
onsistent.Under these
ir
umstan
es it is possible to lo
alize the referen
es to V inTw so that atomi
ity
an be maintained without requiring lo
ks. For example,
onsider the program in Figure 5.8(a). Thread T0
omputes a value for V ,
he
ks a bound and updates V if ne
essary (assume that global variables Xand Y have no
on
i
ts). Both threads T1 and T2 read V but never modifyit. The syn
hronization on V is ne
essary to prevent threads T1 and T2 fromreading intermediate values of V while T0
omputes. Suppose that we lo
alizevariable V inside T0 to obtain the equivalent program in 5.8(b). Sin
e Xand Y
ontain no
on
i
ts and the referen
es to V have been lo
alized, allthe statements inside the mutex body are now lo
k-independent and
an bemoved out to obtain the program in Figure 5.8(
). Finally, sin
e thread T0writes to V only on
e, the lo
ks are not really ne
essary and
an be removedto obtain the equivalent program in in Figure 5.8(d).5.6 SummaryIn this
hapter we used the CSSAME framework to develop two types ofoptimizing transformations: the adaptation of sequential te
hniques to work on

5.6 Summary 119X = . . .Y = . . .
obeginT0: begin. . .lo
k(L);a = 0;while (a <= X) fa = a + Y;gunlo
k(L);endT1: beginlo
k(L);. . . = a;unlo
k(L);endT2: beginlo
k(L);. . . = a;unlo
k(L);end
oend(a) Original program.

X = . . .Y = . . .
obeginT0: begin. . .lo
k(L);p a = 0;while (p a <= X) fp a = p a + Y;ga = p a;unlo
k(L);endT1: beginlo
k(L);. . . = a;unlo
k(L);endT2: beginlo
k(L);. . . = a;unlo
k(L);end
oend(b) After lo
alization.X = . . .Y = . . .
obeginT0: begin. . .p a = 0;while (p a <= X) fp a = p a + Y;glo
k(L);a = p a;unlo
k(L);endT1: beginlo
k(L);. . . = a;unlo
k(L);endT2: beginlo
k(L);. . . = a;unlo
k(L);end
oend(
) After LICM.

X = . . .Y = . . .
obeginT0: begin. . .p a = 0;while (p a <= X) fp a = p a + Y;ga = p a;endT1: begin. . . = a;endT2: begin. . . = a;end
oend(d) After relaxing lo
k independen
e.Figure 5.8: E�e
ts of MBL in the presen
e of single-writer, multiple-readers.

120 Optimizing expli
itly parallel programsexpli
itly parallel programs and the dire
t optimization of the syn
hronizationstru
ture of a parallel program. To our knowledge the te
hniques presented inthis
hapter are the �rst to address the problem of optimizing mutual ex
lusionstru
tures in an expli
itly parallel program.These transformations will bene�t expli
itly parallel programs that usemutex syn
hronization frequently. In parti
ular, programs that make useof thread-safe libraries (e.g., multi-threaded Java appli
ations) may
ontainsuper
uous mutex syn
hronization that slow down the program unne
essarily.In this
ontext we observed that these te
hniques
an have a signi�
antimpa
t on performan
e. Even sequential programs
an bene�t from thesetransformations. In the following
hapter we study the e�e
tiveness of thesete
hniques in several C and Java appli
ations.

Chapter 6ResultsThe te
hniques developed in this thesis are the �rst step towards a generaloptimizing
ompiler for expli
itly parallel programs. We have implementedmany of the analysis and optimization algorithms presented in this thesis intoa
ompiler for the C language. All the example program fragments des
ribedin previous
hapters have been analyzed and optimized by our
ompiler. Wehave also been able to perform experiments to demonstrate the potential forsome of these te
hniques in
omplete programs.We studied two main types of appli
ations: those in whi
h the user haslittle
ontrol over syn
hronization stru
tures in the program and those in whi
hthe user has
omplete
ontrol over all the syn
hronization used in the program.Appli
ations in the �rst group are developed in languages that exposemost of the syn
hronization and parallelism details. We have sele
ted someappli
ations from the SPLASH suite of shared-memory parallel programs(Singh et al. 1992) and appli
ations bundled with the TreadMarks DSM system(Keleher et al. 1994). These appli
ations represent
ode developed by expertprogrammers who are very
ons
ious about the performan
e impli
ationsof syn
hronization operations. The syn
hronization stru
tures found inthese appli
ations have been optimized manually by the programmer. Asa
onsequen
e we did not expe
t to �nd many opportunities for optimizationin the
ontext of the te
hniques developed in this thesis. However, we did �ndthat some of the manual modi�
ations made by the programmer
ould havebeen performed automati
ally using our te
hniques.121

122 ResultsThe se
ond group
onsists of appli
ations typi
ally developed inprogramming environments that produ
e generi
 skeleton
ode and systemsthat provide thread-safe libraries. Consider a high-level programming languagelike Java. Due to the thread-safe
hara
teristi
s of the Java libraries,appli
ation programs may spend up to half their exe
ution time performingunne
essary syn
hronization (Ba
on et al. 1998). The key reason for thisoverhead is that the libraries are generi
 and are not spe
i�
 to an individualappli
ation's
ontext. Hen
e, they have to be
onservative in the assumptionsthey make. Therefore, when
onsidered within the
ontext of an a
tualprogram it might turn out that most of the syn
hronization operations arenot ne
essary. Te
hniques like the lo
k-pi
king strategies or lo
k-independent
ode motion bene�t these appli
ations. Similar bene�ts are obtained inparallel programs generated via high-level programming environments. Thesetools must generate
onservatively
orre
t
ode, and are typi
ally based on
ode skeletons that, be
ause of their generality, must
ontain over-
onstrainedsyn
hronization. Similar to the previous
ase, ma
hine generated
ode mustbe overly
onservative for generality and safety.6.1 ImplementationMany of the algorithms dis
ussed in previous se
tions have been implemented1in a prototype
ompiler for the C language using the SUIF
ompiler system(Hall et al. 1996). To avoid modifying SUIF's front-end we added support for
obegin/
oend and parloop parallel stru
tures via language ma
ros. Thesema
ros re-de�ne
ontrol stru
tures of the C language so that the
ompiler
an re
ognize them at the intermediate language level. The
obegin/
oendstru
ture is represented by a swit
h statement. A spe
ially named indexvariable helps the
ompiler distinguish a regular swit
h statement from a
obegin. Ea
h di�erent
ase se
tion will be exe
uted by a di�erent threadat runtime. Our system leverages on the SUIF runtime system to exe
utethe parallel program. SUIF's runtime system is designed to run SPMD styleprograms. Our
ompiler annotates
obegin statements to be exe
uted in1A preliminary version is available at http://www.
s.ualberta.
a/�jonathan/CSSAME/

6.2 Experimental Results 123parallel and modi�es the index variable to be the thread id. Parallel loops arere
ognized using a similar te
hnique. A parloop is a for loop with a spe
iallynamed index variable. Sin
e SUIF dire
tly supports parloop style parallelismall the
ompiler has to do is mark sele
ted for loops as parallel loops.On
e the program has been parsed by the SUIF front-end, the
ompiler
reates the
orresponding CCFG and its CSSAME form. We do not transformthe input program into SSA form. Instead we use fa
tored use-def
hains(Wolfe 1996) in the
owgraph and display the sour
e
ode annotated withthe appropriate � and � fun
tions (variables are not renamed but referen
edusing line number information in the
orresponding � or � fun
tions). TheCCFG implementation is an extension of the sequential Control Flow Graphlibrary provided by Ma
hine SUIF (Holloway and Young 1997). The CCFG
an be displayed using a variety of graph visualization systems. The
owgraphs in this thesis were generated by the
ompiler and laid out usingthe GraphViz system (North and Koutso�os 1994). The CSSAME formfor the program
an also be displayed as an option. Finally, the mutualex
lusion validation te
hniques dis
ussed in Se
tion 3.3.2 are implemented as
ompile-time warnings to the user.A basi
 form of inter-pro
edural analysis (IPA) information is gatheredby the
urrent implementation. At ea
h pro
edure
all, shared variablesreferen
ed and mutex bodies de�ned by the
alled pro
edure are propagatedto the
all site. This allows the
on
i
t and syn
hronization analyzer totreat fun
tion
alls almost as if they were inlined
ode. Finally, we haveimplemented partial support for redu
tions based on the SUIF redu
tionre
ognizer. Currently, the
ompiler is limited to redu
tions inside for loops.6.2 Experimental ResultsSyn
hronization overhead is sometimes
aused by an expensive implementationof lo
k and unlo
k operations. To address this problem, several te
hniqueshave been proposed to implement more eÆ
ient lo
king primitives (Ba
on et al.1998; Mellor-Crummey and S
ott 1991; Unrau et al. 1994). The te
hniquesfor eliminating super
uous syn
hronization operations developed in this thesis

124 Results
an
omplement the bene�ts of using an eÆ
ient lo
king me
hanism.There is another sour
e of overhead that even the most eÆ
ientimplementation
annot alleviate:
ontention. Lo
k
ontention o

urs whenthe demand for a parti
ular lo
k variable is so high that threads spend asigni�
ant amount of time waiting for other threads to release the lo
k. In thefollowing se
tions we demonstrate the e�e
ts of the te
hniques developed inthis thesis on several programs. Se
tion 6.2.1 des
ribes two appli
ations fromthe SPLASH suite. Se
tion 6.2.2 studies some parallel and sequential Javaprograms.Note that at the time of this writing, the
ompiler is not yet ready to ta
kleall the programs des
ribed in this se
tion. In the
urrent implementation,alias analysis is limited to simple pointer aliasing: the
ompiler only dete
tsaliases for pointers that expli
itly take the address of a shared variable. The
ompiler also la
ks array analysis; it treats arrays as atomi
 memory referen
es.The Omega library (Pugh and Wonna
ott 1992)
ould be used to performarray se
tion analysis. Alternatively, the array SSA form proposed by Collard(Collard 1999)
ould be used. This work is beyond the s
ope of the thesis.Be
ause of these limitations we simpli�ed the input program for some ofthese appli
ations to help the
urrent implementation analyze and optimize the
ode. The modi�
ations in
luded repla
ing the original thread
reation
odewith parallel loops and/or
obegin/
oend stru
tures, inlining some fun
tionsto
ir
umvent limitations during syn
hronization analysis and substitutingarrays of lo
ks by single s
alar lo
k variables. On
e the
ompiler analyzedand optimized the simpli�ed version, we made the same modi�
ations to theoriginal programs. This pro
ess was applied to the appli
ations in Se
tionsSe
tions 6.2.1 and 6.2.3.The framework developed in this thesis
annot be dire
tly applied toJava be
ause Java has a di�erent high-level model for
on
urren
y andsyn
hronization. However, we believe that it is possible to adapt the te
hniquesdeveloped in this do
ument to �t the Java model. As a preliminary feasibilitystudy, we manually applied the transformation algorithms to a set of Javaappli
ations. The results of our experimentation are des
ribed in Se
tion6.2.2 where we des
ribe the results and the potential performan
e bene�ts

6.2 Experimental Results 125of adapting our transformations to Java.6.2.1 SPLASH Appli
ationsSPLASH (Stanford Parallel Appli
ations for Shared-Memory) (Singh et al.1992; Woo et al. 1995) is a ben
hmark suite for shared memory ar
hite
turesdesigned as a
ase study to evaluate di�erent issues in shared memoryar
hite
tures. In the following se
tions we dis
uss our optimization te
hniquesin the
ontext of two SPLASH appli
ations: Water and O
ean.Some of the mutual ex
lusion syn
hronization stru
tures used in theseappli
ations were manually optimized by the original developers. We willshow that using the te
hniques des
ribed in this thesis, it would have beenpossible to obtain similar performan
e bene�ts without the added
omplexityof manually modifying the
ode.WaterThe Water appli
ation simulates for
es and potentials in a system of liquidwater mole
ules. The simulation is done over a spe
i�ed number of time-stepsuntil the system rea
hes equilibrium. Mutual ex
lusion syn
hronization is usedwhen
omputing inter-mole
ular intera
tions and for keeping a global sum thatis
omputed every time-step.The
omputation of inter-mole
ular intera
tions is syn
hronized usingone lo
k per mole
ule. The
ode fragment in Figure 6.1 shows themutex bodies in the pro
edure UPDATE FORCES. Ea
h mutex body updatesa shared three-dimensional array. The right hand side of ea
h expressionis lo
k-independent. After the LICM transformation, the mutex bodies inthis pro
edure are
onverted to their equivalent versions shown in Figure 6.2(for spa
e reasons we only in
lude the �rst mutex body, the modi�
ationsto the se
ond mutex body are identi
al). The transformation hoisted theright-hand side of every assignment statement to the temporary variablest1; t2; : : : t9. Furthermore, the address
omputation needed to perform thearray referen
es are also lo
k-independent. Therefore, the
ompiler was ableto move the assignments to variables suif tmp19; suif tmp21; : : : suif tmp35

126 ResultsUPDATE FORCES(DEST, mol,
omp, XL, YL, ZL, FF)=� from the
omputed distan
es et
.,
ompute theintermole
ular for
es and update the for
e (ora

eleration) lo
ations �=double XL[℄, YL[℄, ZL[℄, FF[℄;f double G110[3℄, G23[3℄, G45[3℄, TT1[3℄, TT[3℄, TT2[3℄;double GG[15℄[3℄;=�
ompute lo
al arrays G110, G23, G45, TT1, TT, TT2 and GG �=. . .=� lo
k lo
ations for the mole
ule to be updated �=lo
k(MolLo
k[mol % MAXMOLLOCKS℄);VAR[mol℄.F[DEST℄[XDIR℄[O℄ +=G110[XDIR℄ + GG[11℄[XDIR℄ +GG[12℄[XDIR℄+C1�G23[XDIR℄;VAR[mol℄.F[DEST℄[XDIR℄[H1℄ +=GG[6℄[XDIR℄+GG[7℄[XDIR℄+GG[13℄[XDIR℄+TT[XDIR℄+GG[4℄[XDIR℄;VAR[mol℄.F[DEST℄[XDIR℄[H2℄ +=GG[8℄[XDIR℄+GG[9℄[XDIR℄+GG[14℄[XDIR℄+TT[XDIR℄+GG[5℄[XDIR℄;VAR[mol℄.F[DEST℄[YDIR℄[O℄ +=G110[YDIR℄+GG[11℄[YDIR℄+GG[12℄[YDIR℄+C1�G23[YDIR℄;VAR[mol℄.F[DEST℄[YDIR℄[H1℄ +=GG[6℄[YDIR℄+GG[7℄[YDIR℄+GG[13℄[YDIR℄+TT[YDIR℄+GG[4℄[YDIR℄;VAR[mol℄.F[DEST℄[YDIR℄[H2℄ +=GG[8℄[YDIR℄+GG[9℄[YDIR℄+GG[14℄[YDIR℄+TT[YDIR℄+GG[5℄[YDIR℄;VAR[mol℄.F[DEST℄[ZDIR℄[O℄ +=G110[ZDIR℄+GG[11℄[ZDIR℄+GG[12℄[ZDIR℄+C1�G23[ZDIR℄;VAR[mol℄.F[DEST℄[ZDIR℄[H1℄ +=GG[6℄[ZDIR℄+GG[7℄[ZDIR℄+GG[13℄[ZDIR℄+TT[ZDIR℄+GG[4℄[ZDIR℄;VAR[mol℄.F[DEST℄[ZDIR℄[H2℄ +=GG[8℄[ZDIR℄+GG[9℄[ZDIR℄+GG[14℄[ZDIR℄+TT[ZDIR℄+GG[5℄[ZDIR℄;unlo
k(MolLo
k[mol % MAXMOLLOCKS℄);lo
k(MolLo
k[
omp % MAXMOLLOCKS℄);VAR[
omp℄.F[DEST℄[XDIR℄[O℄ +=�G110[XDIR℄�GG[13℄[XDIR℄�GG[14℄[XDIR℄�C1�G45[XDIR℄;VAR[
omp℄.F[DEST℄[XDIR℄[H1℄ +=�GG[6℄[XDIR℄�GG[8℄[XDIR℄�GG[11℄[XDIR℄�TT2[XDIR℄�GG[2℄[XDIR℄;VAR[
omp℄.F[DEST℄[XDIR℄[H2℄ +=�GG[7℄[XDIR℄�GG[9℄[XDIR℄�GG[12℄[XDIR℄�TT2[XDIR℄�GG[3℄[XDIR℄;VAR[
omp℄.F[DEST℄[YDIR℄[O℄ +=�G110[YDIR℄�GG[13℄[YDIR℄�GG[14℄[YDIR℄�C1�G45[YDIR℄;VAR[
omp℄.F[DEST℄[YDIR℄[H1℄ +=�GG[6℄[YDIR℄�GG[8℄[YDIR℄�GG[11℄[YDIR℄�TT2[YDIR℄�GG[2℄[YDIR℄;VAR[
omp℄.F[DEST℄[YDIR℄[H2℄ +=�GG[7℄[YDIR℄�GG[9℄[YDIR℄�GG[12℄[YDIR℄�TT2[YDIR℄�GG[3℄[YDIR℄;VAR[
omp℄.F[DEST℄[ZDIR℄[O℄ +=�G110[ZDIR℄�GG[13℄[ZDIR℄�GG[14℄[ZDIR℄�C1�G45[ZDIR℄;VAR[
omp℄.F[DEST℄[ZDIR℄[H1℄ +=�GG[6℄[ZDIR℄�GG[8℄[ZDIR℄�GG[11℄[ZDIR℄�TT2[ZDIR℄�GG[2℄[ZDIR℄;VAR[
omp℄.F[DEST℄[ZDIR℄[H2℄ +=�GG[7℄[ZDIR℄�GG[9℄[ZDIR℄�GG[12℄[ZDIR℄�TT2[ZDIR℄�GG[3℄[ZDIR℄;unlo
k(MolLo
k[
omp % MAXMOLLOCKS℄);g =� end of subroutine UPDATE FORCES �=Figure 6.1: Computation of inter-mole
ular intera
tions in Water.

6.2 Experimental Results 127outside the mutex body. The resulting mutex body
ontains the minimalset of
omputations needed to maintain the semanti
s of the original
ode inFigure 6.1.In a more re
ent version of the SPLASH suite, the Water appli
ation hasbeen modi�ed so that the
ode that
omputes inter-mole
ular intera
tionsdoes not need this syn
hronization anymore (Woo et al. 1995). Therefore,when applied to the new version, the LICM optimization has no e�e
t. Thee�e
t of redu
ing the size of mutual ex
lusion se
tions is only measurable ifthere exists a high lo
k overhead in the original program. In the
ase of Water,mutual ex
lusion se
tions are very small (the se
tions in Figure 6.1 are the twobiggest ones) and total syn
hronization overhead
an be redu
ed by solvinglarger problems (Singh et al. 1992).To study the e�e
ts of LICM in Water, we performed experiments thata�e
ted the total number of mole
ules (N), the number of mole
ule lo
ks(ML), and, the number of simulation time-steps (TS). Experiments wereperformed on an SGI PowerChallenge with 8 pro
essors and 384Mb of memory.The implementation uses SGI native threads (spro
) and hardware lo
ks(ulo
k). All the experiments were exe
uted on 8 pro
essors with no othersystem a
tivity.The �rst experiment studies the performan
e e�e
ts of LICM as a fun
tionof syn
hronization overhead. As the number of time-steps in
reases, so doessyn
hronization overhead. Table 6.1 shows the speedups obtained as a fun
tionof the number of time-steps and number of mole
ules simulated. Noti
e howthe speedups obtained by LICM are lower when a larger number of mole
ulesare simulated. This is
aused by the larger
omputation to syn
hronizationratio in the larger problem. Also, by restri
ting the number of mole
ulelo
ks available we are in
reasing lo
k
ontention. Naturally, as the numberof available lo
ks in
reases, the e�e
ts of LICM are diminished.Sin
e mole
ule lo
ks are a

essed more as the number of time-stepsin
reases, the
ontention on these lo
ks also in
reases. To measure lo
k
ontention we used the hardware timers provided by the system to measurethe average delay of a
quiring a lo
k. We then
omputed the average delayover the 10 mole
ule lo
ks. This is shown in Table 6.2. This table shows how

128 ResultsUPDATE FORCES(DEST, mol,
omp, XL, YL, ZL, FF)double XL[℄, YL[℄, ZL[℄, FF[℄;f . . .t1 = �G110 + GG[11℄[0℄ + GG[12℄[0℄ + C1 � �G23;t2 = GG[6℄[0℄ + GG[7℄[0℄ + GG[13℄[0℄ + �TT + GG[4℄[0℄;t3 = GG[8℄[0℄ + GG[9℄[0℄ + GG[14℄[0℄ + �TT + GG[5℄[0℄;t4 = G110[1℄ + GG[11℄[1℄ + GG[12℄[1℄ + C1 � G23[1℄;t5 = GG[6℄[1℄ + GG[7℄[1℄ + GG[13℄[1℄ + TT[1℄ + GG[4℄[1℄;t6 = GG[8℄[1℄ + GG[9℄[1℄ + GG[14℄[1℄ + TT[1℄ + GG[5℄[1℄;t7 = G110[2℄ + GG[11℄[2℄ + GG[12℄[2℄ + C1 � G23[2℄;t8 = GG[6℄[2℄ + GG[7℄[2℄ + GG[13℄[2℄ + TT[2℄ + GG[4℄[2℄;t9 = GG[8℄[2℄ + GG[9℄[2℄ + GG[14℄[2℄ + TT[2℄ + GG[5℄[2℄;suif tmp19 = &VAR[mol℄.F[7℄[0℄[1℄;suif tmp21 = &VAR[mol℄.F[7℄[0℄[0℄;suif tmp23 = &VAR[mol℄.F[7℄[0℄[2℄;suif tmp25 = &VAR[mol℄.F[7℄[1℄[1℄;suif tmp27 = &VAR[mol℄.F[7℄[1℄[0℄;suif tmp29 = &VAR[mol℄.F[7℄[1℄[2℄;suif tmp31 = &VAR[mol℄.F[7℄[2℄[1℄;suif tmp33 = &VAR[mol℄.F[7℄[2℄[0℄;suif tmp35 = &VAR[mol℄.F[7℄[2℄[2℄;lo
k(MolLo
k[mol % 216℄);�suif tmp19 = �suif tmp19 + t1;�suif tmp21 = �suif tmp21 + t2;�suif tmp23 = �suif tmp23 + t3;�suif tmp25 = �suif tmp25 + t4;�suif tmp27 = �suif tmp27 + t5;�suif tmp29 = �suif tmp29 + t6;�suif tmp31 = �suif tmp31 + t7;�suif tmp33 = �suif tmp33 + t8;�suif tmp35 = �suif tmp35 + t9;unlo
k(MolLo
k[mol % 216℄);. . .=� Se
ond mutex body removed for spa
e
onsiderations. �=gFigure 6.2: E�e
t of LICM on the �rst mutex body of Figure 6.1.64 mole
ules (10 mole
ule lo
ks) 216 mole
ules (10 mole
ule lo
ks)Time Unopt Opt Relative Unopt Opt Relativesteps time (se
s) time (se
s) Speedup time (se
s) time (se
s) Speedup70 157 144 1.09 1527 1463 1.0480 183 171 1.07 1772 1763 1.00100 235 219 1.07 2344 2285 1.02120 296 269 1.10 2827 2809 1.00Table 6.1: Speedups obtained by LICM on Water as a fun
tion of the number ofsimulation time-steps.

6.2 Experimental Results 12964 mole
ules 216 mole
ulesUnoptimized Optimized Unoptimized OptimizedTime avg delay avg delay Ratio avg delay avg delay Ratiosteps (�se
s) (�se
s) (�se
s) (�se
s)70 699 72 9.71 561 68 8.2580 712 73 9.75 575 72 7.99100 718 71 10.11 557 70 7.96120 729 85 8.58 564 62 9.10Table 6.2: E�e
ts of LICM on lo
k
ontention in Water.average lo
k
ontention on the mole
ule lo
ks in
reases as a fun
tion of thenumber of simulation time-steps. Noti
e that although LICM redu
es lo
k
ontention signi�
antly, its impa
t on the runtime of the program may not betoo noti
eable if the ratio of
omputation to syn
hronization is high enough.Again noti
e how lo
k
ontention de
reases with the larger problem size. Thisexplains the diminished e�e
ts of LICM on large problems.This implementation of Water
ontains another optimization that has beenapplied manually by the programmer: the simulation
omputes global sumsthat are �rst
omputed lo
ally and then propagated to the global
ounter. Totest the e�e
ts of MBL and LICM, we simpli�ed these routines to performall the
omputations on the shared variables dire
tly. The intent of thisexperiment is to show that it is possible to automate
ommon optimizationpatterns that experien
ed programmers implement manually.Figure 6.3 shows a fragment of a routine that
omputes a redu
tion onthe global variable VIR. After re
ognizing the redu
tion, the
ompiler appliedMBL and LICM to obtain the equivalent and more eÆ
ient
ode in Figure 6.4.2This is virtually the same
ode in
luded in the original Water appli
ation.O
eanO
ean studies eddy and boundary
urrents in large-s
ale o
ean movements.Mutual ex
lusion is used to update global sums and to a

ess a global
onvergen
e
ag used in the iterative solver. The update of global sums isdone with the same strategy used in Water. A lo
al sum is
omputed and2We needed to annotate referen
es to array VAR as non-
on
i
ting to
ir
umventlimitations in the
ompiler.

130 Results
INTRAF()f . . .=�
al
ulate summation of the produ
t of the displa
ement and
omputedfor
e for every mole
ule, dire
tion, and atom �=lo
k(gl�>IntrafVirLo
k)for (mol = StartMol[Pro
ID℄; mol < StartMol[Pro
ID+1℄; mol++)for (dir = XDIR; dir <= ZDIR; dir++)for (atom = 0; atom < NATOM; atom++)VIR += VAR[mol℄.F[DISP℄[dir℄[atom℄ � VAR[mol℄.F[FORCES℄[dir℄[atom℄;unlo
k(gl�>IntrafVirLo
k)g =� end of subroutine INTRAF �=Figure 6.3: Simpli�ed version of fun
tion INTRAF in Water.
INTRAF()f . . .lo
al VIR = 0.0;for (mol = StartMol[Pro
ID℄; mol < StartMol[Pro
ID+1℄; mol++)for (dir = 0; dir <= 2; dir++)for (atom = 0; atom < 3; atom++)lo
al VIR = lo
al VIR + VAR[mol℄.F[0℄[dir℄[atom℄ � VAR[mol℄.F[7℄[dir℄[atom℄;lo
k(gl�>IntrafVirLo
k)VIR = VIR + lo
al VIR;unlo
k(gl�>IntrafVirLo
k)gFigure 6.4: E�e
ts of MBL and LICM on the
ode in Figure 6.3.

6.2 Experimental Results 131O
ean Unoptimized Optimized Relativesize time (se
) time (se
) Speedup66� 66 21 19 1.11130� 130 69 56 1.23258� 258 258 198 1.30514� 514 865 787 1.10Table 6.3: E�e
ts of MBL and LICM on Simple O
ean.aggregated to the global sum.To study the e�e
t of MBL and LICM on this appli
ation, we re-wrotesome routines in O
ean to use the simpler method of updating global sums.We named this new version Simple O
ean. The intention is to demonstratehow some of the optimizations that are traditionally performed manually bythe programmer
an be automated using the te
hniques developed in thisthesis. Table 6.3 shows the performan
e improvements obtained by applyingMBL and LICM to Simple O
ean. The program was exe
uted on 8 pro
essorswith four di�erent o
ean sizes and a time-step of 180 se
onds.Pro
edure slave in Figure 6.5
ontains a mutex body that updates a globalsum (variable psibi). This version is di�erent from the original in that theredu
tion is
omputed dire
tly on the shared variable psibi. After redu
tionre
ognition and the appli
ation of MBL and LICM to the
ode in Figure 6.5,the
ompiler generated the equivalent and more eÆ
ient version of Figure6.6. The resulting
ode is the same
ode for pro
edure slave in
luded inthe original O
ean appli
ation, but in this
ase the
ompiler performed theoptimization, not the programmer.The performan
e improvements obtained on Simple O
ean are the sameimprovements obtained by the manual optimizations done in the originalprogram. The important point of this experiment is to show that usingthe te
hniques developed in this thesis it is possible to automati
allyoptimize ineÆ
ient (but simple) syn
hronization patterns. We do not expe
texperien
ed programmers to write su
h ineÆ
ient syn
hronization, but thiskind of
ode
ould be found in programs written by a less experien
edprogrammer or generated from generi

ode templates in a programmingenvironment.

132 Results
voidslave ()f . . .=� update the shared variable psibi by summing all the psibisof the individual pro
esses into it. This is a simpler butmore ineÆ
ient version of the original O
ean appli
ation. �=lo
k (psibilo
k);if (pro
id == MASTER) fpsibi = psibi + 0.25 � (wrk1�>psib[0℄[0℄);gif (pro
id == xpro
s � 1) fpsibi = psibi + 0.25 � (wrk1�>psib[0℄[jm � 1℄);gif (pro
id == npro
s � xpro
s) fpsibi = psibi + 0.25 � (wrk1�>psib[im � 1℄[0℄);gif (pro
id == npro
s � 1) fpsibi = psibi + 0.25 � (wrk1�>psib[im � 1℄[jm � 1℄);gif (�rstrow == 1) ffor (j = �rst
ol; j <= last
ol; j++) fpsibi = psibi + 0.5 � wrk1�>psib[0℄[j℄;ggif ((�rstrow + numrows) == im � 1) ffor (j = �rst
ol; j <= last
ol; j++) fpsibi = psibi + 0.5 � wrk1�>psib[im � 1℄[j℄;ggif (�rst
ol == 1) ffor (j = �rstrow; j <= lastrow; j++) fpsibi = psibi + 0.5 � wrk1�>psib[j℄[0℄;ggif ((�rst
ol + num
ols) == jm � 1) ffor (j = �rstrow; j <= lastrow; j++) fpsibi = psibi + 0.5 � wrk1�>psib[j℄[jm � 1℄;ggfor (iindex = �rst
ol; iindex <= last
ol; iindex++) ffor (i = �rstrow; i <= lastrow; i++) fpsibi = psibi + wrk1�>psib[i℄[iindex℄;ggunlo
k (>psibilo
k);. . .g Figure 6.5: Pro
edure slave in Simple O
ean.

6.2 Experimental Results 133
voidslave ()f . . .lo
al psibi = 0.0;if (pro
id == MASTER) flo
al psibi = lo
al psibi + 0.25 � (wrk1�>psib[0℄[0℄);gif (pro
id == xpro
s � 1) flo
al psibi = lo
al psibi + 0.25 � (wrk1�>psib[0℄[jm � 1℄);gif (pro
id == npro
s � xpro
s) flo
al psibi = lo
al psibi + 0.25 � (wrk1�>psib[im � 1℄[0℄);gif (pro
id == npro
s � 1) flo
al psibi = lo
al psibi + 0.25 � (wrk1�>psib[im � 1℄[jm � 1℄);gif (�rstrow == 1) ffor (j = �rst
ol; j <= last
ol; j++) flo
al psibi = lo
al psibi + 0.5 � wrk1�>psib[0℄[j℄;ggif ((�rstrow + numrows) == im � 1) ffor (j = �rst
ol; j <= last
ol; j++) flo
al psibi = lo
al psibi + 0.5 � wrk1�>psib[im � 1℄[j℄;ggif (�rst
ol == 1) ffor (j = �rstrow; j <= lastrow; j++) flo
al psibi = lo
al psibi + 0.5 � wrk1�>psib[j℄[0℄;ggif ((�rst
ol + num
ols) == jm � 1) ffor (j = �rstrow; j <= lastrow; j++) flo
al psibi = lo
al psibi + 0.5 � wrk1�>psib[j℄[jm � 1℄;ggfor (iindex = �rst
ol; iindex <= last
ol; iindex++) ffor (i = �rstrow; i <= lastrow; i++) flo
al psibi = lo
al psibi + wrk1�>psib[i℄[iindex℄;gglo
k (psibilo
k);psibi = psibi + lo
al psibi;unlo
k (psibilo
k);. . .gFigure 6.6: E�e
ts of MBL and LICM on the
ode in Figure 6.5.

134 Results6.2.2 Java Appli
ationsWe sele
ted programs originally written in Java be
ause we anti
ipatedoptimization opportunities due to the thread-safe nature of its libraries.Although the
on
urren
y and syn
hronization model used in Java are di�erentfrom the assumptions made in this thesis, we think that it might be possibleto apply these ideas to the Java environment. We study the potential bene�tsof LICM and Lo
k Pi
king in the
ontext of
on
urrent and sequential Javaprograms. To illustrate the e�e
ts of LICM we show two parallel appli
ations:parallel sorting and parallel matrix multiply.PSRS (Parallel Sorting by Regular Sampling) is an expli
itly parallelsorting algorithm (Shi and S
hae�er 1992) that samples the datato generate pivot elements that evenly distribute data among thepro
essors. Ea
h pro
ess uses a sequential sort algorithm to sort itsown partition. The resulting data is then merged to obtain the �nalsorted list. The original Java program was implemented using theJGL (Java Generi
 Library)
lass library whi
h provides a sequentialqui
ksort algorithm and
lasses for
reating abstra
t arrays. Sin
e JGLis a thread-safe library, many of its
lasses and methods are syn
hronized.In this parti
ular appli
ation, some of the syn
hronization is unne
essary.When a pro
ess is sorting, it never reads or writes outside its designatedpartition. Therefore, referen
es to the shared array are lo
k independentand
an be hoisted using LICM.Matrix multiply (MM): input matrix A is blo
ked into non-overlappingse
tions whi
h are assigned to a di�erent pro
ess. Ea
h pro
ess writesto a di�erent
ell of the result matrix C and makes read-only referen
esto the input matri
es A and B. No syn
hronization is required in thisalgorithm but the
lass libraries make use of syn
hronized methods toread and write to the di�erent arrays.Java ImplementationWe performed two sets of experiments with these appli
ations. First, wemodi�ed the Java implementation of these algorithms to emulate the e�e
t of

6.2 Experimental Results 135Unoptimized Optimized RelativeList size time time Speedup(se
s) (se
s)50,000 13 11 1.18100,000 24 13 1.85500,000 123 51 2.41750,000 187 75 2.501,000,000 276 113 2.441,250,000 336 141 2.38Table 6.4: E�e
ts of LICM on the original Java implementation of the PSRS sortingalgorithm (8 pro
essors). Unoptimized Optimized RelativeMatrix size time time Speedup(se
s) (se
s)64�64 4 4 1.00128�128 9 8 1.13256�256 33 17 1.94512�512 172 100 1.721024�1024 1484 810 1.83Table 6.5: E�e
ts of LICM on the Java implementation of matrix multipli
ation (8pro
essors).Lo
k-Independent Code Motion. Essentially we transformed two syn
hronizedmethods into regular methods. In the
ase of PSRS, this is the at methodin the JGL Obje
tArray
lass. In the
ase of matrix multiply, this is theintAt method in the JGL IntArray
lass. Both methods are automati
allysyn
hronized by the library but in these appli
ations, su
h syn
hronization isunne
essary be
ause the di�erent threads never make
on
i
ting referen
esto
ommon array lo
ations. Tables 6.4 and 6.5 show the performan
eimprovements obtained by applying LICM to the PSRS and matrix multiplyappli
ations respe
tively. The programs were exe
uted on a dedi
ated8-pro
essor SGI PowerChallenge.Noti
e that this seemingly simple transformation has a noti
eable impa
ton performan
e. On average, the optimized version of PSRS performs twi
eas fast as the unoptimized version. This is a strong indi
ation of the potentialthat these types of te
hniques have on high-level languages like Java. We

136 ResultsUnoptimized Optimized RelativeList size time time Speedup(se
s) (se
s)50,000 197 67 2.94100,000 27 10 2.70500,000 170 62 2.74750,000 299 76 3.931,000,000 407 160 2.541,250,000 618 359 1.72Table 6.6: E�e
ts of LICM on the C implementation implementation of the PSRSsorting algorithm (2 pro
essors).Unoptimized Optimized RelativeMatrix size time time Speedup(se
s) (se
s)64�64 2 1 2.00128�128 12 5 2.40256�256 82 22 3.73512�512 638 163 3.911024�1024 5077 1276 3.98Table 6.7: E�e
ts of LICM on the C implementation of matrix multipli
ation (2pro
essors).obtained similar improvement fa
tors in matrix multiply. For small matri
es,both versions performed roughly the same but as the size of the matri
es grows,the e�e
ts of LICM tend to be more signi�
ant.C ImplementationIn the se
ond experiment we
onverted the Java programs into C using theToba translator (Proebsting et al. 1998). Sin
e the
ompiler
annot handle the
ode generated by Toba automati
ally, we manually applied the optimizationsto the generated C programs.These experiments were exe
uted on a di�erent ma
hine be
ause the Tobaruntime libraries did not work on the PowerChallenge. We used a dedi
atedtwo-pro
essor SGI O
tane for the C implementation of PSRS and matrixmultiply. Tables 6.6 and 6.7 show the results obtained for PSRS and matrix

6.2 Experimental Results 137multiply respe
tively.3Although the exe
ution environment for both experiments is di�erent,we observed an interesting fa
t. The performan
e improvements obtainedin the C version of these programs are better than those obtained in theirJava
ounterparts. In the
ase of matrix multiply, these improvements aresigni�
antly better. Using the SpeedShop pro�ling tool available on SGIma
hines we determined that in some
ases the unoptimized programs spentup to 30% of their time trying to enter the monitor prote
ting the syn
hronizedmethods. In these experiments we only used two threads to exe
ute theappli
ation and the pro�ling tool did not report any other thread a
tivity.There are two explanations for this ex
essive syn
hronization overhead: (a)the implementation of lo
ks in Toba is inferior to that of Java, or, (b) theindividual threads in the C version are so mu
h faster than the Java versionthat on
e they leave the
riti
al se
tion they qui
kly try to a
quire the lo
kagain.The pro�ling logs show that the fun
tion a
ting as the entry point tothe monitor spends roughly 70% of its time spinning on the lo
k variablethat implements the monitor. We
on
lude that the ex
essive syn
hronizationoverhead of the C version is mostly due to lo
k
ontention. However, as theresults in the next se
tion show, the lo
k implementation is also important asit may also a�e
t the performan
e of sequential programs.Sequential Java ProgramsIn this se
tion we show how our transformation te
hniques might bene�tsequential programs. Sin
e the CSSAME form for a sequential program has no� fun
tions, the Lo
k-Pi
king transformation
an easily traverse all the mutexbodies in the program removing the syn
hronization operations. To illustratethe potential bene�ts of this optimization we used a set of ben
hmark programsthat exer
ise di�erent
omponents of the JGL abstra
t
lass library. There arethree programs:(1) Array exer
ises
ommon operations on abstra
t arrays: get, put,3We also ran the Java version on the SGI O
tane. The speedup ratios were the same asthose shown in Tables 6.4 and 6.5.

138 ResultsUnoptimized Optimized RelativeBen
hmark time time Speedup(se
s) (se
s)Array (1,000) 23 20 1.15Array (10,000) 547 534 1.02Map (3,000) 32 30 1.07Map (30,000) 273 227 1.20Sort (3,000) 32 30 1.07Sort (30,000) 407 327 1.24Table 6.8: E�e
t of Lo
k-Pi
king (LP) on sequential Java programs.iterate,
lear and remove.(2) Map exer
ises
ommon operations on hash tables: add, �nd, removeand
lear.(3) Sort
ompares the sorting algorithm provided by JGL against ahand-
oded qui
ksort algorithm.Table 6.8 shows the improvements obtained by applying lo
k-pi
king tothese programs. We exe
uted both the Java and C versions of these programs;in both
ases the results were similar. In general, we obtained performan
eimprovements between 10% and 20% when lo
k-pi
king was applied.The performan
e gains obtained by removing the unne
essary lo
ks aredire
tly related to this parti
ular implementation of mutual ex
lusion. Sin
ethese are sequential programs, all the syn
hronization overhead is
aused bythe a
tual
all to lo
k and unlo
k. There is no lo
k
ontention. An alternativeto removing the lo
ks would have been to use a more eÆ
ient mutual ex
lusionsyn
hronization implementation (Ba
on et al. 1998). We are
onvin
ed thata
ombination of
ompiler optimizations and eÆ
ient lo
k implementations isthe best approa
h in these
ases.6.2.3 Other Appli
ationsWe also studied two appli
ations in
luded in the TreadMarks DSM system(Keleher et al. 1994), namely the Traveling Salesman Problem (TSP) anda parallel qui
ksort implementation (QS). Lo
k
ontention is not a problemin these two implementations. The LICM transformation made some minor

6.3 Con
lusions 139modi�
ations to the mutex stru
tures in these programs that did not a�e
tthe runtime performan
e of either program. However, the analysis te
hniqueshelped us lo
ate data ra
es and lo
king irregularities.This TSP implementation takes advantage of the weak memory semanti
sin TreadMarks. Sin
e updates to shared variables are only visible atsyn
hronization points, TSP makes unprote
ted referen
es to shared variableswithout
ausing data ra
es. However, with the strong memory semanti
s usedin our model it was ne
essary to privatize some global variables to avoid datara
es in the program. While none of the syn
hronization transformationsfound opportunities for optimization, the analysis of mutex se
tions dete
tedan irregularity in the original program: one of the pro
edures was trippingover a lo
k. (i.e., the same lo
k was being a
quired more than on
e). The
ompiler also found several data ra
es triggered by
on
i
ting data referen
esoutside mutex bodies.The qui
ksort implementation used another implementation \tri
k" tofor
e propagating the update to a
ag variable shared between the workerthreads. The
ode fragment in Figure 6.7 shows how this is implemented.Note that this is the same
ode from Figure 3.5. We have reprodu
ed ithere for easier referen
e. To propagate an update of the shared variablepause flag in TreadMarks, it is ne
essary to use lo
k and unlo
k operationsto for
e a
onsisten
y operation in the DSM system. However, using thestronger memory semanti
s assumed in our model the
ompiler determinedthat sin
e the mutex body for lo
k variable pause lo
k was always nestedinside a mutex body for lo
k variable TSL, it
ould be eliminated. Therefore,the lo
k operations at lines 13, 15, 21 and 23 were all removed by the
ompiler.6.3 Con
lusionsThe programs des
ribed in this
hapter represent two di�erent types ofexpli
itly parallel programs whi
h we
all high-level and low-level parallelism.The �rst group (low-level parallelism) are programs developed in environmentswhere the user has
omplete
ontrol over the parallel and syn
hronizationstru
ture of the program. Typi
ally, these programs have been manually

140 Results
1 #de�ne NPROCS 52 #de�ne DONE �134 int PopWork(TaskElement �task)5 f6 lo
k(TSL);78 while (TaskSta
kTop == 0) f9 if (++NumWaiting == NPROCS) f10 =� All the threads are waiting for work.11 � We are done.12 �=13 lo
k(pause lo
k);14 pause
ag = 1;15 unlo
k(pause lo
k);1617 unlo
k(TSL);18 return DONE;19 g else f20 if (NumWaiting == 1) f21 lo
k(pause lo
k);22 pause
ag = 0;23 unlo
k(pause lo
k);24 g2526 unlo
k(TSL)2728 =� Wait for work. This is the only29 � statement not prote
ted by TSL.30 �=31 while (!pause
ag) ; =� busy-wait �=3233 lo
k(TSL);3435 if (NumWaiting == NPROCS) f36 unlo
k(TSL);37 return DONE;38 g39 ��NumWaiting;40 g41 g =� while task-sta
k empty �=4243 =� Pop a pie
e of work from the sta
k �=44 TaskSta
kTop��;45 task�>left = TaskSta
k[TaskSta
kTop℄.left;46 task�>right = TaskSta
k[TaskSta
kTop℄.right;4748 unlo
k(TSL);4950 return 0;51 gFigure 6.7: Nested mutex bodies in fun
tion PopWork().

6.3 Con
lusions 141optimized by experien
ed programmers who make an e�ort to minimize mutualex
lusion se
tions as mu
h as possible.The se
ond group (high-level parallelism) in
ludes systems that o�erthread-safe libraries and programs developed in programming environmentsthat generate generi

ode templates on behalf of the user. Theseappli
ations
an
ontain
onservative mutual ex
lusion stru
tures that mayhurt performan
e unne
essarily.We have shown that the te
hniques developed in this thesis
an havea signi�
ant impa
t on the performan
e of high-level parallel appli
ations.Furthermore, we have also shown that performan
e gains
an be obtainedin low-level parallel programs. We have demonstrated that it is possible toautomate some of the manual transformations that programmers routinelymake to minimize mutual ex
lusion se
tions.We
onsider these te
hniques a �rst step to fully exploiting the optimizationpossibilities in expli
itly parallel programs. Currently, our te
hnology allowsthe
ompiler to perform some of the same optimizations that an experien
edprogrammer
an do manually. In the future we expe
t this situation tobe reversed:
ompilers for parallel programs will make more and bettertransformations that
annot be easily dupli
ated by programmers.

142 Results

Chapter 7Con
lusions and Future Work
7.1 Summary of ContributionsExpli
itly parallel programs for shared memory ar
hite
tures o�er new
hallenges to an optimizing
ompiler; multiple threads of a
tivity in a parallelprogram
an alter data and
ontrol dependen
ies in ways that existing
ompilerte
hnology
annot dete
t. The new analysis and optimization te
hniquesdeveloped in this thesis represent a signi�
ant step towards improving the
apabilities of
ompilers for expli
itly parallel programs. We expe
t thesete
hniques to be parti
ularly useful in the
ontext of high-level
on
urrent orthread-based languages. Of parti
ular importan
e in these environments is theability of the
ompiler to understand syn
hronization operations whi
h
an bea sour
e of substantial overhead in some appli
ations.Although
ompilers for parallel
omputing have been the fo
us ofintense resear
h and development, most e�orts have been
on
entrated onthe automati
 transformation of sequential programs into their parallel
ounterpart. Parallelizing and ve
torizing
ompilers take a sequential programand turn it into their equivalent parallel version. The topi
 of analyzingexpli
itly parallel
ode for the purpose of optimization has re
eived s
antattention. The CSSAME framework proposed in this thesis provides thene
essary tools for a
ompiler to reason about and optimize an expli
itlyparallel program
ontaining syn
hronization.143

144 Con
lusions and Future Work7.1.1 AnalysisThe CSSAME form provides a
omprehensive data-
ow framework foranalyzing expli
itly parallel programs. Inter-pro
ess intera
tions via datasharing and syn
hronization
onstru
ts are taken into
onsideration. In thisthesis we have shown how to build the fundamental data stru
tures and wehave used them to �nd basi
 information like rea
hing de�nitions, rea
heduses and mutual ex
lusion syn
hronization patterns. We have also shown howexisting syn
hronization analyses
an be in
orporated into the base frameworkto augment the non-
on
urren
y information needed to disregard sharedmemory intera
tions that are made impossible by syn
hronization restri
tions.The memory semanti
s
onsidered by this work represent the most generals
enario from the point of view of an optimizing
ompiler, sin
e every update toa shared memory variable is immediately visible to other threads, the
ompiler
an make no assumptions about the value of the variable at any point in theprogram.Weaker memory models allow shared memory updates to be propagatedat later time. This is typi
ally used in Distributed Shared Memory systems tooptimize traÆ
 through the memory inter
onne
t. Shared memory is updatedafter
ertain events like syn
hronization points or via spe
i�
 memory barrierinstru
tions inserted in the program. In
orporating these semanti
s into theCSSAME
onstru
tion algorithm may lead to fewer � fun
tions whi
h in turnwill allow more aggressive transformations.Syn
hronization is an important
omponent of every parallel program. Anoptimizing
ompiler must be aware of syn
hronization
onstru
ts in a parallelprogram for two fundamental reasons:1. Validation. We have shown how the
ompiler
an warn the userabout illegal or in
onsistent syn
hronization patterns when using mutualex
lusion. This
an be augmented with other existing syn
hronizationanalysis methods that
an dete
t deadlo
ks and ra
e
onditions in aprogram. Although it has been shown that some of these methods areexponentially expensive, simpli�ed versions
an still be used to provide
ompile-time warnings to the user.

7.1 Summary of Contributions 1452. Optimization. Syn
hronization
an provide several optimizationopportunities. The main e�e
t of syn
hronization is the eliminationof some shared memory intera
tions that may be preventing atransformation. It is also possible to dete
t overly restri
tivesyn
hronization patterns like nested mutex stru
tures that
an beeliminated (Se
tion 5.3).7.1.2 OptimizationWe have shown how the CSSAME form is unique in allowing newoptimization opportunities by taking advantage of the semanti
s imposedby syn
hronization. Two types of optimization are possible: the adaptationof existing sequential te
hniques and the dire
t optimization of parallel andsyn
hronization stru
tures in the program.Adapting Sequential Te
hniquesThe redu
tion of memory
on
i
ts a
ross threads
an improve the e�e
tivenessof adapted s
alar optimization strategies like
onstant propagation. We haveadapted a sequential dead-
ode elimination algorithm. In general, the pro
essof adapting an existing sequential te
hnique is mainly an implementation issue,espe
ially if the te
hnique is SSA based.The
on
urrent version needs to
onsider � fun
tions in addition to �fun
tions. Also,
ost models might need to be altered. For instan
e, in
ommonsub-expression elimination, if a subexpression is
ommon a
ross several threadsit might be
heaper to make ea
h thread
ompute the expression instead ofpushing it up into a sequential se
tion of the program.Optimizing the Stru
ture of a Parallel ProgramIn this thesis we have introdu
ed three new optimization te
hniques that arespe
i�
ally targeted at expli
itly parallel programs: lo
k pi
king examinesand removes unne
essary lo
k and unlo
k operations, lo
k-independent
odemotion moves
ode that does not need to be lo
ked outside
riti
al se
tionsand mutex body lo
alization
onverts shared memory referen
es into lo
al

146 Con
lusions and Future Workmemory referen
es. Although we do not expe
t experien
ed programmersto write overly restri
tive syn
hronization patterns, high-level systems likeJava make use of generi
 thread-safe libraries that must make
onservativeassumptions about the appli
ation's
ontext. Therefore, when
onsideredwithin the
ontext of a parti
ular program it might turn out that manysyn
hronization operations are not ne
essary. We have shown how te
hniqueslike lo
k pi
king and lo
k independent
ode motion bene�t these appli
ations.We
onsider these te
hniques a signi�
ant step towards fa
ilitating theadoption of high-level systems with language-supported parallelism andsyn
hronization. These systems typi
ally provide powerful abstra
tions thatmake parallel programming easier, but those same abstra
tions often hinderperforman
e. Experien
ed programmers re
ognize these limitations andmanually
ir
umvent them by removing abstra
tion layers to speed-up their
ode. This defeats the purpose of having the high-level abstra
tions and it issomething that should be addressed by the
ompiler, not the user.7.2 Future WorkOur long-term goal is to a
hieve the same level of sophisti
ation in
ompilers for expli
itly parallel languages as that of
urrent
ompilerte
hnology for sequential languages. The development of a
omplete
ompilation/performan
e tuning system for expli
itly parallel programs isa massive multi-year proje
t. In this thesis we have presented the baseframework for su
h a proje
t. The following se
tions dis
uss future workdire
tions and our vision for what an optimizing
ompiler for parallel languagesshould provide.7.2.1 ParallelismThere are many ways of spe
ifying parallel a
tivity in a program. Theprimitives used in this work,
obegin/
oend and parloop, were sele
tedbe
ause of their
on
eptual simpli
ity and expressive power. They
an beused to des
ribe a wide variety of task and data parallel programs.

7.2 Future Work 147main()f =� Call fun
tion f() to exe
ute
on
urrently with the mainthread.�=fork(f);do work();=� Wait for
hild thread. �=wait();gf()f do work();gFigure 7.1: Expressing parallel a
tivity using fork.Other me
hanisms
an be in
orporated into the framework. For instan
e,many platforms provide a fork system
all that takes a fun
tion name as itsargument. When invoked, fork laun
hes a new thread to exe
ute the givenfun
tion in parallel. The
alling thread
ontinues to exe
ute
on
urrently withthe newly laun
hed thread (Figure 7.1).The important information to be gathered is the
on
urren
y relation givenby Algorithm 3.2. Given two
owgraph nodes a and b, the
on
urren
y analysisdetermines whether a and b may exe
ute
on
urrently. This a

ura
y of the
on
urren
y information is subje
t to the assumptions made by the analysismethod, but it must be
onservatively
orre
t. When it is not
lear whethertwo nodes may exe
ute
on
urrently or not, the analysis must assume thatthey will.In some
ases, gathering this information may be a simple task. Forinstan
e, in a high-level programming environment like Enterprise (S
hae�eret al. 1993), all the
on
urren
y information is
ontained in an external graphrepresentation of the program modules whi
h
an be readily used by the
ompiler. In other
ases, this might be more diÆ
ult. In the
ase of theexample program in Figure 7.1 the analysis should traverse the
ow graph forea
h fun
tion marking for ea
h statement whi
h other statements
an exe
ute

148 Con
lusions and Future Work
on
urrently. Initial support for the pthreads library (Lewis and Berg 1998)has been implemented in our
ompiler.7.2.2 Syn
hronizationSyn
hronization analysis is a fundamental
omponent of every optimizing
ompiler for expli
itly parallel languages. Information gathered from thesyn
hronization patterns in the program
an be used to warn the user aboutpotential problems and to make optimization de
isions.It is important to observe that some syn
hronization me
hanisms o�erlittle non-
on
urren
y information to a stati
 analyzer. Consider for instan
e
ounting semaphores (Tanenbaum 1992). Counting semaphores are used toallow a limited number of threads to have
on
urrent a

ess to the sameresour
e pool. These semanti
s do not fa
ilitate the elimination of � fun
tionsas is the
ase with lo
k, barrier and set/wait
onstru
ts. However, ifthe
ompiler
an determine that a parti
ular
ounting semaphore is alwaysinitialized to 1 then it
an be treated like a mutual ex
lusion operation.Syn
hronization
an also be a
hieved without using spe
ial
onstru
ts. Atypi
al example is given in Figure 7.2. Thread T1 will not start exe
utinguntil thread T0 sets variable busy to 0. Although dete
ting this patternmight be more involved than re
ognizing syn
hronization primitives, it still
ould be in
orporated and its e�e
ts would be the same as any other mutualex
lusion
onstru
t. Both
alls to fun
tion
ompute() in this example will benon-
on
urrent.7.2.3 Other Memory ModelsDi�erent memory models have an impa
t on the pla
ement of � fun
tionsbe
ause they allow di�erent memory interleavings than the semanti
s
onsidered in this thesis. Earlier SSA frameworks for expli
itly parallelprograms were based on
opy-in/
opy-out semanti
s, a weaker formof
onsisten
y that guarantees updates at
ertain syn
hronization points(Srinivasan et al. 1993).We plan to adapt the CSSAME infrastru
ture to di�erent memory models.

7.2 Future Work 149main()f busy = 1;
obegin fT0: begin
ompute();busy = 0;endT1: begin=� busy-wait until T0 has
omputed �=while (busy == 1); =� busy wait �=
ompute();endggFigure 7.2: Mutual ex
lusion syn
hronization without lo
ks.Currently we are investigating release-
onsistent models (Keleher et al. 1994).In a release-
onsistent memory, updates to shared variables are only visible atsyn
hronization points. This may lead to the elimination of more � fun
tionswhi
h in turn allow more aggressive optimizations.7.2.4 Dependen
y AnalysisResults obtained in ve
torizing and parallelizing
ompilers are also importantin a
ompiler for expli
itly parallel programs. In parti
ular, the dependen
yanalysis te
hniques developed for ve
torizing and parallelizing
ompilers arean invaluable tool to �ne-tune information about shared array referen
es.Re
ent work proposes adapting a sequential array SSA form to the parallel
ase (Collard 1999).7.2.5 Other OptimizationsPartial Redundan
y Elimination (PRE)Chow et al. developed an SSA-based partial redundan
y eliminationalgorithm for sequential programs
alled SSAPRE (Chow et al. 1997).

150 Con
lusions and Future Worka = 5;b = 4;
 = 2;
obeginT0: begint = a � b;endT1: beginv =
 = 3;end
oendprint(t, v);(a) Before thread propagation.

obeginT0: begina = 5;b = 4;t = a � b;endT1: begin
 = 2;v =
 = 3;end
oendprint(t, v);(b) After thread propagation.Figure 7.3: Thread propagation optimization.The transformation builds SSA information for sele
ted sub-expressions.Expressions are assigned to hypotheti
al temporaries and the SSA informationis built on those temporaries. Whenever one of the operands of the expressionis modi�ed, the asso
iated temporary is also
onsidered modi�ed. AdaptingSSAPRE to the parallel
ase involves building CSSAME information for thetemporaries and treating them like any other variable in the program.Thread PropagationThread Propagation is a
ode motion strategy designed to in
rease thegranularity of individual threads and avoid the sequential pro
essing overheadfor threads that do not use
omputations made in sequential portions of the
ode. We will use a simple example to illustrate the idea. Consider theprogram in Figure 7.3(a). The �rst three lines of the program
ompute newvalues for variables a, b and
. Thread T0 uses variables a and b and thread T1only uses
. Figure 7.3(b) shows the results of applying the thread propagationoptimization to the program on the left. Sin
e thread T1 does not use variablesa or b, both assignments in the sequential se
tion of the program
an bemoved inside T0 so that T1 does not have to pay the sequential overhead for
omputations that it will not use. The same reasoning is applied to thread T0when moving the assignment of variable
 to the body of thread T1.

7.3 Con
lusions 151Lo
k PartitioningLo
k partitioning examines all the mutex bodies in a single mutex stru
ture todetermine whether they a

ess the same set of variables. Consider a programthat uses a single lo
k L to serialize the a

ess to variables a, b, x and y.Assume that only one mutex body referen
es x and y while the other mutexbodies in the program referen
e a and b. We
an safely repla
e L with twolo
ks, one for the mutex body referen
ing x and y and another one for themutex bodies referen
ing a and b.The key idea is that if the mutex bodies are a

essing di�erent sets ofvariables, then prote
ting all the referen
es with a single lo
k is not ne
essaryand restri
ts
on
urren
y in the program. Lo
k partitioning should determinehow many disjoint sets of variables are referen
ed by the di�erent mutex bodiesand repla
e the original lo
k with one lo
k for ea
h set of variables.7.3 Con
lusionsAn optimizing
ompiler for expli
itly parallel languages must be ableto handle di�erent types of parallelism, syn
hronization
onstru
ts, andshared memory semanti
s. For instan
e, the
ompiler should re
ognizedi�erent syn
hronization
onstru
ts and adjust the data-
ow representationappropriately. In this thesis we developed an SSA-based framework foranalyzing these three elements. Regardless of the
hosen analysis framework,it is important that it in
orporates these three elements. Otherwise, de
isionsbased on this analysis might yield erroneous transformations.Optimizing transformations
an be
ategorized as either adaptations oftraditional sequential optimizations from or te
hniques that target one ofthe three elements mentioned above: parallelism, syn
hronization and sharedmemory semanti
s. In this thesis we have
on
entrated on the optimizationof mutual ex
lusion syn
hronization. Using the prototype
ompiler that weare building, we will
ontinue to investigate new analysis and optimizationte
hniques for expli
itly parallel programs.

152 Con
lusions and Future Work

BibliographyAho, A. V., R. Sethi, and J. Ullman. 1986. Compilers: Prin
iples,Te
hniques, and Tools. Se
ond. Reading, MA: Reading, Mass.:Addison-Wesley.Ba
on, D., R. Konuru, C. Murthy, and M. Serrano. 1998, June. \ThinLo
ks: Featherweight Syn
hronization for Java." ACM SIGPLAN'98 Conferen
e on Programming Language Design and Implementation.Montreal, Canada, 258{268.Blume, W. and R. Eigenmann. 1992. \Performan
e Analysis of ParallelizingCompilers on the Perfe
t Ben
hmarks Programs." IEEE Transa
tions onParallel and Distributed Systems 3 (6): 643{656 (November).Brandis, M. M. and H. Moessenboe
k. 1994. \Single-Pass Generation of Stati
Single-Assignment Form for Stru
tured Languages." ACM Transa
tionson Programming Languages and Systems 16 (6): 1684{1698 (November).Callahan, D., K. Kennedy, and J. Subhlok. 1990, Mar
h. \Analysis of EventSyn
hronization in a Parallel Programming Tool." Pro
eedings of theSe
ond ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e of ParallelProgramming. Seattle, WA, 21{30.Chow, F., S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu. 1997. \ANew Algorithm for Partial Redundan
y Elimination based on SSA Form."ACM SIGPLAN '97 Conferen
e on Programming Language Design andImplementation. Las Vegas.Collard, J.F. 1999, September. \Array SSA for Expli
itly Parallel Programs."Pro
eedings of Euro-Par '99.Cytron, R., J. Ferrante, B. Rosen, M. Wegman, and K. Zade
k. 1991.\EÆ
iently Computing Stati
 Single Assignment Form and the ControlDependen
e Graph." ACM Transa
tions on Programming Languages andSystems 13 (4): 451{490 (O
tober).Diniz, P. and M. Rinard. 1998. \Lo
k Coarsening: Eliminating Lo
kOverhead in Automati
ally Parallelized Obje
t-based Programs." Journalof Parallel and Distributed Computing 49 (2): 218{244 (Mar
h).153

154 BibliographyEigenmann, R. and W. Blume. 1991, August. \An E�e
tiveness Study ofParallelizing Compiler Te
hniques." 1991 International Conferen
e onParallel Pro
essing. St. Charles, IL.Emrath, P. A., S. Ghosh, and D. A. Padua. 1992. \Dete
ting Nondetermina
yin Parallel Programs." IEEE Software 9 (1): 69{77 (January).Grunwald, D. and H. Srinivasan. 1993. \Data
ow equations for expli
itlyparallel programs." ACM SIGPLAN Noti
es 28 (7): 159{168 (July).Gupta, M. and P. Banerjee. 1992. \Demonstration of Automati
 DataPartitioning Te
hniques for Parallelizing Compilers on Multi
omputers."IEEE Transa
tions on Parallel and Distributed Systems 3 (2): 179{193(Mar
h).Hall, M., J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E. Bugnion, andM. Lam. 1996. \Maximizing Multipro
essor Performan
e with the SUIFCompiler." IEEE Computer 29 (12): 84{89 (De
ember).Helmbold, D. P. and C. E. M
Dowell. 1994, September. \A taxonomy of ra
edete
tion algorithms." Te
hni
al Report UCSC-CRL-94-35, University ofCalifornia, Santa Cruz.Hendren, L. 2000, February. \Personal
ommuni
ation."Holloway, G. and C. Young. 1997, August. \The Flow Analysisand Transformation Libraries of Ma
hine SUIF." Pro
.2nd SUIF Compiler Workshop. Stanford University. URL:http://www.ee
s.harvard.edu/hube.Jeremiassen, T. and S. Eggers. 1994, August. \Stati
 Analysis ofBarrier Syn
hronization in Expli
itly Parallel Systems." Pro
eedings ofthe International Conferen
e on Parallel Ar
hite
tures and CompilationTe
hniques (PACT). Montreal, Canada.Johnson, R., D. Pearson, and K. Pingali. 1994, June. \The Program Stru
tureTree: Computing Control Regions in Linear Time." ACM SIGPLAN'94 Conferen
e on Programming Language Design and Implementation.Orlando, Florida, 171{185.Keleher, P., A. Cox, S. Dwarkadas, and W. Zwaenepoel. 1994, January.\TreadMarks: Distributed Shared Memory on Standard Workstationsand Operating Systems." Pro
eedings of the 1994 Winter USENIXConferen
e.Knoop, J., B. Ste�en, and J. Vollmer. 1996. \Parallelism for Free:EÆ
ient and Optimal Bitve
tor Analyses for Parallel Programs." ACMTransa
tions on Programming Languages and Systems 18 (3): 268{299(May).

Bibliography 155Krishnamurthy, A. and K. Yeli
k. 1996. \Analyses and Optimizations forShared Address Spa
e Programs." Journal of Parallel and DistributedComputing 38:130{144.Lee, J., S. Midki�, and D. A. Padua. 1997a, July. \Con
urrentStati
 Single Assignment Form and Con
urrent Sparse ConditionalConstant Propagation for Expli
itly Parallel Programs." Te
hni
al ReportTR#1525, CSRD, University of Illinois at Urbana-Champaign.. 1997b, August. \Con
urrent Stati
 Single Assignment Form andConstant Propagation for Expli
itly Parallel Programs." Pro
eedings ofthe Tenth Workshop on Languages and Compilers for Parallel Computing.. 1998. \A Constant Propagation Algorithm for Expli
itly ParallelPrograms." International Journal of Parallel Programming 26 (5):563{589.Lee, J., D. A. Padua, and S. Midki�. 1999, May. \Basi
 Compiler Algorithmsfor Parallel Programs." Pro
eedings of the Fifth ACM SIGPLANSymposium on Prin
iples and Pra
ti
e of Parallel Programming. Atlanta,GA.Lewis, Bil and Daniel J. Berg. 1998. Multithreaded programming withpthreads. 2550 Gar
ia Avenue, Mountain View, CA 94043, USA: SunMi
rosystems.Masti
ola, S. and B. Ryder. 1993, May. \Non-
on
urren
y Analysis."Pro
eedings of the Fourth ACM SIGPLAN Symposium on Prin
iples andPra
ti
e of Parallel Programming. San Diego, CA, 129{138.Mellor-Crummey, J. M. and M. L. S
ott. 1991. \Algorithms for S
alableSyn
hronization on Shared-Memory Multipro
essors." ACM Transa
tionson Computer Systems 9 (1): 21{65 (February). Earlier version publishedas TR 342, URCSD, April 1990, and COMP TR90-114, Center forResear
h on Parallel Computation, Ri
e UNIV, May 1990.Midki�, S. P. and D. A. Padua. 1990, August. \Issues in the Optimization ofParallel Programs." 1990 International Conferen
e on Parallel Pro
essing,Volume II. St. Charles, Ill., 105{113.Mu
hni
k, S. 1997. Advan
ed Compiler Design and Implementation. MorganKaufmann Publishers.Netzer, R. H. B and B. P. Miller. 1990, August. \On the
omplexity ofevent ordering for shared memory parallel program exe
utions." 1990International Conferen
e on Parallel Pro
essing, Volume II Software.93{104.

156 BibliographyNorth, S. C. and E. Koutso�os. 1994, May. \Appli
ation of GraphVisualization." Pro
eedings of Graphi
s Interfa
e '94. CanadianInformation Pro
essing So
iety Ban�, Alberta, Canada, 235{245. URL:http://www.resear
h.att.
om/�north/graphviz/.Novillo, D., R. Unrau, and J. S
hae�er. 1998, August. \Con
urrent SSA Formin the Presen
e of Mutual Ex
lusion." 1998 International Conferen
e onParallel Pro
essing. Minneapolis, Minnesota, 356{364.Proebsting, T. A., G. Townsend, P. Bridges, J. H. Hartman, T. Newsham,and S. A. Watterson. 1998. \Toba: Java For Appli
ations| A Way Ahead of Time (WAT) Compiler." Te
hni
al Report,Department of Computing S
ien
e, The University of Arizona. URL:http://www.
s.arizona.edu/sumatra/toba/.Pugh, W. and D. Wonna
ott. 1992, June. \Eliminating False DataDependen
es using the Omega Test." Pro
eedings of the SIGPLAN '92Conferen
e on Programming Language Design and Implementation. SanFran
is
o, CA. URL: http://www.
s.umd.edu/proje
ts/omega/.S
hae�er, J., D. Szafron, G. Lobe, and I. Parsons. 1993. \The EnterpriseModel for Developing Distributed Appli
ations." IEEE Parallel andDistributed Te
hnology 1 (3): 85{96.Shasha, D. and M. Snir. 1988. \EÆ
ient and Corre
t Exe
ution of ParallelPrograms that Share Memory." ACM Transa
tions on ProgrammingLanguages and Systems 10 (2): 282{312 (April).Shi, H. and J. S
hae�er. 1992. \Parallel Sorting by Regular Sampling."Journal of Parallel and Distributed Computing 14 (4): 361{372.Singh, J., W. Weber, and A. Gupta. 1992. \SPLASH: Stanford ParallelAppli
ations for Shared-Memory." Computer Ar
hite
ture News 20 (1):5{44 (Mar
h).Sreedhar, V. C. and G. R. Gao. 1995, January. \A Linear Time Algorithmfor Pla
ing �-nodes." 22nd Annual ACM Symposium on Prin
iples ofProgramming Languages. New York, NY, USA: ACM Press, 62{73.Srinivasan, H., J. Hook, and M. Wolfe. 1993, January. \Stati
 SingleAssignment for Expli
itly Parallel Programs." 20th Annual ACMSymposium on Prin
iples of Programming Languages. Charleston, S.C.,16{28.Tanenbaum, A. S. 1992. Modern Operating Systems. Englewood Cli�s, NJ07632: Prenti
e Hall.Unrau, R., O. Krieger, B. Gamsa, and M. Stumm. 1994. \Experien
eswith Lo
king in a NUMA Multipro
essor Operating System Kernel."

Bibliography 157Pro
eedings for the 1st USENIX Symposium on Operating Systems Designand Implementation (OSDI '94). 139{152.Wegman, M. and K. Zade
k. 1991. \Constant Propagation with ConditionalBran
hes." ACM Transa
tions on Programming Languages and Systems13 (2): 181{210 (April).Whaley, J. and M. Rinard. 1999, November. \Compositional Pointer andEs
ape Analysis for Java Programs." Pro
eedings of the 14th AnnualACM SIGPLAN Conferen
e on Obje
t-Oriented Programming Systems,Languages, and Appli
ations.Wilson, R. et al. 1994. \SUIF: An Infrastru
ture for Resear
h on Parallelizingand Optimizing Compilers." ACM SIGPLAN Noti
es 29 (12): 31{37(De
ember).Wolfe, M. J. 1996. High Performan
e Compilers for Parallel Computing.Redwood City, CA: Reading, Mass.: Addison-Wesley.Woo, S. C., M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.1995, June. \The SPLASH-2 Programs: Chara
terization andMethodologi
al Considerations." 22nd International Symposium onComputer Ar
hite
ture. 24{36.

