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AbstratIn this thesis we introdue the CSSAME form, a new analysis frameworkfor expliitly parallel programs that reognizes three fundamental elementsof a parallel program: (1) parallel struture, (2) memory semantis, and (3)synhronization struture. By modeling these three elements in a single uni�edframework, a ompiler an better exploit optimization opportunities in parallelprograms.We also develop a new synhronization analysis tehnique to detet mutualexlusion synhronization patterns that annot be analyzed with existingtehniques. We introdue the notion of multiple-entry/multiple-exit mutexregions and provide methods for validating mutual exlusion synhronizationat ompile-time. This analysis provides the basis for the elimination ofsuperuous memory onit edges in the program's owgraph, leading to asimpler representation and allowing more optimization opportunities.We integrate reahing de�nition analysis and dead-ode elimination intothe CSSAME framework. Furthermore, we introdue new optimizationtehniques to redue mutual exlusion synhronization overhead: LokPiking, Lok Independent Code Motion and Mutex Body Loalization. Westudy the e�ets of these transformations in the ontext of SPLASH and Javaappliations, prove their orretness, and provide algorithms that implementthem.
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Chapter 1IntrodutionParallel omputers have the potential to solve omplex problems muh fasterthan onventional sequential omputers. Unfortunately, the mere preseneof multiple proessors does not automatially guarantee better performane.Parallel programs must expliitly distribute the work among the availableproessors and oordinate their ativities. In turn, this division of laboralso a�ets the algorithm used to solve the problem. While some sequentialalgorithms lend themselves to parallel implementations, others do not.Sequential algorithms amenable to parallelization have been extensivelystudied and existing tools an automatially turn some algorithms intotheir parallel ounterpart. This approah, known as impliit or automatiparallelization works well on some appliation domains but it is not a universalsolution (Blume and Eigenmann 1992; Eigenmann and Blume 1991). In thisdissertation we are interested in algorithms that are parallel from the outset.These algorithms express the solution to a problem in terms of sub-problemsto be solved onurrently. The neessary alloation of work to the di�erentproesses, oordination and data sharing are expliitly stated in the algorithm.Languages that support the implementation of expliitly parallel algorithmsare alled expliitly parallel languages.In an expliitly parallel language, the programmer has full ontrol over theparallelism in the program. This is an expressive model beause it allows theuser to take full advantage of the system apabilities. However, performaneis still an issue; using an expliitly parallel language does not neessarily1



2 Introdutionlead to optimum runtime performane. In addition to good algorithm designand implementation, an essential key to obtaining good performane is theompiler. The ompiler is responsible for translating a program writtenin a high-level language to an equivalent program in a low-level languagethat the target arhiteture an understand. During this translation proessthe ompiler applies optimizing transformations to the ode to improve itsperformane. In general these transformations have an important property:they preserve the semantis of the original program (i.e., the optimizedprogram behaves like the original one). In ertain irumstanes, however,optimizing transformations an alter the semantis of the program. Typialexamples inlude transformations that trade-o� oating point arithmetipreision in favor of speed.To suessfully transform a program the ompiler must gather informationabout it. This proess, known as program analysis, builds the neessarydata strutures representing the ow of ontrol and data in the originalprogram. This information is vital for the subsequent proess of programoptimization that improves the original program. It should be noted that theterm optimization is really a misnomer. Optimizing transformations try toimprove the original ode but they make no guarantees that the transformationwill atually be optimal. The transformations are intended to produe odethat is no worse than the original one.This thesis introdues novel ompiler analysis and transformationtehniques to optimize the performane of expliitly parallel programs. Inthe following setions we desribe the problem in detail (Setion 1.1), presentour main ontributions of this work (Setion 1.2) and desribe the organizationof this thesis (Setion 1.3).1.1 The ProblemArguably, the easiest way to develop a parallel program is to write sequentialode and have the system automatially generate an equivalent parallelprogram. This proess, known as automati or impliit parallelization, hasbeen the fous of intense researh and development for over three deades.



1.1 The Problem 3Coneptually, this proess works like any other optimizing transformation; theparallelizer (often built into the ompiler) looks for onstruts in the originalprogram that an be exeuted onurrently without altering the originalsemantis. By exeuting multiple instrutions simultaneously, the exeutionpath of the program is shortened, thus reduing its runtime.This approah to generating parallel ode has been extremely suessful inertain appliation domains. Traditionally, programs performing matrix andvetor omputations using regular loops are prime andidates for automatiparallelization. Many sienti� problems in physis, engineering and hemistryfall into this ategory. Unfortunately, the state of the art in parallelizingtehnology has not advaned muh beyond this. Parallelizing ompilers arefundamentally limited by the need to preserve the original sequential semantisof the program. The transformations must be suh that the resulting parallelprogram should produe exatly the same results as the sequential version.For many appliation domains impliitly parallelizing a sequential algorithmis seldom better than using an expliitly parallel algorithm from the outset.For instane, the parallel version of the well-known quiksort algorithm, avery good sequential algorithm, performs very poorly ompared to PSRS, anexpliitly parallel sorting algorithm (Shi and Shae�er 1992).The reognition of these limitations has resulted in an inreased demandfor expliitly parallel languages. An expliitly parallel language provideslanguage onstruts or library funtions that allow the programmer todesribe onurrent ativity inside the program. This added exibility isa double-edged sword; programmers are free to speify parallel algorithmsany way they hoose at the potential expense of inreased programmingomplexity. For some time now, researhers have developed new programmingmodels, programming environments and automati validation tehniques tosimplify the development of parallel programs. However, developing parallelprograms is omplex in another dimension: performane. Most of the existingwork in the language area has addressed expressibility and exibility issues.Programming environments like Enterprise (Shae�er et al. 1993) providean integral framework for developing parallel programs based on ommonparallel onstruts. Analysis tools exist to statially detet deadlok patterns



4 Introdution(Mastiola and Ryder 1993) and shared memory onits (Emrath et al.1992; Helmbold and MDowell 1994; Callahan et al. 1990). New languagesand programming models are being onstantly introdued; eah typiallywell-suited to a few spei� lasses of problems. However, these developmentsrarely address performane, whih is, in our view, the main reason for using aparallel omputer in the �rst plae.Little researh has been done on making ompilers understand expliitlyparallel ode for the purpose of optimization. Typially, existing systemsand tools rely on the programmer to develop eÆient ode. The systemunderstands expliitly parallel semantis only to the extent of mapping theprogram to the target arhiteture. Little or no attempt is made to optimizethe ode. In fat, urrent ommerial ompilers treat expliitly parallelsetions of the ode as a \blak box" and leave them untouhed. There isa good reason for this limitation: transformation tehniques for optimizingsequential programs annot be diretly applied to expliitly parallel odebeause they may generate inorret transformations (Midki� and Padua1990). The tehniques developed in this thesis �ll part of the void. We presenta uni�ed framework for analyzing and optimizing expliitly parallel programs.The optimizations desribed here fall into two lasses: the adaptation ofsequential optimizations to a parallel environment; and the diret optimizationof the parallel and synhronization struture of the program.1.2 Summary of Major ContributionsThe tehniques developed in this thesis an be organized into two ategories:analysis and transformation tehniques. Analysis tehniques allow theompiler to reason about an expliitly parallel program. We prove orretnessproperties about the analysis and provide algorithms that implement thetehniques. Transformation tehniques use the information gathered by theanalysis and onvert parts of the program into a more eÆient but semantiallyequivalent form. We prove orretness properties about the transformationsand provide algorithms that implement them. We have also implemented mostof these algorithms in the SUIF ompiler infrastruture (Hall et al. 1996).



1.2 Summary of Major Contributions 5We apply them to several expliitly parallel programs and show that theseoptimizations an result in signi�ant improvements in performane. Thefollowing setions provide an overview of the spei� ontributions of thiswork.1.2.1 Analysis TehniquesStati Single Assignment Form for Parallel ProgramsThis thesis introdues the Conurrent Stati Single Assignment formwith Mutual Exlusion (CSSAME). CSSAME1 is an intermediate programrepresentation based on the the well-known Stati Single Assignment (SSA)form (Cytron et al. 1991). The SSA form is based on the fundamental premisethat every memory variable in the intermediate program an only be assignedone. If a program is transformed to omply with this ondition we say thatthe program is in SSA form.An SSA form for parallel programs with interleaving memory semantismust take into aount that write and read operations to a given variablean take plae simultaneously from di�erent proesses. The CSSAME formextends the single assignment onept to the parallel ase. It is based onthe Conurrent Stati Single Assignment (CSSA) form (Lee et al. 1997b).CSSAME extends the CSSA form to support two important synhronizationmehanisms, namely mutual exlusion and barrier synhronization. Chapter4 presents a formal desription of the CSSAME framework.Mutual Exlusion Synhronization DetetionMutual exlusion synhronization is used when a proess needs to haveexlusive aess to a shared resoure. Exlusive aess to a shared resoureprevents simultaneous modi�ations whih might lead to an inonsistent state.We will model mutual exlusion using lok and unlok operations. Exlusiveaess to a shared resoure is requested using a lok operation. One therequesting thread is done aessing the resoure, it alls unlok to free theresoure and allow other threads to aess it. All the instrutions exeuted1Pronouned sesame.



6 Introdutionbetween the lok and the orresponding unlok operation are said to be insidea mutual exlusion setion. Other names for mutual exlusion setion inludemutex body and ritial setion. In the ontext of onurrent programs, mutualexlusion is typially used to aess shared variables that might be otherwisemodi�ed by several onurrent threads.Sine synhronization operations an our in arbitrary setions of theode, the mutual exlusion setions de�ned by lok and unlok operationsan be diÆult to disern. In this thesis we develop a new analysis tehniqueto detet mutual exlusion setions in the program. Although tehniques existto detet mutual exlusion setions, they are limited in the types of lokingpatterns that they an detet. We formulate a di�erent algorithm for detetingritial setions that an ope with irregular loking patterns in the ode. Thisanalysis provides the foundation for all the transformations that optimize thesynhronization struture of the program, and an also be used to warn theprogrammer about illegal loking patterns.1.2.2 OptimizationsWe apply the CSSAME analysis framework to perform two types ofoptimizations: (1) the adaptation of known sequential transformations to theparallel ase and (2) the development of new transformations that target theparallel and synhronization struture of the program diretly.Current researh e�orts in the �eld are geared towards the �rst type oftransformations (Knoop et al. 1996; Lee et al. 1998; Lee et al. 1999). In thisthesis we adapt a sequential dead-ode elimination algorithm to the parallelase.Transforming the parallel and synhronization struture of expliitlyparallel ode has reeived less attention (Krishnamurthy and Yelik1996; Novillo et al. 1998). We ontribute new algorithms to eliminatesynhronization overhead from expliitly parallel programs: lok piking,lok-independent ode motion and mutex body loalization.



1.2 Summary of Major Contributions 7Dead-Code EliminationWhen a statement omputes a value that is not used anywhere else in theprogram we say that that omputation is dead. Dead ode is usually removedfrom the program beause it serves no useful purpose. In this thesis we adapt asequential dead-ode elimination algorithm (Cytron et al. 1991) to the parallelase.Lok PikingUsing lok information olleted during the onstrution of the CSSAME form,it is possible to detet lok and unlok operations that are not neededin the program. As a simple ase, onsider a sequential program or asequential setion of a parallel program. Sine there is no parallel ativity,any synhronization operation in that setion is not neessary and an beremoved. We all this transformation lok piking.Lok-Independent Code Motion (LICM)Mutual exlusion an beome a performane bottlenek if used exessivelybeause it restrits parallel ativity in the program. In general it is desirableto redue the size and number of mutual exlusion setions in the ode.Lok-Independent Code Motion (LICM) tries to redue the size of mutualexlusion setions by moving ode outside mutual exlusion setions. Thistehnique sans all the mutual exlusion regions in the program looking forinterior ode that does not need to be proteted by the orresponding lok. Thealgorithm an move expressions, statements and even whole ontrol struturesout of ritial setions.Mutex Body Loalization (MBL)Mutex Body Loalization is a new transformation that onverts referenes toshared memory into referenes to loal memory inside ritial setions of theode. This transformation an potentially reate more lok-independent odethat an be later optimized by LICM.



8 Introdution1.3 Thesis OrganizationThe rest of this thesis is organized as follows:� Chapter 2 provides bakground information and related work aboutparallel programming, synhronization models and optimizing ompilers.It also provides details about the neessity of adapting sequentialoptimization tehniques to work on expliitly parallel programs. Thespei� language model that we assume in the rest of this thesis isintrodued: an expliitly parallel language with interleaving memorysemantis and three di�erent synhronization mehanisms (mutualexlusion, barriers and event variables).� Chapters 3 and 4 desribe the analysis framework that we use to reasonabout parallel programs. We desribe the Conurrent Control FlowGraph (CCFG) that represents the ontrol and synhronization strutureof parallel programs, the tehnique used to identify mutual exlusionsynhronization patterns and the CSSAME form.� Chapter 5 builds on the CSSAME form to develop the followingoptimizing transformations: onurrent dead-ode elimination,lok-independent ode motion, mutex body loalization, lok pikingand lok partitioning.� Experimental results are presented in Chapter 6. We illustrate thebene�ts of using the CSSAME framework and the e�ets of the di�erenttransformations on seleted parallel programs taken from SPLASH(Singh et al. 1992) and TreadMarks (Keleher et al. 1994). We alsoinvestigated the potential bene�ts of our optimizations on programswritten in Java. We found that the generi nature of Java's thread-safelibraries leads to orret but onservative implementations that areoften overly synhronized. When our optimizations are applied tosample Java programs we observed up to a fator of 4 improvementin runtime ompared to the original parallel program. In fat, beausethe same libraries are used for sequential programs, we were able to get



1.4 Summary 9between 10% and 25% improvement in sequential programs when ouroptimizations are applied.� Conlusions and future work are the subjet of Chapter 7.1.4 SummaryWith low-ost multiproessor systems now being ubiquitous, the need fortools to maximize parallel performane has never been greater. This thesisrepresents a signi�ant step forward in improving the apabilities of ompilersfor parallel programs. In partiular, we expet these tehniques to have asigni�ant impat in high-level onurrent or thread-based languages. Ofpartiular importane in these environments is the ability of the ompiler tounderstand synhronization operations whih an be a soure of substantialoverhead in some appliations.



10 Introdution



Chapter 2BakgroundThis hapter introdues the fundamental onepts used as the foundation forthe tehniques developed in this thesis. The disussion starts with an overviewof the more popular parallel programming models, inluding the spei�ationof parallel ativity, memory semantis and synhronization onstruts (Setion2.1).The disussion ontinues with a desription of the struture andresponsibilities of a typial optimizing ompiler. The emphasis is on the datastrutures and program representations used in the optimization phase of theompilation proess (Setion 2.2).Finally, Setions 2.3, 2.4 and 2.5 provide bakground information about the�eld of analysis and optimization of expliitly parallel programs. Tehniquesused in sequential ompilers annot be diretly applied to parallel programs.We will desribe the reasons for this limitation and survey existing work inthe area. This disussion will motivate the new tehniques developed in therest of this dissertation.2.1 Parallel Programming ModelsSeveral issues must be onsidered in a parallel programming environment:spei�ation of parallel ativity (language model), data sharing semantis(memory model) and synhronization operations to order the aess to sharedresoures (synhronization model). 11



12 BakgroundLanguage model. The spei�ation of parallel ativity determines how thedi�erent proesses partiipate in a omputation. There are two types ofparallelism: task and data. In a task-parallel program, di�erent threadsexeute di�erent setions of the program on di�erent data elements.Conversely, in a data-parallel program, di�erent threads exeute thesame ode on di�erent data elements.Memory model. Unlike sequential programs, the di�erent proesses thatexeute a parallel program do not neessarily have aess to the samememory address spae. The memory an be shared among the proesses,or distributed. The hoie of memory model will have a signi�antimpat on the implementation and even on the algorithms used.Synhronization model. Synhronization is neessary to protet theintegrity of resoures shared by several proesses. It prevents a proessfrom omputing with stale or inomplete data.2.1.1 Language ModelFor a long time, researh in the �eld of parallel ompilation has foused on theautomati transformation of sequential programs into their parallel equivalent(Gupta and Banerjee 1992; Wilson et al. 1994). The ompiler analyzes theprogram looking for setions of the ode that an be exeuted in parallelwithout a�eting the original data dependenies in the program.Parallelizing ompilers are very useful for some appliation domains. Theytypially exel in numeri and sienti� appliations involving omputations onregular data strutures like matries. Unfortunately, there are some importantproblem domains that parallelizing ompilers annot handle eÆiently (Blumeand Eigenmann 1992; Eigenmann and Blume 1991) (e.g., sorting, searhing,sparse matrix omputations, et). These shortomings are not always dueto limitations in the parallelization tehniques used. For some appliations,the best sequential algorithms ontain data and ontrol dependenies thaturrent automati parallelization tehniques annot handle. To overome theselimitations, parallelizing ompilers provide a set of annotations and diretivesso that the programmer an diret the ations of the parallelizer. Even these



2.1 Parallel Programming Models 13=� Start N threads to exeute di�erent� setions of ode onurrently.�=obeginT1: beginstatementsendT2: beginstatementsend. . .TN : beginstatementsendoend(a) A task-parallel program.

=� Start N threads to exeute the same� ode onurrently. Eah thread exeutes� with a di�erent value of i.�=parloop (i, 1, N) fstmt1;stmt2;. . .stmtM;g
(b) A data-parallel program.Figure 2.1: Syntax for speifying parallel ativity in a program.extensions are often not enough; often the best solution is to solve the problemusing a parallel algorithm from the outset (Shi and Shae�er 1992). All thetehniques and algorithms developed in this thesis work on expliitly parallelprograms. Our goal is not to extrat parallelism from a sequential programbut to analyze and optimize a program that is already parallel. This appliesto programs that are expliitly parallel from the outset and to the output ofan automati parallelization tool.We assume that expliitly parallel programs start as a single thread ofomputation. New threads are logially reated when exeution reahesa parallel setion in the program. Although the reation, plaement andsheduling of threads is not signi�ant for our researh, the ompiler mustbe able to reognize parallel setions in the ode. There are a varietyof mehanisms for expressing parallel ativity. Some examples inludeobegin/oend onstruts, fork statements and parallel loops.We will represent task-parallel programs using obegin/oend onstruts(Figure 2.1(a)) and data-parallel programs using parallel loops (Figure2.1(b)). The program fragments in Figure 2.1 launh N threads that exeuteindependently and join with the invoking thread at the end of the parallelsetion. The threads reated by the obegin/oend onstrut will exeutedi�erent ode setions while the threads reated by the parloop loop will
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Figure 2.3: A shared-memory system. Proessors share the same address spae.exeute the same piee of ode. With these two onstruts it is possible toexpress both task-parallel and data-parallel algorithms.2.1.2 Memory ModelMemory an be shared or distributed among the proessors in the system.On a distributed-memory system, eah proessor has its own loal memorywhih annot be aessed by other proessors in the system (Figure 2.2).Interproessor ommuniation is based on message passing. Data is sent fromone proessor to another via data ommuniation primitives send and reeive.In ontrast to the distributed approah, a shared-memory system providesa single address spae that an be aessed by all the proessors in thesystem (Figure 2.3). Traditionally, shared memory has been provided inhardware with proessors onneted to a ommon memory pool through ashared bus. These systems, known as Symmetri Multiproessors (or SMPs),su�er from salability problems; beyond a ertain number the performane of



2.1 Parallel Programming Models 15SMP systems degrades greatly beause of the inreased traÆ on the sharedmemory bus.To address the salability problem, researh has foused on providinga shared memory image on top of physially distributed hardware. Thesesystems, known as Distributed Shared Memory (or DSM) or Non-UniformMemory Aess systems (NUMA), mask the distributed nature of the memoryby providing an abstration that transforms shared memory referenes intomessages between di�erent memory modules.A sometimes heated debate exists in the parallelism ommunity aboutthe relative bene�ts of shared-memory versus distributed-memory systems.Supporters of the shared memory model argue that its uni�ed dataaess notation makes for simpler and easier to maintain programs. Anyommuniation required to aess the ommon memory is transparentlyhandled by the system. The urrent trend is for these two types of arhiteturesto merge into hybrid arhitetures with features from both types of systems.While this is a onvenient programming model, the overhead of repeatedshared-memory referenes an restrit the performane of the programsigni�antly. The fous of urrent researh into shared-memory systems is inminimizing ommuniation due to shared-memory traÆ. This has produedompiler tehniques, ahing algorithms and lateny-hiding tehniques at thehardware and operating system level. In this work we assume that threads runin a shared address spae with interleaving semantis (i.e., updates to sharedmemory made by one thread are immediately visible to the other threads).Programs share memory via shared variables.2.1.3 Synhronization ModelThe analysis tehniques disussed in this doument rely on the e�ets thatsynhronization operations have on the ow of data in the parallel program.The algorithms developed in this thesis support three standard synhronizationonstruts, namely mutual exlusion, events and barriers:� Mutual exlusion is used to serialize referenes to shared variables inthe program. We will assume that programmers use standard lok



16 Bakgroundand unlok instrutions to serialize aess to shared variables. Bothinstrutions operate on lok variables whih an only be referened in alok or unlok statement. Furthermore, we assume that lok(L) readsand writes to the lok variable L and unlok(L) only writes to L.lok(L) bloks the alling thread until it is granted exlusive aessto the lok variable L. If a thread t2 tries to aquire a lok alreadyheld by another thread t1, t2 will blok until t1 releases the lok. Ifmultiple threads try to aquire the lok simultaneously, exatly oneis guaranteed to sueed. The other threads are fored to wait.unlok(L) releases the lok on L and allows one of the threads waitingon the lok to proeed.� Event synhronization is supported using event variables. An eventvariable is an integer with two possible values, posted and leared. Threeoperations apply to an event variable e:set(e) sets event variable e to posted.wait(e) if e is set to leared, it bloks the alling thread until e is setto posted.lear(e) sets e to leared.Event synhronization is used as a signaling mehanism between threads.By using events, the programmer an introdue a partial order in theexeution of onurrent threads. Assume that some omputation Bin thread T2 an only exeute after thread T1 has produed anotheromputation A. This relation an be implemented by using an eventvariable e that is set by T1 immediately after omputing A and waitedby T2 immediately prior to omputing B. Our work does not addressevent synhronization diretly; all the support for event synhronizationis derived from the preedene algorithms in (Lee et al. 1997a).� Barriers are used in algorithms that need to proeed in phases. Abarrier(b, N) instrution fores the alling thread to wait until Nthreads have exeuted the statement barrier(b, N).
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CodeFigure 2.4: A high-level view of the ompilation proess.2.2 Optimizing CompilersA ompiler analyzes an input program written in one language (soure ode)and transforms it into a semantially equivalent program in another language(objet ode). During translation an optimizing ompiler applies ertaintransformations to the input program to improve its eÆieny. There aretwo fundamental ways of measuring eÆieny: performane and spae. Mostoptimizing transformations are meant to improve performane. In ertainsituations, spae onsiderations are more important (e.g., systems with limitedamounts of memory and/or registers).We should point out that the transformations applied by an optimizingompiler are generally not optimal; they merely attempt to improve ertainaspets of the program. Optimizing transformations try to be as aggressiveas possible without modifying the original semantis of the program. Toahieve this the optimization algorithms always err on the safe side; atransformation will only be applied if it is valid for every possible exeution ofthe program. To summarize, an optimizing transformation must be aggressivebut onservatively orret.This setion starts with an overview of a typial ompiler system.Compilers have two major omponents: the front-end, whih is responsiblefor reognizing and validating the input program; and the bak-end, whihtranslates the input program into the target language and applies optimizingtransformations to make the program more eÆient (Figure 2.4). Speialattention is given to the bak-end of the ompiler; we will only briey desribethe ompiler front-end (an in-depth desription of this topi an be found in(Aho et al. 1986)).



18 Bakground2.2.1 Front-EndBefore the program an be optimized and translated into ode for the targetmahine, the ompiler must understand its lexial and syntati struture.The front-end of the ompiler onverts the string of haraters representingthe input program into data strutures that onvey all the information neededby the bak-end to transform the program and generate objet ode. Thereognition of the input program is done in three phases, namely lexialanalysis, syntax analysis and intermediate ode generation (Figure 2.5).
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RepresentationFigure 2.5: The front-end analyzes and prepares the program for optimization.Lexial AnalysisThis phase reads the stream of haraters that make up the input program andgroups them into tokens. Tokens are symbols with a predetermined meaningin the grammar of the input language (i.e., the words of the language). Thistokenization proess produes a more syntheti version of the input programthat simpli�es the task of subsequent phases. For example, given the followingstream of haraters representing an assignment statementfoo = bar + 30.4 - fooa lexial analyzer might produe the following seven tokensIDENT ASSIGN IDENT PLUS NUM MINUS IDENTfoo = bar + 30.4 - fooLimited error heking is performed at this phase. Basially, the lexialanalyzer an only determine whether a string of haraters is a valid tokenof the input language. The hierarhial grouping of tokens into statements isperformed by the syntax analyzer.
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fooFigure 2.6: Parse tree for the statement foo = bar + 30.4 - foo.Syntax and Semanti AnalysisThe syntax analyzer, also known as parser, uses the grammar rules of the inputlanguage to group the tokens into statements. Statements are hierarhialgroupings often represented by parse trees. Information ontained in parsetrees is used to validate the syntax of the input program and generateintermediate ode used for optimization and �nal objet ode generation.Figure 2.6 shows the parse tree orresponding to the statement foo = bar+ 30.4 - foo. Interior nodes of the tree orrespond to grammar onstruts(e.g., statements, expressions, delarations, et); leaves orrespond to theindividual tokens reognized by the lexial analyzer.Grammar rules are de�ned reursively in terms of statements, expressions,proedures and ontrol strutures. Semanti analysis is also performed duringthis phase. It mainly involves heking expressions to detet operations thatare not allowed by the typing rules of the language (e.g., multiplying a stringby a oating point number).Intermediate Code GenerationOne the program syntax has been veri�ed, the ompiler generatesintermediate ode whih is a more syntheti representation of the originalprogram. The intermediate representation used by the ompiler often



20 Bakgroundresembles assembly language for an abstrat mahine. By separating thelanguage (front-end) from the arhiteture (bak-end), it is possible to re-usethe same optimization and ode generation tehniques for a variety of inputlanguages. Furthermore, the simpler form of this intermediate languagesimpli�es the task of optimizing and generating objet ode. Returning toour running example, the expression foo = bar + 30.4 - foo is translatedto the following intermediate form in SUIF (Stanford University IntermediateForm) (Hall et al. 1996):1: ld nd#4 = 3.04e+01 /* Load nd#4 with onstant 30.4 */2: add nd#3 = .bar, nd#4 /* Add nd#3 = bar + nd#4 */3: sub .foo = nd#3, .foo /* Subtrat foo = nd#3 - foo */In this ode fragment, the symbols nd#i are temporary variables usedinternally by the ompiler and atual program variable names are preededby a \.". All the analysis and transformation tehniques performed by theompiler are applied to this intermediate representation. The amount ofdetail provided by the intermediate representation depends on the type ofoptimization being performed. Optimizing ompilers typially have more thanone intermediate representation, eah suited for di�erent transformations. Forexample, high-level transformations like loop transformations are typiallyperformed by the front-end while low-level transformations like ode shedulingare typially done by the bak-end (ode sheduling reorders the generatedinstrutions to take advantage of the target proessor).2.2.2 Bak-EndThe ompiler bak-end is responsible for applying optimizing transformationsto the intermediate ode and generating the objet ode that will exeuteon the real mahine. The front-end for ompilers for both sequential andparallel languages use similar methodologies. The tehniques for reognizingand validating the input program are well-known and do not vary muh whenmoving from the sequential to the parallel ase. However, fundamental hangesare neessary to the ompiler's bak-end when moving from the sequential tothe parallel ase.



2.2 Optimizing Compilers 21There are also signi�ant di�erenes between ompiler tehniques forexpliitly parallel languages (like the ones developed in this thesis) and thetehniques used in parallelizing ompilers. Parallelizing ompilers analyzesequential programs to generate parallel ode with sequential semantis. Onthe other hand, ompilers for expliitly parallel languages analyze and optimizeprograms that already have parallel semantis.Optimizing TransformationsThe ompiler front-end aquires very little knowledge of what the programatually does. Optimization is possible when the ompiler understands theow of ontrol in the program (ontrol-ow analysis) and how the data istransformed as the program exeutes (data-ow analysis). Both types ofanalysis are disussed in Setions 2.4 and 2.5.Analysis of the ontrol and data-ow of the program allows the ompiler toimprove the runtime performane of the ode. Many di�erent optimizationsare possible one the ompiler understands the ontrol and data-ow of theprogram. The following are a few of the more popular optimization tehniquesused in standard optimizing ompilers:Algebrai simpli�ations. Expressions are simpli�ed using algebraiproperties of their operators and operands. For instane, i + 1 � i isonverted to 1. Other properties like assoiativity, ommutativity anddistributivity are also used to simplify expressions.Constant folding. Expressions for whih all operators are onstant an beevaluated at ompile time and replaed with their value. For instane,the expression a = 4 + 3 � 8 an be replaed with a = �1. Thisoptimization (usually performed by the front-end) yields best resultswhen ombined with onstant propagation (page 23).Redundany elimination. There are several tehniques that deal with theelimination of redundant omputations. Some of the more ommon onesinlude:



22 BakgroundLoop-invariant ode motion. Computations inside loops that produethe same result for every iteration are moved outside the loop.Common sub-expression elimination. If an expression is omputed morethan one on a spei� exeution path and its operands are nevermodi�ed, the repeated omputations are replaed with the resultomputed in the �rst one.Partial redundany elimination. A omputation is partially redundantif some exeution path omputes the expression more than one.This optimization adds and removes omputations from exeutionpaths to minimize the number of redundant omputations in theprogram. It enompasses the e�ets of loop-invariant ode motionand ommon sub-expression elimination.Register alloation. Registers are memory loations inside the proessoritself that are extremely fast and sare. Register alloation tries to keepmemory traÆ within the CPU registers as muh as possible.Code GenerationFinal target ode onsists of mahine or assembly ode for the targetarhiteture. Further optimizations are enabled during this translation.Register alloation and ode sheduling are typially applied during this phase.Code sheduling refers to a family of instrution re-ordering tehniques thattake advantage of spei� features of the proessor (e.g., pipelining, VLIW,super-salar features, et).2.3 Analysis and Optimization of ExpliitlyParallel ProgramsIn 1990 Midki� and Padua published a study that showed how optimizingtransformations designed for sequential programs may fail when applied toexpliitly parallel ode (Midki� and Padua 1990). The ore of the problem isthat tehniques for sequential languages have no onept of onurrent ativity,



2.3 Analysis and Optimization of Expliitly Parallel Programs 23they assume a single thread of exeution. Consequently, they annot assertwhether it is safe to apply the transformations.Current work-arounds to this problem involve disabling optimizations inparallel setions of the program and/or restriting data sharing betweenthreads. Both are inappropriate beause they are too restritive. This meansthat the ompiler an only optimize the sequential parts of the program.The ompiler should \understand" parallel ode and be able to make validoptimizing transformations. A lassi example of how sequential ompilersfail on expliitly parallel ode is shown in Figure 2.7. The program shows twothreads sharing a ommon array. Thread T0 (the produer) reates new valueswhile thread T1 (the onsumer) waits for T0 to generate all the values beforedoing its work. The two threads are synhronized using a busy-wait loop onvariable done. When thread T0 �nishes updating the array, it sets variabledone to 1 whih terminates the while loop in thread T1.A ommon transformation used in optimizing ompilers is alled onstantpropagation. Basially, a onstant propagation algorithm replaes variablesby their values if they are known to be onstant. Consider variable done;sine a sequential onstant propagation analyzer does not know about theparallel struture of the program, it will produe inorret transformations.If the ompiler onsiders that T0 and T1 exeute in sequene, it will onludethat variable done is always 1 when ontrol reahes the while loop in T1.Therefore, onstant propagation will e�etively remove the busy-wait loopand the program will likely produe the wrong results at runtime.This example illustrates the fundamental reason why we need ompilersto understand expliitly parallel ode. Conurrent threads of ativity onshared data introdue data dependenies that a sequential ompiler annotsee beause it assumes a single thread of exeution.There are other elements in a parallel program that a ompiler mustunderstand, namely the synhronization and memory models. Di�erentsynhronization shemes will impose di�erent onstraints on how data isshared. As we will see in later setions this an reate more opportunitiesfor the ompiler to apply more aggressive optimizations.



24 Bakgrounddone = 0;obeginT0: beginfor (i = 0; i < N; i++)A[i℄ = produe(i);done = 1;endT1: beginwhile (done == 0); =� busy-wait �=for (i = 0; i < N; i++)print(A[i℄);endoend(a) Original program.

done = 0;obeginT0: beginfor (i = 0; i < N; i++)A[i℄ = produe(i);done = 1;endT1: beginwhile (1 == 0) =� Always false! �=; =� busy-wait never exeuted �=for (i = 0; i < N; i++)print(A[i℄);endoend(b) Constant propagation eliminates synhronization.Figure 2.7: Constant propagation problems in an expliitly parallel program.2.4 Control-Flow AnalysisThe goal of ontrol-ow analysis is to disover the ontrol struture of theprogram. This task might seem trivial when one examines the original soureode, but reall that the ompiler does not deal with the original ode.Depending on the intermediate representation used, when the ode is onvertedto its intermediate form, all the high-level ontrol onstruts like loops andonditionals are sometimes lost. Even if the ontrol information was preserved,programmers an still write obfusated ode that hide the high-level ontrolstrutures of the program.The ontrol-ow of the program is often represented in a graphial formalled the ontrol-ow graph. The nodes of the graph, alled basi bloks,represent a non-branhing sequene of statements (i.e., exeution starts withthe �rst instrution in the group and it only leaves the blok after the lastinstrution has been exeuted). The edges of the graph represent possibleexeution paths in the ow of ontrol (i.e., onditionals, loops, et.).2.4.1 The Control-Flow GraphThe ontrol-ow graph (also known as the owgraph) is a graphialrepresentation of the ontrol struture of the program. Its nodes represent



2.4 Control-Flow Analysis 25omputations and its edges represent the ow of ontrol. The nodes of aowgraph are alled basi bloks.De�nition 2.1 (Basi blok) A basi blok is a sequene of onseutivestatements in whih ow of ontrol enters at the beginning and leaves at theend without any possibility of branhing exept at the end (Aho et al. 1986).2Formally, a ontrol-ow graph is de�ned as a direted graph G =hN;E; begin; endi suh that N is the set of basi bloks (or nodes), E � N�Nis the set of ontrol-ow edges, begin is the unique entry point to the graph andend is the unique exit point from the graph. An edge between basi bloks nand m is denoted n! m. We say that node n is the immediate predeessor ofm and node m is the immediate suessor of n. Similarly we de�ne the sets ofSu(n) and Pred(n) to be the sets of immediate suessors and predeessorsof n respetively.
a = f();b = g(); = h();if (a + b < ) fd = ;g else fd = a + b; = a � b;g

begin

a = f();
b = g();
c = h();

if (a + b < c)

d = c;

then

d = a + b;
c = a * b;

else

endif

endFigure 2.8: A sequential program and its ontrol-ow graph.



26 BakgroundFigure 2.8 shows a sample owgraph for a sequential program. While thereis little variation in the onventions used to represent owgraphs for sequentialprograms, there does not exist a unique notation to represent owgraphsfor parallel programs. The di�erent representations share ommonalities,but some inlude extra edges to represent synhronization and have di�erentnotions of basi bloks.Parallel Flow GraphSrinivasan and Grunwald introdue the Parallel Flow Graph (PFG) (Grunwaldand Srinivasan 1993). In their language model synhronization is spei�edusing Post and Wait statements and parallel setions in the ode are spei�edusing obegin/oend or parallel setions/end parallel setions.The nodes of a PFG represent extended basi bloks. An extended basiblok is a basi blok with at most one Wait statement at the start of the blokand at most one Post statement at the end of the blok. Statements demarkingparallel setions are denoted by obegin and oend nodes in the graph. Thereare three types of edges: a sequential ontrol-ow edge represents sequentialow of ontrol within sequential parts of the program. A parallel ontrol-owedge represents parallel ontrol ow. It onnets a obegin node with itsimmediate suessors and a oend node with its immediate predeessors. Asynhronization edge is a direted edge between a node ontaining a Poststatement to a node ontaining the orresponding Wait statement.Extended Flow GraphSrinivasan, Hook and Wolfe introdue the Extended Flow Graph (EFG)(Srinivasan et al. 1993). Parallel ativity is spei�ed using ParallelSetions. Eah setion within a Parallel Setions onstrut has its ownidentifying name. The only synhronization supported is the Wait(se) lausewhih an only be used at the beginning of a setion. The Wait(se) ommandauses the invoking setion to wait until setion se has �nished.The EFG is omposed of two separate abstrations; the Parallel ControlFlow Graph (PCFG) whih represents the sequential setions of the odeand the Parallel Preedene Graph whih represents the parallel setions.



2.4 Control-Flow Analysis 27The PCFG is a standard ontrol-ow graph with one speial node alledsupernode that represents an entire Parallel Setions onstrut. Eahsetion within a Parallel Setions is a node of a Parallel Preedene Graph.Synhronization between parallel setions is represented with direted edgesbetween the orresponding nodes in the PPG. In turn, eah node of the PPGis expanded into a PCFG representing the ode inside the setion.Conurrent Control Flow GraphLee, Midki� and Padua introdue the Conurrent Control Flow Graph (CCFG)(Lee et al. 1997b). It is similar to the Parallel Flow Graph but sinethe memory model that they use allows onurrent modi�ations to sharedmemory loations, the CCFG also ontains onit edges between basi bloksthat ontain oniting memory referenes (i.e., at least one of the basi bloksis attempting to modify that loation).The nodes of a CCFG are alled onurrent basi bloks and are exatly likethe extended basi bloks of a PFG. The owgraph representation used in thisthesis is based on the CCFG. We will desribe CCFGs in detail in Chapter 3.2.4.2 Common Graph ConeptsIn this setion we de�ne several relations between nodes in a ontrol-ow graphthat are ommonly used by the analysis algorithms. In what follows we assumea ontrol-ow graph G = hN;E;EntryG;ExitGi and two nodes x; y 2 G.De�nition 2.2 (Dominane) Node x dominates node y, denoted x DOM y,if every ontrol path from EntryG to y ontains x. Node x is in the setof dominators of y, denoted x 2 DOM (y). Node y is in the set of nodesdominated by x, denoted y 2 DOM�1(x). Note that every node alwaysdominates itself. 2De�nition 2.3 (Strit dominane) Node x stritly dominates node y,denoted x SDOM y, if x DOM y and x 6= y. Node x is in the set ofstrit dominators of y, denoted x 2 SDOM (y). Node y is in the set of nodesstritly dominated by x, denoted y 2 SDOM�1(x). 2



28 BakgroundDe�nition 2.4 (Post-dominane) Node y post-dominates node x, denotedy PDOM x, if every ontrol path from x to ExitG ontains y. Node y is in theset of post-dominators of x, denoted y 2 PDOM (x). Node x is in the set ofnodes post-dominated by y, denoted x 2 PDOM�1(y). Note that every nodealways post-dominates itself. 2De�nition 2.5 (Strit post-dominane) Node y stritly post-dominatesnode x, denoted y SPDOM x, if y PDOM x and x 6= y. Node y is in theset of strit post-dominators of x, denoted y 2 SPDOM (x). Node x is in theset of nodes stritly post-dominated by y, denoted x 2 SPDOM�1(y). 2De�nition 2.6 (Dominane frontier) The dominane frontier for node x,denoted DF (x) is the set of all nodes y in the owgraph suh that x dominatesan immediate predeessor of y but it does not dominate y. 2De�nition 2.7 (Immediate dominator) If x DOM y, we say that node xis the immediate dominator of node y, denoted x IDOM y, if x is the lastdominator of y on any path from the entry node to y. 2De�nition 2.8 (Dominator tree) The dominator tree is de�ned reursivelyusing the dominane relation between the nodes in the graph. The root of thedominator tree is the entry node to the graph. The hildren of a node n in thedominator tree are the nodes immediately dominated by n in the owgraph.2We illustrate these onepts using the owgraph shown in Figure 2.9(a).The entry node (node 0) dominates every node in the graph. Consequently itsdominane frontier is empty. Nodes 1; 2; 6 and 7 post-dominate node 0 beauseevery path 0 ! 7 must go through those nodes. The dominane frontier fornode 4 is node 6 beause node 4 dominates an immediate predeessor of node6 (i.e., node 5), but it does not dominate node 6 itself (i.e., there is a pathfrom 0 to 6 that does not inlude node 4). Using the dominane relation onthe nodes of the graph we obtain the dominane tree shown in Figure 2.9(b).The tables in Figures 2.10 and 2.11 show the dominane and post-dominanerelations for the nodes in the example owgraph.
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5 7(b) Dominator tree.Figure 2.9: An example owgraph and its dominator tree.2.5 Data-Flow AnalysisA data-ow analyzer explores all the possible exeutions of the program todetermine how it transforms the data it manipulates. A fundamental propertyof data-ow analysis is that it must guarantee that the information it gathers isvalid for every possible exeution of the program. Otherwise, deisions basedon this analysis ould yield erroneous results.This setion desribes some of the more ommon data-ow analyses foundin optimizing ompilers. Two popular data-ow analysis frameworks aredisussed: iterative data-ow analysis and the Stati Single Assignment form.We also survey proposed analysis tehniques for expliitly parallel languagesbased on these data-ow frameworks.



30 BakgroundNode (n) DOM (n) DOM�1(n) DF (n)0 f0g f0; 1; 2; 3; 4; 5; 6; 7g ;1 f0; 1g f1; 2; 3; 4; 5; 6; 7g ;2 f0; 1; 2g f2; 3; 4; 5; 6; 7g ;3 f0; 1; 2; 3g f3g f6g4 f0; 1; 2; 4g f4; 5g f6g5 f0; 1; 2; 4; 5g f5g f6g6 f0; 1; 2; 6g f6g ;7 f0; 1; 2; 6; 7g f7g ;Figure 2.10: Dominane sets and dominane frontiers for Figure 2.9.Node (n) PDOM (n) PDOM�1(n)0 f0; 1; 2; 6; 7g f0g1 f1; 2; 6; 7g f0; 1g2 f2; 6; 7g f0; 1; 2g3 f3; 6; 7g f3g4 f4; 5; 6; 7g f4g5 f5; 6; 7g f4; 5g6 f6; 7g f0; 1; 2; 3; 4; 5; 6g7 f7g f0; 1; 2; 3; 4; 5; 6; 7gFigure 2.11: Post-dominane sets for the owgraph in Figure 2.9.2.5.1 Common Data-Flow ProblemsData-ow problems model properties about various program objets at spei�points in the program. The information gathered when solving a spei�problem is then used by the optimizer to make the atual transformations.Reahing De�nitionsA variable v is de�ned (denoted Dv) every time a new value is assigned to it.We say that a de�nition Dv of v reahes a ertain point p in the program ifthere exists a path r between Dv and p suh that r ontains no de�nitions to v.For example, the program in Figure 2.12 ontains three de�nitions of variablea, namely D1a at line 1, D2a at line 4 and D3a at line 7. Reahing de�nitionanalysis on this program should determine that de�nition D1a reahes the useof a at lines 2, 4 and 6 but it does not reah line 8 beause of de�nition D3a atline 7.
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1: a = 4; =� Da1 �=2: b = a + 3; =� Ua1 �=3: if (b > 10) f4: a = b � 2; =� Da2 �=5: g6: print a; =� Ua2 �=7: a = a + 10; =� Da3; Ua3 �=8: print a; =� Ua4 �=

Entry

a = 4;
b = a + 3;

if (b > 10)

a = b * 2;

then

endif

print a;
a = a + 10;

print a;

ExitFigure 2.12: Example of the reahing de�nitions problem.
Def reahed-usesD1a fU1a ; U2a ; U3agD2a fU2a ; U3agD3a fU4ag(a) Reahed uses for eah de�nition of a.

Use reahing-defsU1a fD1agU2a fD1a; D2agU3a fD1a; D2agU4a fD3ag(b) Reahing de�nitions for eah use of a.Figure 2.13: Reahing de�nitions and reahed uses sets for the program in Figure2.12.



32 BakgroundDe�nition 2.9 (Use-def hains) Reahing de�nition information is usuallystored in use-def hains or ud-hains whih are lists of de�nitions reahing apartiular use of a variable. 2Use-def hains for variable a are shown as dashed arrows in the ontrol-owgraph for the program (Figure 2.12). Other data strutures of interest inludereahed-uses and reahing-defs sets whih are de�ned as follows:De�nition 2.10 (Reahed-uses set) Given a de�nition Dv for variable v,the set reahed-uses for Dv is the set of all uses of v that are reahed by Dv. 2De�nition 2.11 (Reahing-defs) Given a use Uv of variable v, the setreahing-defs for Uv is the set of all de�nitions for v that an reah Uv. 2Note that in olleting reahing de�nition information for this program wehave said that de�nitionD1a reahes line 6. This might appear ounter-intuitivebeause there appears to be another de�nition in the path from line 1 to line6, namely de�nition D2a at line 4. However, de�nition at line 4 is not alwaysexeuted therefore the onservatively orret deision is to assume that bothde�nitions, D1a and D2a, reah line 6. Reahing de�nitions and reahed usessets for variable a are shown in Figure 2.13.Live VariablesA variable v is live at a ertain point p in the program if the value of v atp ould be used along some path starting at p. Otherwise, we say that v isdead at p. Going bak to the example program in Figure 2.12, the value of bomputed at line 2 is live at line 3 but it beomes dead at line 5 beause it isnot used anymore.Available ExpressionsAn expression a + b is available at a point p in the program if all the pathsfrom the entry node to point p in the graph ompute a + b. The notionof availability is used in optimizations like redundany elimination. If anexpression is repeatedly omputed without its operands being modi�ed, thenredundant omputations an be removed.



2.5 Data-Flow Analysis 332.5.2 Iterative Data-Flow AnalysisIterative data-ow analysis is the traditional method for solving data-owproblems. Data-ow information is olleted in sets that represent theinformation needed by eah partiular problem. Traditionally, optimizingtransformations are phrased in terms of data-ow problems. For instane, inthe ase of onstant propagation eah element of the data-ow set orrespondsto a di�erent variable in the program.The analysis is performed by setting up and solving systems of equations,known as data-ow equations, that desribe the loal e�ets that eah basiblok has on the data-ow sets. The propagation of data-ow properties isdone loally to eah basi blok and the results are aggregated over all thebasi bloks to determine global properties of the program. Eah data-owproblem must de�ne appropriate data-ow sets and equations needed to gatherthe required information.Data-ow information is typially stored in four main sets: in is the setrepresenting information entering the blok, out is the information that exitsthe blok, kill is the information invalidated (or killed) by the blok and genis the information generated loally by the blok. In general, the equationsare set up so that they follow the natural ow of ontrol of the program. Inother words, the set out is de�ned in terms of in, gen and kill. These areknown as forward data-ow problems. But for some other problems, knownas bakward data-ow problems, the data-ow equations and their assoiatediterations proeed bakwards.One set up, data-ow equations are solved iteratively from an initial setof values. The most ommon implementation of iterative data-ow analyzersuses bit-vetors to represent the sets in the data-ow equations. This is whythis is sometimes alled bit-vetor analysis. More information about thesetehniques an be found in (Aho et al. 1986) and (Muhnik 1997).Iterative Data-Flow Analysis for Expliitly Parallel ProgramsGrunwald and Srinivasan developed data-ow equations to ompute reahingde�nition information on expliitly parallel programs with obegin/oend



34 Bakgroundparallel setions (Grunwald and Srinivasan 1993). They assume a weakmemory onsisteny model in whih parallel setions are required to be dataindependent; memory updates are done at spei� points in the program usingopy-in/opy-out semantis. They support event-based synhronizationsynhronization using set and wait operations.Knoop, Ste�en and Vollmer developed a bit-vetor analysis framework forparallel programs with interleaving memory semantis (Knoop et al. 1996).They show how to adapt standard optimization algorithms to their framework.However, they do not inorporate synhronization operations in their analysis.They use this framework to adapt lazy ode motion optimization whih is aredundany elimination method.2.5.3 Stati Single Assignment FormStati Single Assignment (SSA) is a relatively new intermediate representationthat is beoming inreasingly popular beause it leads to eÆient algorithmiimplementations of data-ow analyzers and optimizing transformations(Cytron et al. 1991). The SSA form is based on the premise that programvariables are only assigned one. Multiple assignments to the same variablereate new versions of the variable. In essene, the SSA form makes all theuse-def hains expliit in the program, beause every use of a variable is reahedby exatly one de�nition.Atual programs are seldom in SSA form initially beause variables tend tobe assigned multiple times; not just one. An SSA-based ompiler modi�es theprogram representation so that every time a variable is assigned in the ode, anew version of the variable is reated. Di�erent versions of the same variableare distinguished by subsripting the variable name with its version number.Variables used in the right-hand side of expressions are renamed so that theirversion number mathes that of the most reent assignment. Notie that it isnot always possible to statially determine what is the most reent assignmentfor a given use. These ambiguities are the result of branhes and loops in theprogram ow of ontrol. To solve this ambiguity, the SSA form introduesthe so-alled � funtions. � funtions merge multiple inoming assignments togenerate a new de�nition; they are plaed at points in the program where the



2.5 Data-Flow Analysis 351: a = 42: b = a + 33: if (a > 3) f4: print a5: a = a + 36: g7:8: b = 59: print a + b(a) Original program.
1: a1 = 42: b1 = a1 + 33: if (a1 > 3) f4: print a15: a2 = a1 + 36: g7: a3 = �(a1, a2)8: b2 = 59: print a3 + b2(b) Program in SSA form.Figure 2.14: An example sequential program and its SSA form.ow of ontrol auses more than one assignment to be available (essentially, a� funtions are needed at dominane frontier nodes).Figure 2.14 shows a sequential program and its orresponding SSA form(Figures 2.14(a) and 2.14(b) respetively). Notie that every assignmentin the program introdues a new version number for the orrespondingvariable. Every time a variable is used, its name is replaed with the versionorresponding to the most reent assignment for the variable. Now onsiderthe use of variable a in line 9. There are two assignments to a that ould reahline 9; the assignment at line 1 and the assignment inside the if statementat line 5. To solve this ambiguity, SSA introdues a � funtion for a whihmerges both assignments to reate a new version of a (a3). The semantis ofthe � funtion ditate that a3 will take the value from one of the funtion'sarguments. The spei� argument returned by the � funtion is not knownuntil runtime.Stati Single Assignment for Expliitly Parallel ProgramsSrinivasan, Hook and Wolfe developed a Stati Single Assignment (SSA)framework for expliitly parallel programs (Srinivasan et al. 1993). Theiranalysis framework works on the Parallel Setions model (page 26). Twodi�erent merge operators are used; � and  funtions. A � funtion serves thesame purpose as in sequential programs, it is plaed at nodes that representmerge points in the program.  funtions model multiple parallel updates;they are plaed at synhronization points in the program if two or more



36 Bakgroundonurrent setions modify the same variable.Lee, Midki� and Padua propose a Conurrent SSA framework (CSSA) forexpliitly parallel programs and interleaving memory semantis (Lee et al.1997b). Our work builds on the CSSA form; a more detailed desription anbe found in Chapter 4. Lee et al. also adapt some sequential optimizingtransformations to the parallel ase using CSSA (Lee et al. 1998; Lee et al.1999).2.5.4 Other Approahes to Optimizing ExpliitlyParallel ProgramsShasha and Snir proposed an analysis tehnique alled yle detetion thatallows re-ordering of memory referenes in a program to inrease onurrenywhile maintaining the sequential onsisteny ditated by the ode (Shasha andSnir 1988).Krishnamurthy and Yelik extended yle detetion analysis to inorporateadditional information from synhronization in the program (Krishnamurthyand Yelik 1996). Although their work supports post/wait, barrier andmutual exlusion synhronization, they only fous on optimizing remotememory referenes on a spei� lass of expliitly parallel programs.Reent researh e�orts in the area have foused on the Java language. SineJava is a multi-threaded language, its lass libraries must support onurrentaesses by multiple threads of exeution. This is supported at the languagelevel using synhronized methods, also known asmonitors, whih are a variationof the traditional mutual exlusion setion. An important aspet of optimizingJava programs is reduing the overhead imposed by the thread-safe nature ofJava's libraries. Diniz, Rinard and Whaley have developed several tehniquesto redue the impat of synhronization in Java programs (Whaley and Rinard1999; Diniz and Rinard 1998).



2.6 Summary 372.6 SummaryModern ompilers are organized around two major phases: analysis andsynthesis. During analysis, the ompiler extrats detailed information aboutthe program. In partiular the analysis phase disovers how the program isstrutured and how it manipulates its data. The optimization phase usesthis information to transform the original program into an equivalent butmore eÆient version. In this ontext, eÆieny is usually assoiated withperformane; we want to produe ode that exeutes as fast as possible on thetarget arhiteture. Finally, the synthesis phase generates objet ode thatan be exeuted on the target mahine.While analysis and optimization tehniques for sequential languages arewell-known, these tehniques annot be used in expliitly parallel programsthat share memory. Conurrent exeution, data sharing and synhronizationoperations a�et the ontrol and data ow of the program in ways thatthe sequential tehniques are unable to handle. There have been reentadvanes in developing analysis frameworks for expliitly parallel programsand adapting traditional optimization tehniques suh as onstant propagationand dead-ode elimination to the parallel ase. However, there has beenless emphasis on optimizing the parallel and synhronization struture of theprogram itself.In the following hapters we introdue novel analysis tehniques thatinorporate both the parallel and synhronization struture of the program intoa uni�ed framework for analyzing and optimizing expliitly parallel programs.



38 Bakground



Chapter 3Analyzing Expliitly ParallelProgramsIn an expliitly parallel program with shared memory semantis, the useof a shared variable v an be reahed by any de�nition of v in anotheronurrent thread. However, synhronization onstruts may prevent somevariable de�nitions from being visible to other threads. For example, onsiderthe program in Figure 3.1. If the ompiler ignores the mutual exlusionregions reated by the lok operations, it will onlude that the de�nitionfor variable a in thread T0 an reah both uses of a in thread T1. However,the synhronization used in the program serializes the referenes to a so thatthe assignment to a in T0 annot reah the seond use of a in T1. Therefore,the all to funtion g() in T1 will always be exeuted with a = 3.This hapter introdues the foundations for the analysis frameworkdeveloped in Chapter 4. We start with a desription of the Conurrent ControlFlow Graph (CCFG) (Setion 3.1). Setion 3.2 desribes the proess used tobuild the CCFG for a given program. We then use the CCFG to analyzethe synhronization patterns in the program to gather non-onurrenyinformation. As observed in Figure 3.1, synhronization an redue datadependenies aross onurrent threads in the program. This redution ofdata dependenies may allow more aggressive optimization in subsequenttransformation passes. In this work we support three types of synhronizationoperations: events, mutual exlusion and barriers (Setion 3.3).39



40 Analyzing Expliitly Parallel Programsobegin =� Begin onurrent exeution �=T0: begin =� Launh thread T0 �=if (b > 0) fb = 3 = a;glok(L);a = a + b;unlok(L);endT1: begin =� Launh thread T1 �=f(a);lok(L);a = 3; =� This kills the assignment to a in T0 �=b = b + g(a); =� Variable a is always 3 �=unlok(L);endoendFigure 3.1: Mutual exlusion an redue data dependenies aross threads in aparallel program.3.1 Conurrent Control Flow GraphA Conurrent Control Flow Graph (CCFG) (Lee et al. 1997b) is similar to itssequential ounterpart, the Control Flow Graph (Aho et al. 1986). It representsthe ontrol struture of a parallel program inluding the parallel onstrutsobegin/oend and parloop. In addition, a CCFG ontains edges to representmemory onits aross onurrent threads and event synhronization. Weextend the CCFG so that eah lok, unlok and barrier operation isrepresented by a separate node.De�nition 3.1 (Variable referenes) Variables are referened every timetheir values are read or modi�ed by the program. Read referenes are alsoknown as uses, while write referenes are also known as de�nitions. 2De�nition 3.2 (Shared variable referene onits) Two variablereferenes in di�erent threads onit if (a) both referene the same variable,(b) one of them is a write referene, and, () the threads an exeuteonurrently. 2De�nition 3.3 (Conurrent basi blok) A onurrent basi blok is abasi blok (Aho et al. 1986) with the following additional properties:1. Only the �rst statement of the blok an be a wait statement or ontain



3.1 Conurrent Control Flow Graph 41a use of a oniting variable.2. Only the last statement of the blok an be a set statement or ontaina de�nition of a oniting variable.3. Synhronization operations lok, unlok and barrier are plaed intheir own blok.4. Parallel ontrol instrutions obegin, oend and parloop are plaed intheir own blok. 2De�nition 3.4 (Conits between onurrent basi bloks) Twoonurrent basi bloks a and b in di�erent threads onit if they anexeute onurrently and ontain oniting variable referenes. 2De�nition 3.5 (Conurrent Control Flow Graph (CCFG))A Conurrent Control Flow Graph (CCFG) is a direted graphG = hN;E;EntryG;ExitGi suh that:1. N is the set of nodes in the graph. Eah node in N orresponds to aonurrent basi blok.2. EntryG and ExitG are the unique entry and exit points of the program.3. E = Ef SEsSE is the set of edges in the graph suh that:(a) Ef is the set of ontrol ow edges. These edges have the samemeaning as in a sequential Control Flow Graph.(b) Es is the set of edges representing event synhronization. These aredireted edges that join related set and wait nodes in onurrentthreads.() E is the set of onit edges. Conit edges are bi-diretional edgesthat join any two onurrent basi bloks that onit. There is alabel on a onit edge that represents the memory operations doneat eah end of the edge. There are two kinds of onits:i. def-use: one of the nodes writes to the shared variable andthe other one reads from it. These onits are labeled DU(v),where v is the name of the variable being aessed.



42 Analyzing Expliitly Parallel Programsii. def-def : both nodes write to the shared variable. Theseonits are labeled DD(v), where v is the name of the variablebeing modi�ed. 2De�nition 3.6 (Entry and exit nodes) Given a thread T , beginT is theentry node for T , endT is the exit node for T , obeginT is the obegin nodefor the innermost obegin/oend struture ontaining T , and oendT is theorresponding oend node for obeginT . 2De�nition 3.7 (Control path) Given two nodes x and y in a CCFG G, apath from x to y is a ontrol path if it only ontains edges in Ef . 23.1.1 Graphial Representation of a CCFGThis setion desribes the graphial notation we use to represent CCFGs.Figures 3.2(a) and 3.2(b) show the representation for obegin/oend andparloop onstruts respetively. Figure 3.2() illustrate the representation ofevent synhronization edges.Graph nodes are represented using three di�erent shapes. Ellipses represententry and exit nodes for the graph, loops, parallel strutures (obegin/oendand parloop) and nested sopes in the soure program. Header nodes foronditional statements are represented using diamonds. Finally, retanglesrepresent onurrent basi bloks. Control ow edges are represented usingsolid lines. Conit edges are represented with dotted lines. Dashed linesrepresent event synhronization edges.Eah obegin node has one outgoing ontrol edge for eah hild thread itlaunhes. Graphially, eah thread is represented as a sub-graph rooted at theobegin node (Figure 3.2(a)). All the hildren threads join at the oend node.Conit edges always join nodes in threads that share at least one ommonobegin node.We experimented with two di�erent ways of representing parallel loops.Sine a parallel loop is not really an iterative ontrol struture, we initiallyrepresented parallel loops as a obegin/oend with one thread. Eah nodeinside the parloop struture had the property of being onurrent with itself.Therefore, the algorithms and data strutures have to support self-referening
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end() Event synhronization edges.Figure 3.2: Representation of parallel onstruts and synhronization in a CCFG.



44 Analyzing Expliitly Parallel Programsonit edges. This is partiularly important in building the CSSAME formfor the program (Chapter 4).Although this representation was enough for our purposes, it an beonfusing to visualize and it does not permit ertain analyses used in theliterature (like yle detetion (Shasha and Snir 1988)). The other methodto represent parallel loops is to repliate the body of the loop and onsiderit like a obegin/oend struture with two threads: the original and thereplia (Figure 3.2(b)). This representation is idential to the obegin/oendrepresentation, onit edges join distint nodes (there are no self-refereningonits) and it failitates the design of some of the analysis algorithmsproposed in the literature (Krishnamurthy and Yelik 1996; Lee et al. 1999).From an implementation point of view, this representation has the drawbak ofpotentially doubling the memory requirements. In subsequent setions we usethis representation to simplify the explanation of some algorithms. However,in our urrent implementation we do not reate replias of parallel loop bodies.Event synhronization operations (set and wait) are represented in theowgraph using direted edges from set nodes to the orresponding wait node.Notie that set and wait are the only synhronization operations that reateadditional edges in the CCFG. This is used during synhronization analysisto ompute guaranteed preedene ordering (Setion 3.3.3). Mutual exlusionand barrier synhronization are supported but no additional edges are requiredby the synhronization analysis phase. An example of an expliitly parallelprogram and its CCFG are illustrated in Figures 3.3 and 3.4.3.2 Building the CCFGAlgorithm 3.1 builds the onurrent ontrol ow graph for an expliitly parallelprogram P . It onsists of three phases: (a) plaement of nodes and ontroledges, (b) plaement of onit edges and () plaement of synhronizationedges.Graph nodes and ontrol edges are reated using a slightly modi�ed versionof a standard algorithm to build ontrol ow graphs (Aho et al. 1986). Themodi�ation allows the original algorithm to reognize the obegin/oend



3.2 Building the CCFG 45a = 0;b = 0;obeginT0: beginlok(L);a = 5;b = a + 3;if (b > 4) fa = a + b;gx = a;unlok(L);endT1: beginlok(L);a = b + 6;y = a;unlok(L);endoendprint(x, y);Figure 3.3: A task parallel program.and parloop onstruts. Basi bloks are built using a linear san of all thestatements in the program. This step builds basi bloks, not onurrent basibloks. Subsequent phases of the algorithm will split the basi bloks to reateonurrent basi bloks, and inorporate onit and synhronization edges tothe base graph.Algorithm 3.1 Build a Conurrent Control Flow Graph.input: An expliitly parallel program Poutput: The onurrent ontrol ow graph G = hN;E;EntryG;ExitGi for P1: Build maximal basi bloks and ontrol edges (Aho et al. 1986).2: Add onit edges (Algorithm 3.3).3: Add synhronization edges (Algorithm 3.4).One the basi struture of the owgraph has been built, onit andsynhronization edges are added to the graph. To add onit edges, thegraph is traversed looking for nodes that an exeute onurrently and aessthe same memory loation in a oniting manner. Algorithm 3.2 is used todetermine whether two arbitrary nodes in the graph an exeute onurrently.The algorithm assumes the existene of two data strutures:Thread(n) is the thread that ontains node n. Threads are assumed to have
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begin

a = 0;
b = 0;

cobegin

begin begin

lock(L);

a = 5;
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if (b > 4) {
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endif
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end
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print(y);
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Control flow edge

Conflict edge    

Figure 3.4: Conurrent Control Flow Graph for the program in Figure 3.3.



3.2 Building the CCFG 47a unique id omputed automatially by the ompiler. The sequentialparts of the program are always exeuted by thread Tseq .ParAnestors(n) is the set of obegin and parloop nodes that an bereahed in a bakwards traversal of the dominator tree from node nto the entry node of the CCFG.Algorithm 3.2 Conurreny relation.input: Two onurrent basi bloks a; b 2 G = hN;E;EntryG;ExitGi.output: true if a and b an exeute onurrently, false otherwise.1: funtion on(a; b)2: /* If a or b are in a sequential region, they annot be onurrent. */3: if Thread(a) = Tseq _ Thread (b) = Tseq then4: return false5: end if6:7: /* If a and b have a ommon parloop node in their ParAnestors set, they are onurrent. */8: if 9n 2 ParAnestors(a) s.t. n = parloop ^ n 2 ParAnestors(b) then9: return true10: end if11:12: /* If a and b have a ommon obegin node in their */13: /* ParAnestors set and they are on di�erent threads */14: /* and they are not the same node, then they are onurrent. */15: if 9n 2 ParAnestors(a) s.t. n = obegin ^Thread(a) 6= Thread(b) ^ a 6= b then16: return true17: end if18:19: /* None of the previous tests sueeded. The nodes are not onurrent. */20: return falseConurrent nodes with memory onits are marked as oniting and splitup to reate onurrent basi bloks aording to the rules given in De�nition3.3. Conit edges are reated to join the oniting nodes (Algorithm 3.3).Notie that at this stage we do not use the non-onurreny information thatan be gathered from the synhronization strutures of the program. As wewill disuss in Setion 3.3, it is generally more onvenient for synhronizationanalysis to have the basi CCFG already built. In pratie, however, thisanalysis ould be performed in onjuntion with synhronization analysis.When implementing the ompiler, we disovered that it is easier to buildonurrent basi bloks from the outset than it is to build maximal basi bloksand then split them up. The main reason is that when splitting basi bloksone must take are of boundary onditions so that no empty basi bloks are



48 Analyzing Expliitly Parallel Programsreated. What we implemented is a two pass algorithm that will �rst santhe program and determine onit lists at the level of instrutions. Duringthe onurrent basi blok building pass, the onit list in eah instrutionis heked to see if the instrution should be added to the urrent blok or anew blok be reated. This is more memory intensive, but it simpli�ed ourimplementation. For larity of presentation we have deided to desribe themas two separate phases.Algorithm 3.3 Add onit edges.input: An inomplete onurrent ontrol ow graph G = hN;E;EntryG;ExitGi with no onitedges.output: The CCFG G given as input with onit edges E added.1: E  ;2: foreah a 2 N do3: foreah b 2 N do4: /* Call Algorithm 3.2 (on) to determine whether a and b are onurrent */5: if (on(a; b) = true) ^ (a onits with b) then6: E  ESf(a; b)g7: end if8: end for9: end for10: foreah (a; b) 2 E do11: Split bloks a and b to omply with de�nition 3.3.12: end forThe last step in the onstrution of the CCFG is to add diretedsynhronization edges for related set and wait operations in the program(Algorithm 3.4). For every pair of nodes set and wait the algorithm heksif they an exeute onurrently and operate on the same synhronizationvariable. If so, a direted edge from the set node to the wait node is added.Algorithm 3.4 Add synhronization edges.input: An inomplete onurrent ontrol ow graph G = hN;E;EntryG;ExitGi with nosynhronization edges.output: The graph G with synhronization edges Es added.1: Es  ;2: /* For every event variable v add an edge from eah set(v) to every wait(v). */3: foreah a 2 N do4: foreah b 2 N do5: if on(a; b) = true then6: if (a = set(v)) ^ (b = wait(v)) then7: Es  EsS f(a; b)g8: end if9: end if10: end for11: end for



3.3 Synhronization Analysis 493.3 Synhronization AnalysisParallel programs use synhronization to order the aess to shared databy the di�erent threads in the program. Typially, synhronizationoperations introdue non-onurreny among otherwise onurrent regions ofthe program. The goal of synhronization analysis is to determine whih nodesin onurrent setions of the program will not exeute onurrently. Thisinformation is used to disregard memory onits from the CCFG that annotour at runtime due to synhronization restritions. Reduing the number ofmemory onits gives more freedom to the ompiler when applying optimizingtransformations. Furthermore, information about synhronization semantisallows the development of tehniques to validate the synhronization strutureof the program.In this work we support three types of synhronization: mutual exlusion,events and barriers. Setion 3.3.1 develops new tehniques to analyze mutualexlusion synhronization patterns in parallel programs. Tehniques forstatially validating mutual exlusion are disussed in Setion 3.3.2. Weuse existing synhronization analysis tehniques to gather non-onurrenyinformation for set/wait and barrier operations (Jeremiassen and Eggers1994; Lee et al. 1997b) (Setions 3.3.3 and 3.3.4).3.3.1 Mutex SynhronizationGiven an arbitrary statement s in a program and a lok variable L, a mutexstruture analyzer should be able to answer the question \does s exeute underthe protetion of lok L?". The answer to that question should be one ofalways, never or sometimes.In the ontext of this work, the answers never and sometimes areequivalent. If the ompiler annot assert that statement s will always beproteted by L at runtime then the onservatively orret deision is to assumethat s is never proteted by L. Furthermore, if the analysis determines that sis sometimes proteted and sometimes not, this information ould be used towarn the user about an anomalous loking pattern.



50 Analyzing Expliitly Parallel ProgramsMotivationExisting work on mutual exlusion synhronization is based on a struturalde�nition of mutex bodies (Krishnamurthy and Yelik 1996; Mastiola andRyder 1993; Novillo et al. 1998). A mutex body is indiated by a pair of lokand unlok nodes. All the graph nodes dominated by the lok node andpost-dominated by the unlok node are part of the mutex body. Althoughorret, this notion of mutex body fails to identify some valid loking patternspresent in some programs (i.e., the mutex body reognizer responds never toooften).Initially, we had only onsidered traditional single-entry, single-exit mutexbodies (Novillo et al. 1998) but we soon disovered that some programs ontainmutex bodies that do not �t that struture. For instane, onsider the odefragment in Figure 3.5. This routine is part of a quiksort algorithm taken fromthe sample appliation programs bundled with the TreadMarks DSM system(Keleher et al. 1994). This routine grabs a piee of work to be done from ashared stak. We are interested in the mutual exlusion setions reated bythe lok variable TSL.Notie that a strutural de�nition of mutex bodies will identify no mutexbodies in this funtion. The only lok/unlok pair that might qualify asa mutex body are the statements L1 and U3 (lines 6 and 48 respetively).However, the presene of other lok and unlok operations in between thesestatements fores the ompiler to disregard this pair as a valid mutex body.Despite the irregular loking pattern present in this ode fragment, it ispossible to identify setions that will always exeute under the protetion of theTSL variable. A loser inspetion of the ode reveals that the only statementthat exeutes without lok protetion is the busy wait statement S1 (line 31).Informally, we modify every lok or unlok node for lok variable L sothat they ontain a de�nition and a use for L. All the other nodes in the graphare modi�ed to ontain a use for lok variable L. To determine whether ornot a ow graph node n is proteted by lok L we ompute reahing de�nitioninformation for the use of L at n. If at least one of the reahing de�nitionsomes from an unlok node or if there are no reahing de�nitions, then noden is not proteted by lok L.
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1 #de�ne NPROCS 52 #de�ne DONE �134 int PopWork(TaskElement �task)5 f6 L1 ) lok(TSL);78 while (TaskStakTop == 0) f9 if (++NumWaiting == NPROCS) f10 =� All the threads are waiting for work.11 � We are done.12 �=13 lok(pause lok);14 pause ag = 1;15 unlok(pause lok);1617 U1 ) unlok(TSL);18 return DONE;19 g else f20 if (NumWaiting == 1) f21 lok(pause lok);22 pause ag = 0;23 unlok(pause lok);24 g2526 U2 ) unlok(TSL);2728 =� Wait for work. This is the only29 � statement not proteted by TSL.30 �=31 S1 ) while (!pause ag) ; =� busy-wait �=3233 L2 ) lok(TSL);3435 if (NumWaiting == NPROCS) f36 U3 ) unlok(TSL);37 return DONE;38 g39 ��NumWaiting;40 g41 g =� while task-stak empty �=4243 =� Pop a piee of work from the stak �=44 TaskStakTop��;45 task�>left = TaskStak[TaskStakTop℄.left;46 task�>right = TaskStak[TaskStakTop℄.right;4748 U3 ) unlok(TSL);4950 return 0;51 gFigure 3.5: Loking pattern in funtion PopWork().
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0: Entry

2: while (...)

3: if (...)

16: endwhile

4: ... 7: ...

6: return DONE;

Exit

9: while (!pause_flag) ;

11: if (...)

13: return DONE;

17: ...

PSfrag replaements

1: lok(TSL1);TSL2 = �(TSL1, TSL6)

TSL8 = �(TSL1, TSL6)

5: unlok(TSL4);

19: TSL9 = �(TSL4, TSL6, TSL7, TSL8)

8: unlok(TSL5);
10: lok(TSL6);

12: unlok(TSL7);

18: unlok(TSL8);
Figure 3.6: Partial SSA form for funtion PopWork().



3.3 Synhronization Analysis 53The proess is illustrated in Figure 3.6. For simpliity, the graph onlyshows the SSA information related to the lok variable TSL. Consider, forinstane, node 7. A use of TSL in that node an be reahed by de�nitions TSL1and TSL6. Sine both de�nitions ome from a lok operation, we onludethat node 7 is proteted by the lok TSL. Similarly, if we ompute reahingde�nition information for node 9, we onlude that the only de�nition for TSLthat an reah it is TSL5. Sine TSL5 omes from an unlok operation, node9 is not proteted by the lok.Deteting Mutex StruturesThe detetion of mutex strutures is redued to the problem of omputingreahing de�nitions for the lok variables in the program. The ConurrentControl Flow Graph (CCFG) for the program is modi�ed so that:1. every graph node ontains a use for eah lok variable in the program,2. every lok and unlok node for lok variable L ontains a de�nition forL, and3. for eah lok variable L the entry node of the graph is assumed to ontainan unlok(L) operation (this assumption an be overridden using allgraph information).De�nition 3.8 (Lok-proteted nodes) We say that a owgraph node bis lok-proteted by lok L if, and only if, the use of L at b is only reahed byde�nitions of L in lok(L) nodes. Therefore, if at least one of those sequentialreahing de�nitions omes from an unlok(L) node, then b is not protetedby L. 2Mutex bodies are de�ned in terms of lok-proteted nodes. For instane,in Figure 3.7(a), the all to a() at line 4 is proteted by lok L beause it isonly reahed by the lok operation at line 1 and the lok operation at line 7.In general, a mutex body is a multiple-entry, multiple-exit region of the graphthat enompasses all the owgraph nodes that are reahed by a ommon setof lok nodes. In ontrast, previous work (Krishnamurthy and Yelik 1996;



54 Analyzing Expliitly Parallel Programs
1 lok(L);2 while (expr) f34 a();5 unlok(L);6 b();7 lok(L);8 ();9 g1011 unlok(L);(a) Original program. a() and () areproteted by L. b() is not.

1 lok(L1);2 while (expr) f3 L5 = �(L1, L3);4 a();5 unlok(L2);6 b();7 lok(L3);8 ();9 g10 L6 = �(L1, L3);11 unlok(L4);(b) SSA form for the program. b() is notproteted beause it is reahed by anunlok operation.Figure 3.7: Deteting irregular mutex strutures in a parallel program.Mastiola and Ryder 1993) has treated mutex bodies as single-entry, single-exitregions.De�nition 3.9 (Mutex body) Given a lok variable L and a set of lok(L)nodes N = fn1; n2; : : : ; nrg known as the lok nodes, a mutex body BL(N) =fb1; b2; : : : ; bsg is a set of nodes suh that:1. Every node in fb1; b2; : : : ; bsg is reahed by at least one node ni 2 N .2. There exists at least one node bi 2 BL(N) that is reahed by all thenodes in N .3. For every node ni 2 N , there exists at least one node xi = unlok(L)suh that xi is reahed by ni. All the unlok(L) nodes are known as theunlok nodes of the mutex body.4. No node ni 2 BL(N) an be a lok(L) node. 2The �rst two onditions establish that the nodes in a mutex body mustbe related in two ways. First, all the nodes in the body must be reahedby a ommon set of lok(L) nodes. Seond, all the lok nodes must reahat least one ommon node in the mutex body. Without this restrition, theanalysis would onsider two disjoint sets of nodes to be the same mutex body.



3.3 Synhronization Analysis 55This learly makes no sense beause they have nothing in ommon. The thirdondition de�nes the exit points of a mutex body. There must be a \way out"of the mutex body from every entry point.Finally, the fourth ondition expliitly exludes lok nodes from the mutexbody. This is an important distintion beause of the serialization semantisimposed by lok operations. A fundamental property of mutex bodies isthat given two nodes a and b in two di�erent mutex bodies for the same lokvariable, a and b annot exeute onurrently. If the lok nodes were onsideredpart of the mutex body, the ompiler would think that two onurrent threadsan never exeute di�erent lok(L) nodes at the same time. This is inorretand therefore not allowed.Subsequent to this work, Hendren (Hendren 2000) proposed an alternativede�nition of mutex bodies. For every lok(L) node n, all the nodes reahablefrom n are marked in one olor. For every unlok(L) node x, all the nodesreahable from x are marked in another olor. The mutex body is the setof nodes that are marked in both olors. This is a muh simpler alternativethat should lead to more eÆient implementations of mutex synhronizationanalysis.De�nition 3.10 (Mutex struture) A mutex struture ML for lokvariable L is the set of all the mutex bodies BL(N) in the program. 2Mutex strutures are deteted using sequential reahing de�nitioninformation for eah lok variable L. Nodes that are only reahed by de�nitionsof L oming from lok(L) nodes are proteted by L. Nodes that an bereahed by at least one unlok(L) node are not proteted by L. Using thisinformation Algorithm 3.5 builds an initial set of mutex for eah individuallok(L) node in the graph. It then re�nes this initial set by merging mutexbodies with ommon nodes (see Algorithm 3.5).We illustrate the proess using the SSA form for the sample program inFigure 3.7(b). For simpliity, assume that eah line of the program orrespondsto a node in the program's owgraph. The mutex struture for lok L initiallyontains one mutex body for eah lok(L) node. In this ase there are twomutex bodies for L: BL(f1g) and BL(f7g). Node 1 de�nes L1 while node 7de�nes L3 (Figure 3.7(b)).



56 Analyzing Expliitly Parallel ProgramsUsing reahed-uses information for de�nitions L1 and L3 we determinewhih nodes are reahed by eah lok operation. Consider for instane thenode holding the all to a() (node 4). The use of L at node 4 an be reahedby de�nitions L1 and L3. Sine both de�nitions ome from lok(L) nodes,node 4 is added to both mutex bodies for L. Now onsider the all to b() atnode 6. The use of L at this node an be reahed by de�nition L2 whih isan unlok(L) node. Therefore, node 6 is not proteted and it is not added toany mutex body.Proeeding in this fashion for all the nodes in the reahed-uses set for L,Algorithm 3.5 produes two mutex bodies for L (underlined node numbersrepresent unlok nodes in the mutex body): BL(f1g) = f2; 3; 4; 5; 9; 10; 11gand BL(f7g) = f8; 9; 10; 11; 2; 3; 4; 5g.Notie that these two mutex bodies have several nodes in ommon.Therefore, it is possible to merge them into one mutex body. The resultingmutex struture for L for the program in Figure 3.7(a) ontains only one mutexbody: BL(f1; 7g) = f2; 3; 4; 5; 8; 9; 10; 11g.3.3.2 Validating Mutex SynhronizationThe framework desribed in the previous setion an be used as a validationtool in a ompiler. Using this analysis, a ompiler an detet irregularitieslike lok tripping, deadlok patterns, inomplete mutex bodies, dangling lokand unlok operations and partially proteted ode (i.e., ode that may notalways exeute under the protetion of a lok).In this setion we desribe several di�erent illegal loking patterns thatan be inorporated into the ompiler as ompile-time warnings. We say thata lok(L) node n reahes another node m if and only if the set of reahingde�nitions for the use of L at m inludes the de�nition in node n.Lok TrippingWe say that a lok has been tripped over if the same thread tries to aquire itmore than one without releasing it �rst. This is important to detet beausein some systems lok tripping an ause the program to deadlok.
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Algorithm 3.5 Identi�ation of mutex strutures.input: A CCFG G = hN;E;EntryG;ExitGi in CSSA form, a set L = fL1; L2; : : : ; Lmg ontainingall the lok variables used in the programoutput: A set of mutex strutures M = fM1;M2; : : : ;Mmg where Mi is the set of mutex bodies forlok variable Li.Compute sequential reahing de�nitions for G./* Find andidate mutex bodies and mutex strutures. */foreah lok variable Li doMi  ;foreah owgraph node n suh that n = lok(Li) doreate mutex body BLi(fng) = ; and add it to Miend forend for/* Determine nodes proteted by eah lok. In this phase mutex bodies are single-node sets. */foreah mutex struture Mi doforeah mutex body BLi (fng) 2Mi dod de�nition of Li in nif no node in SeqReahedUses(d) is an unlok(Li) node thendisregard BLi(fng)elseforeah use u 2 SeqReahedUses(d) donode  node(u)proteted  trueforeah de�nition d 2 SeqReahingDefs(u) doif node(d) is unlok(Li) thenproteted  falseend ifend forif proteted thenadd node to mutex body BLi(fng)end ifend forend ifend forend for/* Merge mutex bodies that have ommon nodes. Lok nodes an now have more than one node. */foreah mutex struture Mi doforeah mutex body B1Li (N1) 2Mi doforeah mutex body B2Li (N2) 2Mi doif B1Li (N1)TB2Li (N2) 6= ; thenBLi (N1SN2) B1Li (N1)SB2Li(N2)remove B1Li (N1) and B2Li (N2) from Miend ifend forend forend forreturn fM1;M2; : : : ;Mmg
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if (expr) flok(L1);. . .g else f. . .lok(L2);gL3 = �(L1, L2);. . .lok(L4);. . .unlok(L);(a) Lok L will be tripped atruntime.

lok(L1);. . .if (expr) funlok(L2);. . .gL3 = �(L1, L2);. . .lok(L4);(b) Lok L may be tripped atruntime.Figure 3.8: Some lok tripping senarios.Let L be a lok variable and n be a lok(L) node. Reall that n ontainsboth a de�nition and a use for L. Suppose that n is reahed by other lok(L)nodes (Figure 3.8)1. If all the de�nitions ome from other lok(L) nodes(Figure 3.8(a)), the program is guaranteed to trip over lok L at runtime. Ifonly some de�nitions ome from other lok(L) nodes, the program may ormay not trip over lok L (Figure 3.8(b)). Depending on the runtime semantisof lok tripping, a ompiler may warn the user about the potential problem.DeadlokLet L and M be two di�erent lok variables suh that in thread T1 there is alok(L) node that reahes a lok(M) node. In another thread T2 a lok(M)node reahes a lok(L) node. If both T1 and T2 an exeute onurrently,then the program may deadlok at runtime.Two di�erent deadlok senarios are illustrated in Figure 3.9. Bothprograms launh two threads that satisfy the deadlok requirement desribedpreviously. The program in Figure 3.9(a) may or may not deadlok beausethe mutex body for M in T1 is not always exeuted. However, the programin Figure 3.9(b) is likely to deadlok beause both threads will exeute the1The subsripts in the �gure refer to SSA numbering. They do not represent di�erentvariables.



3.3 Synhronization Analysis 59mutex bodies for L and M for every exeution of the program.Notie that even if these onditions hold, the program may or maynot deadlok at runtime. Other onditions like the sheduling of threadsor additional synhronization might prevent deadlok situations. Aomprehensive deadlok analysis is beyond the sope of our researh. Mastioladeveloped tehniques that deal spei�ally with stati deadlok detetion(Mastiola and Ryder 1993).
obeginT1: begin. . .lok(L);. . .if (expr) flok(M);. . .unlok(M);g. . .unlok(L);endT2: begin. . .lok(M);. . .lok(L);. . .unlok(L);. . .unlok(M);endoend

obeginT1: begin. . .lok(L);. . .lok(M);. . .unlok(M);. . .unlok(L);endT2: begin. . .lok(M);. . .lok(L);. . .unlok(L);. . .unlok(M);endoendFigure 3.9: Some deadlok senarios.Other Loking IrregularitiesInomplete mutex bodies. Let BL(n) be a partially built mutex body forL suh that no node in BL(n) is an unlok(L) node. At runtime, if lokL is aquired at n, it will not be released. In the presene of inompletemutex bodies, the ompiler may still hoose to regard inomplete mutexbodies as omplete when optimizing. Nodes that belong to inomplete



60 Analyzing Expliitly Parallel Programsmutex bodies are still proteted by the lok. Optimizations that targetmutual exlusion synhronization might be applied provided that theydo not require the existene of exit nodes in the mutex body.Dangling unlok operations. Let x be an unlok node for L suh thatthe set of reahing de�nitions for L at x does not inlude a lok(L)node. This indiates that the alling thread is releasing a lok thatit has not aquired. Although releasing an unheld lok might not haveonsequenes at runtime, it indiates a problem with the synhronizationstruture of the program.Partially proteted nodes. Let b be a owgraph node and L be a lokvariable. The framework for building mutex strutures guarantees thatthe set of reahing de�nitions RD for the use of L at b is not empty.If all the de�nitions in RD ome from unlok(L) nodes, then b is neverproteted. Conversely, if all the de�nitions in RD ome from lok(L)nodes, node b is always proteted. However, if some de�nitions in RDome from a mix of lok(L) and unlok(L) nodes, then b is onlypartially proteted beause it will only be proteted on ertain exeutionsof the program.A mutex body with partially proteted nodes is said to be an impuremutex body. A mutex struture ontaining impure mutex bodies isalso onsidered an impure mutex struture and may indiate a possiblesynhronization problem in the input program.Unproteted shared variable referenes. Using onurrentreahing-de�nition information (Algorithm 5.1) it is possible todetermine whether all the reahing de�nitions for a given sharedvariable use ome from mutex bodies in the same mutex struture.For instane, in the ode fragment in Figure 3.10(d) variable a is readand modi�ed by the three threads in the program. Threads T1 and T2protet the aess to a using lok L. However, thread T0 does not. Usingthe onurrent reahing-de�nition algorithm developed in Setion 5.2 theompiler an determine that at least one of the reahing de�nitions for



3.3 Synhronization Analysis 61a in thread T0 omes from within a mutex body. Sine the referene toa made by T0 is not proteted and the other onurrent referenes are,then the ompiler an issue a message warning the programmer aboutthe mismath.The ode fragments shown in Figure 3.10 illustrate eah of the lokingirregularities previously desribed.3.3.3 Event SynhronizationEvent synhronization imposes exeution preedene between related set andwait nodes. Preedene between set and wait nodes will also establishpreedene for other nodes in the program. Intuitively, nodes preeding theset node will exeute before nodes after the wait node.The method developed by Lee et al. (Lee et al. 1997b) provides aonservative approximate solution to the problem of �nding the guaranteedordering between nodes in the CCFG. In general this problem has been shownto be o-NP hard (Netzer and Miller 1990). For referene, we inlude theiralgorithm as Algorithm 3.6.For eah node n in the CCFG of the program, Algorithm 3.6 omputespre(n), the set of nodes guaranteed to exeute before n. Notie that thispartiular algorithm has some limitations on the types of programs that it ananalyze (Lee et al. 1997b):1. The body of a sequential loop may not ontain the obegin/oendonstrut.2. Parallel loops may not ontain set/wait onstruts.3.3.4 Barrier SynhronizationSimilar to event-based synhronization, barriers impose ordering onstraintsin a parallel program. To gather non-onurreny information from barriersynhronization in the program we use the analysis developed by Jeremiassenand Eggers (Jeremiassen and Eggers 1994). This analysis was developed
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obeginT0: begin. . .lok(L1);. . .=� These statements are� proteted by L but the lok� is never released. �=. . .endT1: . . .oend
(a) Inomplete mutex bodies.

obeginT0: begin. . .=� There is no orresponding� lok(L) operation.�=unlok(L1);. . .endT1: . . .oend
(b) Dangling unlok operations.obeginT0: beginif (expr) flok(L1);g. . .=� These statements may or� may not be proteted� depending on 'expr'�=. . .if (expr) funlok(L2);gendT1: . . .oend() Partially proteted nodes (impuremutex bodies).

a = 0;obeginT0: begin=� These referenes to a� are not proteted by lok L�=a = a + 5;endT1: beginlok(L);a = b + 3;unlok(L);endT3: beginlok(L);print(a);unlok(L);endoend(d) Unproteted shared variablereferenes.Figure 3.10: Loking irregularities.



3.3 Synhronization Analysis 63Algorithm 3.6 Guaranteed partial exeution ordering.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGioutput: pre(n) for eah node n 2 N1: /* Fold loop bodies into a representative node. */2: /* Loop(n) is a funtion that returns the set of nodes in a loop whose header is n. */3: Build a sub-graph of G suh that:N 0  N � fn : m;n 2 N ^ n 2 Loop(m) ^m is a loop header ^m 6= ngE0  (Ef [ Es)� f(m;n) : m;n 2 N ^ (m 62 N 0 _ n 62 N 0)g4: foreah n 2 N 0 do5: pre(n) ;6: end for7: Initialize work queue Q with the immediate suessors of EntryG8: while Q 6= ; do9: Remove some node n from Q10: preold  pre(n)11: if n is oend then12: pref(n) S(m;n)2Et pre(m) [ fng13: else14: pref(n) T(m;n)2Et pre(m) [ fng15: end if16: pres  T(m;n)2Es pre(m) [ fng17: pre(n) pref(n) [ pres(n)18: if preold 6= pre(n) then19: Put immediate ontrol ow and synhronization suessors of n in Q20: end if21: end while22: foreah n 2 N �N 0 do23: /* header(n) is a funtion that returns the header node */24: /* of the outermost loop enlosing n */25: pre(n) pre(header(n))26: end forfor expliitly parallel programs that onform to the SPMD (Single-ProgramMultiple-Data) model whih is ompatible to the parloop model used in thisthesis. In their analysis barriers are assumed to be global: when a threadreahes a barrier it must wait until all the other threads in the program rossthe same barrier.The barrier analysis algorithm divides the program into a set ofnon-onurrent phases. This information is used later on to disregard memoryonits between nodes in di�erent phases. In what follows we have adaptedsome of the notation developed in (Jeremiassen and Eggers 1994) to useowgraph nodes instead of statements.We denote barrier nodes B(i; x), where i is a unique integer identifyingthe barrier all site and x is the name of the barrier variable being rossed(Figure 3.11, adapted from Jeremiassen's paper (Jeremiassen and Eggers
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obegin fT0: begin =� Workers �=parloop (i, 0, N � 1) fwhile (!onverged) fbarrier(a, N);partA();barrier(b, N);partB();barrier(, N);ggendT1: begin =� Master �=while (onverged == 0) fprodueA();barrier(a, N);produeB();barrier(b, N);onverged = has onverged();barrier(, N);gendg

Original Replica

begin

cobegin

begin begin

parloop (...)

while (...) while (...)

B(1, a)

partA();

B(2, b)

partB();

B(3, c)
=SynchVar3
SynchVar1 =
SynchVar2=
SynchVar3=
SynchVar4=
SynchVar5=
SynchVar6=

endwhile

parend

B(1, a)

partA();

B(2, b)

partB();

B(3, c)
=SynchVar3
SynchVar1 =
SynchVar2=
SynchVar3=
SynchVar4=
SynchVar5=
SynchVar6=

endwhile

end

coend

while (...)

produceA();

B(4, a)

produceB();

B(5, b)

has_converged();
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endwhile

end

endFigure 3.11: An example of barrier synhronization.



3.3 Synhronization Analysis 651994)). Barrier nodes de�ne proess segments. A proess segment is the setof all the owgraph nodes along barrier free ontrol paths between one barriernode B(i; x) and another barrier node B(j; y). Proess segments are denotedusing the barrier all sites at either end of the segment: (Bi; Bj). There is animpliit barrier at the start of the program denoted S.A phase of the program is the set of proess segments that may exeuteonurrently between two global barriers. The goal of the barrier analysisalgorithm is to divide the owgraph into a set of proess segments and partitionthese segments into a set of phases. Nodes in segments from two di�erentphases annot exeute onurrently.There are two stages to the algorithm. The �rst stage divides the programinto sets of proess segments by omputing whih other barriers an be reahedfrom eah barrier. This is similar to the problem of mathing lok and unlokoperations desribed in Setion 3.3.1 but they use a di�erent approah. Foreah barrier node B(n; x) in the CCFG a variable SynhVarn is reated. Then,eah barrier node B(n; x) is modi�ed so that right after the barrier all thenode ontains a use of variable SynhVarn followed by a de�nition of all thevariables SynhVar i.The next step is to determine whih of the SynhVar i variables are liveat the end of eah barrier node. If variable SynhVar j is live at barrier nodeB(i; x) (i.e., its value is going to be used again along some program pathstarting at that node), then we reate the proess segment (Bi; Bj).We illustrate this proess using the program in Figure 3.11. Consider thebarrier node B(3; ). We modify the node so that it ontains a use of variableSynhVar3 followed by de�nitions of six other SynhVar variables used for thisprogram. Variable SynhVar1 is live at node B(3; ) beause its value is usedagain at node B(1; a). Therefore, (B3; B1) is a proess segment of the program.Proeeding in this fashion we obtain the omplete set of proess segments forthe program: (S;B1), (S;B4), (B1; B2), (B2; B3), (B3; B1), (B4; B5), (B5; B6)and (B6; B4).The seond stage of the algorithm partitions the proess segments intonon-onurrent phases using a work queue approah. The initial set of phasesis reated by assuming that all the proess segments that start at the same



66 Analyzing Expliitly Parallel ProgramsInitial state Iteration 1 Iteration 2 Final statePhase 1 f(S;B1); (S;B4)g f(S;B1); (S;B4)g f(S;B1); (S;B4)g f(S;B1); (S;B4)gPhase 2 f(B1; B2)g f(B1 ; B2); (B4; B5)g f(B1 ; B2); (B4; B5)g f(B1; B2); (B4; B5)gPhase 3 f(B2; B3)g f(B2 ; B3)g f(B2 ; B3); (B5; B6)g f(B2; B3); (B5; B6)gPhase 4 f(B3; B1)g f(B3 ; B1)g f(B3 ; B1)g f(B3; B1); (B6; B4)gPhase 5 f(B4; B5)gPhase 6 f(B5; B6)g f(B5 ; B6)gPhase 7 f(B6; B4)g f(B6 ; B4)g f(B6 ; B4)gFigure 3.12: Partition of proess segments into phases for the program in Figure3.11.barrier all site and end at barrier nodes that ross the same variable anexeute onurrently. The initial set of phases is re�ned in an iterative proessby merging phases that an exeute onurrently. Eah phase Pi is examined sothat for eah pair of proess segments (B(j; x); B(k; y)) and (B(r; z); B(s; y))in Pi it reates a new phase with all the phases that start with B(k; y) orB(s; y) in any of their proess segments and whose proess segments end inthe same barrier node. Figure 3.12 illustrates this iterative proess applied tothe example program in Figure 3.11.The algorithm stops when the work queue is empty (i.e., no more phasesan be merged into a new one). The output of the algorithm is a set ofnon-onurrent phases P1; P2; : : : Pm. Eah phase Pi ontains a set of proesssegments whih, in turn, delimit sets of CCFG nodes. The data-ow analysistehniques developed in Chapter 4 will use this information to determinewhether two arbitrary CCFG nodes an exeute onurrently. If nodes a and bbelong to proess segments from two di�erent phases then they annot exeuteonurrently.3.4 SummaryThe Conurrent Control Flow Graph (CCFG) is the basi data strutureused to analyze and optimize an expliitly parallel program. It desribes theontrol struture of the program as well as memory onits and event-basedsynhronization. We then use the CCFG to gather non-onurrenyinformation. First, the parallel struture of the CCFG determines an initialset of graph nodes that may exeute onurrently (Algorithm 3.2).



3.4 Summary 67The initial set of onurrent owgraph nodes is then re�ned by analyzingthe synhronization struture of the program (Setion 3.3). We have developeda new tehnique to analyze non-onurreny for mutex synhronization thatan handle loking patterns not supported by existing tehniques. Thisis a signi�ant improvement that allows the analysis of more omplexmutual exlusion synhronization patterns in expliitly parallel programs.We also adapt existing tehniques that analyze set/wait and barriersynhronization.Non-onurreny tehniques are important in the ontext of an optimizingompiler for expliitly parallel programs. Sine the problem of analyzingnon-onurreny is orthogonal to the data-ow framework, as new tehniquesare disovered they an be readily inorporated into the ompiler with littleor no modi�ations to the overlying data-ow framework. In the next hapterwe develop an SSA-based data-ow framework that uses the synhronizationanalyses developed in this hapter to determine whether some memory onitsan be disregarded beause of synhronization onstraints.
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Chapter 4The CSSAME FormThis hapter desribes the CSSAME form, a data-ow framework for analyzingexpliitly parallel programs. The CSSAME form builds on and extends theCSSA form (Lee et al. 1997b) whih is desribed in Setion 4.1. Setion4.2 introdues the extensions neessary to build the CSSAME form. Theextensions allow the framework to handle parallel loops1, mutual exlusionand barrier synhronization in expliitly parallel programs.Algorithms and time omplexity analyses are inluded in the disussion.We point out that algorithmi design deisions have been made to favorlarity of presentation, they should not be an indiation of how an atualimplementation should be organized. In partiular, an implementation mightdeide to perform all the � rewriting ations of Setions 4.2.4 and 4.2.5 priorto the plaement of onit edges to simplify the task of plaing � funtionsin the �rst plae.4.1 The CSSA FormA program in SSA form has the property that eah use of a variable isreahed by exatly one de�nition. When the ow of ontrol auses morethan one de�nition to reah a partiular use, a � funtion is introduedto resolve the ambiguity. The � funtion merges all the inoming reahing1In reent work, Lee et al. have independently inorporated parallel loops into theirframework (Lee et al. 1999). 69



70 The CSSAME Formde�nitions to reate a new de�nition for the variable (Cytron et al. 1991).In a parallel program, the single assignment property is disrupted by thepresene of onurrent de�nitions to the variable beause de�nitions made inonurrent threads may be observed at the thread reading the shared variable.The CSSA framework solves this ambiguity with � funtions. A � funtionmerges the de�nitions oming from the urrent thread via ontrol paths andother onurrent threads via onit edges.This setion desribes the algorithms needed to build the CSSA form asdesribed in (Lee et al. 1997b). Algorithm 4.1 omputes the CSSA form of aprogram. The algorithms to plae � funtions and build fatored use-def hainsompute the sequential SSA form (Wolfe 1996). Note that all the algorithmsin this setion are unmodi�ed versions of the original referenes. They areonly inluded to failitate an implementation of the CSSAME framework andsimplify the disussion of the omplexity analysis of the CSSAME algorithm.Algorithm 4.1 Build the CSSA form.input: An expliitly parallel program P and its CCFGoutput: The program P in CSSA form1: Find guaranteed exeution ordering using Algorithm 3.6.2: Build sequential SSA form using Algorithms 4.2 and 4.3.3: Plae � funtions using Algorithm 4.4.4.1.1 Computing the Sequential SSA FormThe CSSA algorithm alls for the omputation of the sequential SSA form forthe program. We ompute the sequential SSA form using fatored use-defhains (Wolfe 1996). Algorithm 4.2 adds � funtions to the graph andAlgorithm 4.3 builds the use-def hains that link every variable use to itsunique ontrol reahing de�nition. These algorithms assume the existene ofthe following data strutures:hild(n) is the set of dominator hildren for node n.su(n) is the set of immediate suessors of node n.whihPred(n ! m) is an index telling whih immediate predeessor of morresponds to the ontrol edge from n.



4.1 The CSSA Form 71DF (n) is the dominane frontier for node n 2 G.D(v) is the set of nodes in G that ontain a de�nition for variable v.Symbols is the set of variables used in the program.Algorithm 4.2 Plae � funtions.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGioutput: Graph G with � funtions added at join nodes1: foreah n 2 N do2: inWork(n) ?3: added(n) ?4: end for5: workList ;6: foreah v 2 Symbols do7: foreah n 2 D(v) do8: workList workList [ fng9: inWork(n) v10: end for11: while workList 6= ; do12: Remove some node n from workList13: foreah w 2 DF (n) do14: if added(w) 6= v then15: Add � funtion for v at w16: added(w) v17: if inWork(w) 6= v then18: workList workList [ fwg19: inWork(w) = v20: end if21: end if22: end for23: end while24: end for4.1.2 Plaing � FuntionsThe �nal phase of the CSSA algorithm traverses the graph plaing � funtionsat every node that ontains one or more oniting variable uses. Algorithm4.4 adds the required � funtions to the graph. The basi priniple isstraightforward, if a shared variable is used in a node and there exist onurrentde�nitions for that variable, a � funtion is needed in the node where thevariable is read.Reall from setion 3.1 that nodes with oniting use referenes forvariable v have one DU(v) onit edge for eah de�nition of v in onurrentthreads. Furthermore, there will be a de�nition of v oming from the inoming



72 The CSSAME FormAlgorithm 4.3 Build FUD hains.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGi with � funtions addedoutput: The graph with fatored use-def hains1: foreah v 2 Symbols do2: urrDef(v) ?3: end for4: all searh(EntryG)5: proedure searh(x)6: foreah variable use or def or � funtion r 2 x do7: m variable referened at r8: if r is a use then9: hain(r) urrDef(m)10: else if r is a def or a � funtion then11: saveChain(r) urrDef(m)12: urrdef(m) r13: end if14: end for15: foreah y 2 su(x) do16: j  whihPred(x! y)17: foreah � funtion r in y do18: m variable referened at r19: �� hain(r)[j℄ urrDef(m)20: end for21: end for22: foreah y 2 hild(x) do23: all searh(y)24: end for25: foreah variable use or def or � funtion r 2 x in reverse order do26: m variable referened at r27: if r is a def or a � funtion then28: urrDef(m) saveChain(r)29: end if30: end forontrol edge. Therefore, Eah � funtion has n + 1 arguments; the uniqueinoming ontrol ow edge and the n inoming onit edges. As we willdisuss later in this doument, some of these arguments to a � funtion maybe proven redundant beause of synhronization operations in the program.4.1.3 Time Complexity of the CSSA AlgorithmThe omputation of the CSSA form is done in three phases. The �rst phaseomputes guaranteed partial exeution ordering for all the nodes in the graph(Algorithm 3.6). In the worst ase, every node will have to be ompared toevery other node in the graph. Hene, omputing partial orderings an bedone in O(jN j2).The seond phase omputes the sequential SSA form for the program



4.2 The CSSAME Form 73Algorithm 4.4 Plae � funtions.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGi with FUD hainsoutput: The graph G with � funtions added1: foreah b 2 N do2: foreah DU onit edge e = (a; b) do3: v  variable de�ned in a4: if b does not have a � funtion for v then5: Insert a new � funtion for v in b6: u oniting use of v in b7: �(v)[0℄ hain(u)8: end if9: if n 62 pre(s) then10: d oniting def of v in s11: append d to �(v)12: end if13: end for14: end for(Algorithms 4.2 and 4.3). This phase omputes the SSA form in O(r3) time,where r is the maximum of the number of nodes (jN j), number of ontroledges (jEf j), number of assignments and number of variable referenes in theprogram (Brandis and Moessenboek 1994; Cytron et al. 1991). Note that itis possible to plae � funtion using the linear time algorithms in (Johnsonet al. 1994) and (Sreedhar and Gao 1995). We use the algorithms from (Wolfe1996) solely beause they are easier to implement.The third phase of the omputation of the CSSA form plaes � funtionsat the onurrent join nodes of the graph (Lee et al. 1997b). By examiningthe � plaing algorithm (Algorithm 4.4) we onlude that this phase an beomputed in O(jN j2) time.In onlusion, the CSSA form an be omputed in O(jN j2) time when usingthe linear time algorithms for plaing � funtions. If the traditional � plaingalgorithms are used, then the CSSA form an be omputed in O(r3) time.4.2 The CSSAME FormMutual exlusion analysis identi�es memory interleavings that are not possibleat runtime due to the synhronization struture of the program. This analysisallows the ompiler to redue the number of inoming onit edges to nodes inthe CCFG that use shared variables. This setion desribes our re�nements tothe CSSA framework (Lee et al. 1997b). We all this new form CSSAME



74 The CSSAME Form(Conurrent SSA with Mutual Exlusion synhronization). While CSSAonly reognizes set/wait synhronization, CSSAME extends it to inludelok/unlok synhronization. Note that although we inlude lok variablesin our analysis, for larity of presentation we will not use SSA numberingfor lok variables in the example programs. Sine lok operations typiallyread and write to the lok variable and unlok operations only write to it, animplementation should reate � funtions for every lok node in the graph.The key observation that gives rise to the CSSAME form is that � funtionsinside mutual exlusion setions might have one or more arguments for memoryinterleavings that annot our at runtime. We have developed two suÆientonditions, alled onseutive kills and proteted uses, for the removal ofarguments from � funtions inside mutex bodies (Setions 4.2.2 and 4.2.3).This analysis is important beause it allows the removal of redundant onitedges whih in turn allows the optimizer to safely apply more aggressivetransformations and generate faster ode. Both removal onditions an beimplemented as prediates alled by the ompiler when analyzing mutexbodies.4.2.1 Parallel LoopsParallel loops are treated similarly to obegin/oend strutures. Theloop body is repliated to allow the parallel loop to be onsidered like aobegin/oend struture with two idential bodies. This is enough for thepurposes of this analysis beause we are only interested in determining whetherthere is a memory referening onit or not. It is not neessary to determinehow many threads partiipate in the onit. Knowing that there is atleast two threads in onit is enough.2 A similar approah is taken in(Krishnamurthy and Yelik 1996) and (Lee et al. 1999). The proess of adding� funtions does not need to be modi�ed to handle parallel loops beause everynode in the loop body is onurrent with its replia and with every other nodeinside the parallel loop.All the transformations to � funtions due to synhronization are performed2This of ourse may have to be revised if other analyses need more spei� informationabout the onit.
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parloop (i, 1, N) fa = . . .;. . . = a + 4;g
Original Replica

begin

parloop (i, 1, N)

DU(a) DU(a)

parend

end

PSfrag replaements
a1 = : : :

a2 = �(a1; a01);: : : = a2 + 4;
a01 = : : :

a02 = �(a01; a1);: : : = a02 + 4;
Figure 4.1: � funtions inside a parallel loop.on the original loop body. For instane, onsider the ode fragment in Figure4.1. The onit analysis algorithm has determined that there is a onitbetween the node that de�nes a and the node that uses a to ompute a +4. Notie that the � funtion generated for the seond node ontains thearguments a1 and a01. The �rst a1 is the de�nition inherited via the ontrolpath. The seond a01 is the de�nition oming from the loop body's replia.This replia represents one of the N onurrent threads exeuting the body ofthe parallel loop.



76 The CSSAME FormobeginT0: beginlok(L);a1 = . . .. . .a2 = . . .unlok(L);endT1: beginlok(L);. . .=� De�nition a1 annot �==� reah this use. �=a3 = �(a0, a1, a2); ) a3 = �(a0, a2);. . . = a3;unlok(L);endoend (a) Conseutive kills.

obeginT0: beginlok(L);. . .a1 = . . .=� De�nition a1 protets further �==� uses of a in this mutex body. �=a3 = �(a1, a2); ) a3 = �(a1);. . . = a3;unlok(L);endT1: beginlok(L);. . .a2 = . . .unlok(L);endoend (b) Proteted uses.Figure 4.2: Removing memory onits.4.2.2 Conseutive KillsIf a variable is de�ned more than one inside a mutex body b, the onlyde�nitions that an be observed by other mutex bodies (in the same mutexstruture) are those that reah the exit node of b. This is beause all the mutexbodies in the same mutex struture are serialized and exeute atomially. Thissituation is illustrated in Figure 4.2(a) where de�nition a1 in thread T0 isoverridden by de�nition a2 in the same thread. Therefore, the read referenea3 in thread T1 an only be reahed by de�nition a2.De�nition 4.1 (Reahability) Given a CCFG G, a de�nition Dv for avariable v reahes node n 2 G if there is a ontrol path from the nodeontaining Dv to n suh that there is no other de�nition of v along that path(Aho et al. 1986). 2Theorem 4.1 (Conseutive kills) Let ML be a mutex struture for lokvariable L. Let DBa be a de�nition for a shared variable a inside a mutex bodyBL(N) 2 ML. If DBa does not reah any exit node x 2 BL(N) then DBa anbe removed from all the � funtions in any other mutex body B0L(N 0) 2 MLthat have DBa as an argument. 2Proof Let UB0a be a use of a in B0L(N 0). Let d be the node ontaining DBa .



4.2 The CSSAME Form 77Let u be the node ontaining UB0a . Sine d and u are inside mutex bodies in thesame mutex struture they annot exeute onurrently. Therefore, for everyexeution of the program that inludes both mutex bodies there an only betwo possible partial orderings between them:1. BL(N) exeutes to ompletion before B0L(N 0). Even though noded exeutes before node u, the de�nition DBa annot reah UB0abeause it is always killed by some other de�nition before itreahes one of the exit nodes of BL(N).2. B0L(N 0) exeutes to ompletion before BL(N). Node u exeutesbefore node d, therefore DBa annot reah UB0a .Sine it is impossible for the de�nition DBa to reah the use UB0a thenthe argument representing DBa for the � funtion in UB0a is not neessary.Therefore, it an be safely removed and the DU(a) onit edge between d andu an be eliminated from the CCFG. �4.2.3 Proteted UsesThe seond onit removal opportunity is for uses that annot be a�etedby de�nitions in other mutex bodies beause they are proteted by a loalde�nition. Suppose that a oniting variable a is used inside a mutex bodyB but its ontrol reahing de�nition is inside B (Figure 4.2(b)). Sine a isde�ned inside the mutex body, de�nitions made in other mutex bodies arekilled by the internal de�nition of a.De�nition 4.2 (Upward exposure for mutex bodies) Given a mutexbody B, a use UBv in B for a variable v is upward-exposed (Aho et al. 1986)from B if UBv may use a de�nition outside of B. 2Theorem 4.2 (Proteted uses) Let ML be a mutex struture for lokvariable L. Let UBa be a oniting use for a shared variable a inside amutex body BL(N) 2 ML. If UBa is not upward-exposed from BL(N) thenthe arguments for the � funtion for a oming from any other mutex bodyB0L(N 0) 2ML an be removed. 2Proof Let DB0a be a de�nition for variable a in mutex body B0L(N 0). Let d



78 The CSSAME Formbe the node in B0L(N 0) that ontains the de�nition DB0a . Let u be the nodein mutex body BL(N) that ontains the use UBa . Sine d and u are insidemutex bodies in the same mutex struture they annot exeute onurrently.Therefore, for every exeution of the program that inludes both mutex bodiesthere an only be two possible partial orderings between them:1. BL(N) exeutes to ompletion before B0L(N 0). This means thatnode u exeutes before node d, therefore DB0a annot reah UBa .2. B0L(N 0) exeutes before BL(N). Sine UBa is not upward-exposedfrom BL(N), any de�nitions of a made before BL(N) startsexeuting are guaranteed to be killed by some other de�nitioninside BL(N). Therefore, DB0a annot reah UBa .Sine the de�nition DB0a annot reah the use UBa then the argumentrepresenting DB0a for the � funtion in UBa is not neessary. Therefore, itan be safely removed and the DU(a) onit edge between d and u an beeliminated from the CCFG. �4.2.4 Modifying � Funtions Inside Mutex BodiesUsing the properties of onseutive kills and proteted uses inside mutexbodies, we now examine every mutex body of the program trying to removearguments from eah of its � funtions. Algorithm 4.5 traverses all the mutexbodies in the graph looking for � funtions to rewrite. There are three mainsteps to the algorithm:1. Lines 1{6 traverse all the mutex bodies in the program. For eah mutexbody b, it invokes the analysis routine in lines 7{27.2. Lines 9{20 analyze all the � funtions inside a mutex body b. For eah� funtion, eah of its arguments d is analyzed for ompliane withTheorems 4.1 and 4.2.Cheking for proteted uses is a simple matter of heking whether theontrol reahing de�nition for the � funtion is reahed by at least onelok node in N . This information has already been omputed by the



4.2 The CSSAME Form 79mutex struture detetion algorithm (Setion 3.3.1). Therefore, it anbe aessed in essentially onstant time.Cheking for onseutive kills an be done in O(jonfdefsj2) time, wherethe value jonfdefsj represents the number of oniting de�nitions madein the program. To hek if a de�nition d reahes the exit node of a mutexbody we traverse the post-dominator tree for d looking for a de�nitionthat post-dominates d and is post-dominated by some exit node (i.e., wehek whether there is another de�nition d0 on every path from d to anexit node that kills d).3. Lines 21{25 remove any � funtions with no arguments for onitingreferenes.Examining the nesting struture of the � rewriting algorithm we onludethat the total time omplexity of the algorithm is O(m�mb �mbsz � j�j �jonfdefsj2), were m is the number of lok variables in the program, mb is thetotal number of mutex bodies in the program, mbsz is the maximum numberof nodes that a mutex body an ontain, j�j is the number of � funtionsin the program and jonfdefsj is the number of oniting de�nitions in theprogram. A worst ase senario with a oniting de�nition in every node anda oniting use in every node will yield a time omplexity of O(jN j3).Lemma 4.1 (Corretness of the � rewriting algorithm) The onlyarguments from � funtions removed by Algorithm 4.5 represent memoryinterleavings that annot our at runtime. 2Proof The algorithm only examines � funtions inside mutex bodies. Foreah � funtion found it heks all the arguments that ome from other mutexbodies in the same mutex struture. These are the only potential andidatesfor removal beause they represent memory referenes proteted by the samelok (line 15).If d omplies with one of the two suÆient onditions given by Theorems4.1 and 4.2 then it may be safely removed beause the de�nition representedby d annot reah that partiular use.Finally, if after this analysis is done a � funtion p ontains exatly oneargument, it must be the argument for the inoming ontrol edge to the node



80 The CSSAME Formbeause this is the only argument that is never removed by Algorithm 4.5.Hene, this � funtion p an be removed from the graph. Before removing p,the algorithm updates the use-def pointer of the use a�eted by p (hain(u))so that it points to p's ontrol reahing de�nition (line 23). �Algorithm 4.5 Rewrite � funtions to aount for mutual exlusion.input: A CCFG G = hN;E;EntryG;ExitGi in CSSA formoutput: The graph G in CSSAME form1: /* Traverse all the mutex bodies in the graph looking for � funtions to rewrite. */2: foreah lok variable Li do3: foreah mutex body b 2 MutexStrut(Li) do4: all rewrite(b)5: end for6: end for7: /* Examine all the � funtions in b. */8: proedure rewrite(b)9: foreah node n 2 b do10: foreah � funtion p 2 n do11: v is the variable referened by p12: /* If an argument of the � funtion p omplies with Theorems 4.1 or 4.2, */13: /* then we may safely remove the argument from p funtion. */14: foreah argument d of p oming from a onit edge do15: if d omes from another mutex body b0 2MutexStrut(b) then16: if (the use of v is not upward-exposed from b) or (d does not reah any exit node of b0) then17: remove d from p18: end if19: end if20: end for21: /* If p is left with only one argument, remove p. */22: if p has only one argument then23: hain(u) �rst argument of p24: remove p from n25: end if26: end for27: end for4.2.5 Modifying � Funtions A�eted by BarriersBarrier synhronization o�er another soure of non-onurreny information inparallel programs. Using the barrier analysis algorithm desribed in Setion3.3.4 it is possible to remove �-funtion arguments for some onit edgesthat ross phase boundaries. Sine nodes in di�erent phases of the programare guaranteed to exeute in sequene, some of the onits that might existbetween these nodes an be eliminated.Barrier synhronization is \weaker" than mutex synhronization in thesense that it does not serialize the exeution of threads. The ordering reated



4.2 The CSSAME Form 81by barriers reate phases in the exeution of the program. Within a phase,threads exeute onurrently. Consider for instane the parallel loop in Figure4.3. If we disregard the presene of the barrier, then both de�nitions a1 anda2 an reah the use of a (a3) at line 10. However, the presene of the barrierat line 5 guarantees that de�nition a1 will be killed by all the threads beforerossing the barrier. Therefore, a1 annot reah the use of a at line 10. Thesame annot be said about de�nition a2. Although all threads join at thebarrier, we annot statially determine whih thread will be the last to reahthe barrier. This means that there are two de�nitions for variable a thatould reah a3: the ontrol reahing de�nition (i.e., a2, the sequential reahingde�nition) and the de�nition made by the last thread to join the barrier (a02).In general, in the presene of barriers the only arguments that an be removedfrom a � funtion are those that represent de�nitions from a di�erent phaseand do not reah the � funtion via ontrol edges.Theorem 4.3 (Barrier protetion) Let Uv be a oniting use for sharedvariable v. Let Dv be a de�nition for v suh that Dv reahes Uv via a onitedge and Dv does not sequentially reah Uv. If Dv and Uv are in di�erentphases due to barrier synhronization, then Dv an be removed from the �funtion assoiated with Uv. 2Proof Sine Dv reahes via a onit edge, there is a � funtion assoiatedwith Uv that has Dv as one of its arguments. If Dv and Uv are on di�erentphases as determined by barrier synhronization analysis (Setion 3.3.4), thenthey annot exeute onurrently. Furthermore, sine Dv does not reah Uvvia ontrol edges, it means that there exists at least one other de�nition for vthat kills Dv. Sine Dv annot reah Uv via ontrol edges nor onit edges,it is safe to remove it from the � funtion assoiated with Uv. �Algorithm 4.6 rewrites � funtions to aount for barrier synhronization.It assumes that program phases have already been omputed (Setion 3.3.4).The algorithm traverses all the � funtions in the program. For every argumentdi of a � funtion p it heks whih node ontains di. If the node of di is insidea di�erent phase than the node holding p and di does not sequentially reahthe use assoiated with p, then di an be removed from the argument list.Figure 4.3 shows a program fragment with its CSSAME form partially



82 The CSSAME Form1 parloop (i, 1, N) f2 a1 = 1 + 5;3 . . .4 a2 = a1 + 1;5 barrier(B, N);6 . . .7 =� Argument a1' an be safely8 removed from this � funtion. �=9 a3 = �(a2, a1', a2');10 b1 = a3 + 3;11 gFigure 4.3: E�ets of barrier synhronization on � funtions.built. The assignment to b in line 10 makes a oniting use of variable a.Hene the � funtion at line 9 ontains only two arguments and both ome fromthe same de�nition (a1 is both the ontrol-reahing and the onit-reahingde�nition). The omputation of phases for this program will result in twophases, one ontaining lines 1 � 4 and the other one ontaining lines 6 � 10.Therefore, de�nitions a1 and a2 will be in one phase and use a3 will be inanother one. Sine de�nition a1 is killed by a2 and it is in a di�erent phasethan the use a3, we an remove the seond argument of the � funtion at line9 beause a1 annot reah this use.Notie that unlike mutex synhronization, this pruning proess will neverlead to the elimination of � funtions. The reason is that inside a parallel loop� funtions have two arguments oming from the same de�nition, namely theontrol reahing de�nition. The ontrol reahing de�nition appears twie inthe � argument list beause it reahes the use via ontrol and onit edges.The argument oming via ontrol edges annot be eliminated beause it isnot a�eted by synhronization and the argument oming via a onit edgeannot be eliminated beause it is not possible to determine whih threadwas the last one to make that de�nition. It might be possible to eliminatea � funtion if one ould prove that both arguments are always the samevalue using tehniques like value numbering, opy propagation or onstantpropagation. We have not onsidered these extensions in this doument.



4.2 The CSSAME Form 83Algorithm 4.6 Rewrite � funtions to aount for barrier synhronization.input: A Parallel Flow Graph G = hN;E;EntryG;ExitGi in CSSA formoutput: The graph G in CSSA form with � funtions modi�ed to aount for barriersynhronization1: /* This algorithm assumes that phases due to barrier */2: /* synhronization have already been omputed (Setion 3.3.4). */3: ompute sequential reahing de�nitions (SeqReahingDefs)4: foreah �-funtion p do5: u use referene assoiated with p6: foreah parallel argument d of p do7: if node(p) and node(d) are in di�erent phases and d 62 SeqReahingDefs(u) then8: remove d from p9: end if10: end for11: end for4.2.6 Computing the CSSAME FormAlgorithm 4.7 transforms an expliitly parallel program P to its CSSAMEform. The algorithm is a diret extension of the CSSA algorithm (Lee et al.1997b). Steps 2 and 4 inorporate the modi�ations needed to handle mutualexlusion synhronization.The algorithm starts by building the onurrent ontrol ow graph forP using the algorithms desribed in Setion 3.2. One the CCFG has beenbuilt, the algorithm reates the mutex strutures for the mutual exlusionsynhronization used in the program. The next step builds the CSSA formusing the algorithms desribed in Setion 4.1. One the CSSA form has beenomputed, � funtions are modi�ed to aount for any mutex and/or barriersynhronization in the program. Notie that it might be possible to omputethe CSSAME form diretly, without omputing the CSSA form �rst. Wedeided to use this approah beause the analysis needed to remove superuoussynhronization edges is simpler if CSSA is omputed �rst.Theorem 4.4 (Corretness of the CSSAME algorithm) A program inCSSAME form is also in CSSA form and retains the single assignmentproperty: every use is reahed by exatly one de�nition. 2Proof The CSSAME form is a diret extension of the CSSA form. Theomputation of the CSSA form is done using existing algorithms known tobe orret (Lee et al. 1997a; Wolfe 1996). Lemma 4.1 proves that the only



84 The CSSAME FormAlgorithm 4.7 Build the CSSAME form.input: An expliitly parallel program Poutput: The program P in CSSAME form1: Build the CCFG G for P using Algorithm 3.1.2: Identify mutex strutures using Algorithm 3.5.3: Compute the CSSA form for the graph using Algorithm 4.1.4: Rewrite � funtions using Algorithm 4.5.5: Rewrite � funtions using Algorithm 4.6.transformation done to the underlying CSSA form does not alter the singleassignment property. Therefore, a program in CSSAME form is also in CSSAform and retains the single assignment property. �4.2.7 Time Complexity of the CSSAME AlgorithmComputing the CSSAME form does not inrease the omplexity of the CSSAalgorithm signi�antly. The two major modi�ations to the original algorithmare steps 2 (omputation of mutex strutures) and 4 (rewriting of � funtions).As disussed in Chapter 3, the identi�ation of mutex strutures an be donein O(jEf j) time. The CSSA form is omputed in O(r3) time, where r isthe maximum of the number of nodes (jN j), number of ontrol edges (jEf j),number of assignments and number of variable referenes in the program(Setion 4.1.3). Finally, rewriting � funtions an be done in O(jN j3) time.Therefore, the CSSAME algorithm has a worst time omplexity of O(jN j3).4.3 SummaryIn this hapter we have developed a new data-ow framework for expliitlyparallel programs: the CSSAME form. It supports both task and data parallelprograms that share memory and synhronize using three types of mehanisms:mutual exlusion, barriers and events.The CSSAME form represents a signi�ant step towards an integratedanalysis framework that an be adapted to support various types of parallelonstruts, memory semantis and synhronization onstruts. For instane,to add a new type of synhronization mehanism, we only need to gathernon-onurreny information due to synhronization and modify the �



4.3 Summary 85funtions appropriately. Di�erent memory semantis an be supported ina similar fashion. Memory onits aross onurrent threads need onlybe added if the memory semantis of the target arhiteture allow suhinterleaving. For instane, in a release-onsistent memory (Keleher et al. 1994)memory onits need only be added at synhronization points in the program.In the following hapter we use the CSSAME framework to optimizeparallel programs. We will onsider two types of optimization, the adaptationof sequential tehniques to the parallel ase and the diret optimization ofthe synhronization struture of a parallel program. Emphasis will be on theoptimization of mutual exlusion patterns.



86 The CSSAME Form



Chapter 5Optimizing expliitly parallelprogramsUsing the CSSAME form, new optimization opportunities are now possible.This setion desribes six optimization tehniques. The �rst two areadaptations of well-known sequential optimizations: onstant propagation(Setion 5.1) and dead ode elimination (Setion 5.2). The other four arenew optimizations spei�ally designed for expliitly parallel programs: lokpiking (Setion 5.3), lok-independent ode motion (Setion 5.4), mutexbody loalization (Setion 5.5) and single-writer multiple-readers ode motion(Setion 5.5.1). All the mutual exlusion transformations in this hapterassume that the program ontains well-formed mutex strutures.5.1 Constant PropagationLee et al. (Lee et al. 1997b) adapted the sequential Sparse ConditionalConstant propagation (SCC) algorithm (Wegman and Zadek 1991) to workwith expliitly parallel programs; Conurrent Sparse Conditional Constantpropagation (CSCC). We will use the program in Figure 5.1(a) to show howour extensions to the original CSSA framework an be used to improve theonstant propagation algorithm when mutual exlusion is taken into aount.Figure 5.1(b) is the original CSSA form without mutual exlusion extensions.Figure 5.2(a) shows the CSSAME form built using the algorithms in Setion87



88 Optimizing expliitly parallel programs4.2. Notie that the CSSAME form has fewer � funtions than the CSSAform. a = 0;b = 0;obeginT0: beginlok(L);a = 5;b = a + 3;if (b > 4) fa = a + b;gx = a;unlok(L);endT1: beginlok(L);a = b + 6;y = a;unlok(L);endoendprint(x, y);
(a) Original program.

a1 = 0;b1 = 0;obeginT0: beginlok(L);a2 = 5;a3 = �(a2, a6);b2 = a3 + 3;if (b2 > 4) fa4 = �(a2, a6);a5 = a4 + b2;ga7 = �(a2, a5);a8 = �(a7, a6);x1 = a8;unlok(L);endT1: beginlok(L);b3 = �(b1, b2);a6 = b3 + 6;a9 = �(a6, a2, a5);y1 = a9;unlok(L);endoenda10 = �(a7, a6);print(x1, y1);(b) CSSA form.Figure 5.1: Constant propagation example (CSSA).We now apply the CSCC algorithm to both the original CSSA form and thenew CSSAME form. Notie that sine CSSA does not reognize the mutualexlusion semantis of the program, the onstant propagation algorithm annotpropagate any onstants. On the other hand, translating the program toCSSAME allows the ompiler to remove all the � funtions for variable a inthread T0. The key fator that allows the ompiler to do this optimization isthe assignment to variable a in thread T0 immediately after the lok operation.Sine all the statements in thread T0 exeute indivisibly, uses of variable a afterthe �rst assignment annot possibly be a�eted by de�nitions of a made bythread T1. This allows the ompiler to propagate onstants inside thread T0 as



5.1 Constant Propagation 89if it were a sequential program. Figure 5.2(b) shows the results of applying theCSCC algorithm using CSSAME. Notie that we also inlude the results of theonstant folding and unreahable ode elimination. Both passes are possibleusing information gathered by the onstant propagation algorithm (Wegmanand Zadek 1991). Sine we have not modi�ed the CSCC algorithm, theoptimizations performed are still orret as proved in (Lee et al. 1997b).Further optimizations an still be done in this example program. Theredundant assignments in Figure 5.2(b) are the result of applying theonurrent onstant propagation on the program in Figure 5.2(a). Theseredundant assignments an be removed using the onurrent dead-odeelimination algorithm developed in Setion 5.2.a1 = 0;b1 = 0;obeginT0: beginlok(L);a2 = 5;b2 = a2 + 3;if (b2 > 4) fa3 = a2 + b2;ga4 = �(a2, a3);x1 = a4;unlok(L);endT1: beginlok(L);b3 = �(b1, b2);a5 = b3 + 6;y1 = a5;unlok(L);endoenda6 = �(a4, a5);print(x1, y1);(a) CSSAME form for programin Figure 5.1(a).

a1 = 0;b1 = 0;obeginT0: beginlok(L);a2 = 5;b2 = 8;a3 = 13;a4 = 13;x1 = 13;unlok(L);endT1: beginlok(L);b3 = �(b1, b2);a5 = b3 + 6;y1 = a5;unlok(L);endoenda6 = �(a4, a5);print(x1, y1);(b) Constant propagation using CSSAME.Figure 5.2: Constant propagation example (CSSAME).



90 Optimizing expliitly parallel programs5.2 Conurrent Dead Code EliminationDead ode refers to program statements that have no e�et on the programoutput (Cytron et al. 1991). Although it is not ommon for the programmer tointrodue dead ode intentionally, dead ode may be generated by optimizingtransformations (Aho et al. 1986). We introdue the Conurrent Dead CodeElimination algorithm (CDCE), an extension of the dead ode eliminationalgorithm proposed by Cytron et al. (Cytron et al. 1991) to work on expliitlyparallel programs. The algorithm starts by marking as dead all the statementsof the program exept those that are assumed to a�et the program outputsuh as I/O statements or assignments to variables outside the urrent sope.This initial set of live statements is used to seed the work list maintained bythe algorithm. The list is updated with every new statement that is markedlive. When the list empties, all the statements still marked dead are removedfrom the program. A statement will be marked live if it satis�es one of thefollowing onditions (Cytron et al. 1991):1. The statement is assumed to a�et the program output. Examplesinlude I/O statements, alls to proedures that may have side e�ets,et.2. The statement ontains a de�nition that reahes a use in a statementalready marked as live.3. The statement is a onditional branh and there is a live statement thatis ontrol dependent on this onditional branh.The CDCE algorithm is the same algorithm developed by Cytron et al.(Cytron et al. 1991) with the following modi�ations:� Condition 2 of Cytron et al.'s algorithm alls for the omputation ofreahing de�nition information for eah live statement of the program.The rationale is that if statement s is live then any other statementthat makes de�nitions with reahed uses in s must also be marked live.We inorporate reahing de�nition and reahed uses information in ourCSSAME framework. We have adapted the orresponding sequential



5.2 Conurrent Dead Code Elimination 91algorithms (Wolfe 1996) by inorporating additional tests for � funtionswhen traversing the SSA use-def hains. Conurrent reahing de�nitioninformation is omputed by Algorithm 5.1.� A obegin statement will be marked live if there is at least one statementin two or more of its threads marked live. If the transformation leavesonly one thread with live statements, the obegin/oend onstrut willbe replaed by the sequential ode orresponding to the live thread.Serializing this live thread will ause all the synhronization operationsin the thread to beome dead. Hene, they an be safely removed.These modi�ations to the sequential DCE algorithm are neessary toaount for the onurrent ativity in the program. Sine reahing de�nitionand reahed uses information will be omputed using both � and � funtions,a live use u in one thread will keep onurrent de�nitions that reah ualive. Furthermore, the redution of dependenies made possible by CSSAMEdiretly bene�ts the elimination of dead ode in the program. Most notably,the detetion of onseutive kills inside a mutex body (Theorem 4.1) will helpthe detetion of dead ode inside mutex bodies.To show the e�ets of CDCE, onsider the program in Figure 5.1(a) afteronstant propagation has been performed (Figure 5.2(b)). As an be seen inthe example program, all the assignments to variable a in T0 are dead beausethey do not a�et the output of the program (i.e., they do not reah any otheruse of a in the program). On the other hand, the assignment to b in T0 annotbe onsidered dead beause it is used by T1. Note that a sequential deadode elimination algorithm would have erroneously marked the assignment tob dead beause it laks the appropriate reahing de�nition information. Figure5.3 shows the result of a dead ode pass on the ode in Figure 5.2(b).Theorem 5.1 (Corretness of the CDCE algorithm) The onurrentdead ode elimination algorithm is orret. It only removes ode that has noe�et on program output. 2Proof We will show that the CDCE algorithm does not mark deadstatements that are really live. Sine the sequential version is known tobe onservative, we only need to onsider the two modi�ations we have



92 Optimizing expliitly parallel programsb1 = 0;obeginT0: beginlok(L);b2 = 8;x1 = 13;unlok(L);endT1: beginlok(L);b3 = �(b1, b2);a4 = b3 + 6;y1 = a4;unlok(L);endoendprint(x1, y1);Figure 5.3: Conurrent Dead Code Elimination for program in Figure 5.2(b).introdued.Let Dv be a de�nition of variable v in thread T0. Let Uv be a use ofv in thread T1. Assume that there is a onit edge between the nodeontaining Dv and the node holding Uv (i.e., the threads are onurrentand no synhronization prevents both memory operations from exeutingonurrently). Sine the reahing de�nition information inludes de�nitionsreahing through onit edges, if the statement holding Uv is marked livethen the statement that ontains Dv will also be marked live. The seondondition is guaranteed by simply onsidering obegin/oend strutures asonditional branhes. �5.3 Lok PikingSometimes it is possible to remove synhronization operations from aprogram without a�eting its semantis. For example, mutual exlusionsynhronization is unneessary in a sequential program and an be safelyremoved. In this setion we desribe lok piking, a transformation that �ndsand removes superuous lok and unlok operations. We say that a mutexbody an be lok-piked if its lok and unlok nodes an be removed. An



5.3 Lok Piking 93Algorithm 5.1 Conurrent reahing de�nitions.input: A CCFG G in CSSAME formoutput: The set of reahing de�nitions for eah variable used in the program and the set of reaheduses for eah variable de�ned in the program/* marked(d) is used to mark visited de�nitions *//* uses(d) is the set of uses reahed by d */foreah variable de�nition d in the program domarked(d) ?uses(d) ;end forforeah variable use u in the program dodefs(u) ;all followChain(hain(u), u)end for/* Reursively follow use-def hains set up by the CSSAME algorithm */proedure followChain(d; u)if marked(d) = u thenreturnend ifmarked(d) u/* If the referene d is a de�nition, add it to the set of *//* reahing de�nitions for u, and add u to the set of reahed uses of d */if d is a de�nition for u thenAdd d to defs(u)Add u to uses(d)end if/* If the referene d is a � or a � funtion, follow the arguments */if (d is a � funtion) or (d is a � funtion) thenforeah funtion argument j doall followChain(j, u)end forend ifimportant property of lok piking is that it does not need to examine themutex bodies of the program. Only the lok and unlok nodes are analyzed.Lok piking uses reahing de�nition information for all the lok variablesto determine whether a mutex body an be lok-piked or not. The algorithmfor reognizing mutex bodies developed in Setion 3.3.1 modi�es the owgraphso that every lok(L) node ontains one de�nition of variable L and a use foreah lok variable used in the program (inluding L). As suh, the CSSAMEform will initially plae a � funtion for all the uses of lok variables ateah mutex body's lok node. However, if the program ontains additionalsynhronization, it is possible that some of these � funtions will be removedby the CSSAME � pruning phase. Furthermore, in the ase of sequentialsetions of the program, � funtions will not be plaed at all.The lok piking algorithm (Algorithm 5.2) examines the lok nodes forevery mutex body in the program. The deision to lok-pik a mutex body



94 Optimizing expliitly parallel programs
double Sum = 0;parloop (p, 0, N) f. . .for (i = 0; i < M; i++) fS3 = �(S0, S1, S2);R3 = �(R0, R1, R2);lok(R1);for (j = 0; j < M; j++) fsum redution(A[i℄[j℄);gunlok(R2);g. . .gsum redution(double x)f S4 = �(S0, S1, S2)R4 = �(R0, R1, R2)lok(S1);Sum = Sum + x;unlok(S2);g(a) Original CSSAME form.double Sum = 0;parloop (p, 0, N) f. . .for (i = 0; i < M; i++) fS3 = �(S0, S1, S2)R3 = �(R0, R1, R2)lok(R1);for (j = 0; j < M; j++) fS4 = �(S0, S1, S2)lok(S1);Sum = Sum + A[i℄[j℄;unlok(S2);gunlok(R2);g. . .g(b) CSSAME form after inlining and �pruning.

double Sum = 0;parloop (p, 0, N) f. . .for (i = 0; i < M; i++) fR3 = �(R0, R1, R2)lok(R1);for (j = 0; j < M; j++) fSum = Sum + A[i℄[j℄;gunlok(R2);g. . .g
() After lok piking.Figure 5.4: E�ets of lok piking on nested mutex bodies.



5.3 Lok Piking 95is based on the absene of � funtions for one or more lok variables at eahmutex body lok node. Reall that the absene of � funtions for lok variablesat lok nodes means that there are no onurrent threads trying to aquire thatlok. This might make the lok operation unneessary. These onditions aretypially disovered using whole program analysis. For example, onsider theprogram in Figure 5.4(a). The inner loop alls the funtion sum redution toupdate a global redution variable. Sine sum redution is a generi redutionfuntion, it loks the variable before doing the redution. However, as a resultof inlining, redution lok S is no longer neessary beause the redution isalways proteted by lok R (Figure 5.4(b)). When funtion sum redution isinlined, the use of lok R at the lok node of the mutex body for S beomes aproteted use and its � funtion an be removed (Novillo et al. 1998) (Figure5.4(b)).Lemma 5.1 (Nested mutex strutures) Let L = fL1; L2; : : : ; Lmg be theset of lok variables used in the program. Let MLj be the mutex struturefor lok variable Lj. If all the lok nodes in every mutex body of MLj arelok-proteted by the same lok variable Li, then the lok and unlok nodesfor mutex bodies in MLj are unneessary and an be removed. In this ase,we say that mutex struture MLj is nested inside mutex struture MLi . 2Proof Sine all the lok nodes in all the mutex bodies in MLj arelok-proteted by the same lok variable Li, all the lok operations on Ljare serialized by lok Li. Therefore, they are unneessary beause they arealways guaranteed to sueed. Consequently, all the lok and unlok nodes forLj an be safely removed. �The seond opportunity to lok-pik mutex bodies is when a partiularmutex body annot exeute onurrently with any other mutex body of itssame mutex struture. If this happens, we say that the mutex body isnon-oniting. Typially, a mutex body will be non-oniting when itappears in sequential setions of a parallel program or if the program itselfis sequential. Non-oniting mutex bodies an also be disovered if all themutex bodies in the same mutex struture are totally ordered by some othersynhronization mehanism (e.g., set/wait, barriers, oend nodes). All thesequential programs desribed in Setion 6.2 had their loks piked beause



96 Optimizing expliitly parallel programsAlgorithm 5.2 Lok-piking.input: A CCFG in CSSAME formoutput: The graph with unneessary lok and unlok operations removedrepeat/* First phase. Find nested mutex bodies. */foreah lok variable Li doforeah mutex body BLi (N) 2MLi doforeah lok variable Lj donested  trueforeah node n 2 N doif n ontains a � funtion for Lj thennested  falseend ifend forif nested thenProtetors(N) Ljend ifend forend forif TN Protetors(N) 6= ; thenremove all lok and unlok nodes for mutex bodies in MLiupdate CSSAME information for Liend ifend for/* Seond phase. Find non-oniting mutex bodies. */foreah lok variable Li doforeah mutex body BLi (N) 2MLi dohasConits  falseforeah node n 2 N doif n ontains a � funtion for Li thenhasConits  trueend ifend forif not hasConits thenremove all lok and unlok nodes for BLi (n)update CSSAME information for Liend ifend forend foruntil no more hanges have been madethey had no onits.Lemma 5.2 (Non-oniting mutex bodies) Let ML be the mutexstruture for lok variable L. Let BL(N) be a mutex body in ML. If no loknode n 2 N ontains a � funtion for L then the lok and unlok operationsfor mutex body BL(N) are unneessary and an be removed. 2Proof If no lok node n 2 N ontains a � funtion for L then no de�nitionfor L omes from other onurrent threads. Sine lok variables are de�nedat lok(L) nodes, this means that no other lok(L) node an exeuteonurrently with the lok nodes of BL(N). Therefore, the mutex body BL(N)



5.4 Lok-Independent Code Motion 97is not neessary beause all its lok nodes are guaranteed to aquire L everytime it exeutes. �The onditions for lok piking given by these two lemmas have subtledi�erenes that are worth noting. The onditions for Lemma 5.2 are onlyrequired to be met by a single mutex body. In ontrast, Lemma 5.1 needsto hek all the mutex bodies in the same mutex struture. It is not enoughfor one mutex body to be nested inside another. The whole mutex struturemust be nested inside the same lok. Otherwise, the transformation annotbe done.5.4 Lok-Independent Code MotionBeause of the sequential semantis imposed by mutual synhronizationoperations, it is desirable to minimize the time spent inside mutex bodiesin the program. To ahieve this goal we an optimize the ode inside mutexbodies as muh as possible. Alternatively, we an minimize the amount ofode exeuted inside a mutex body by moving ode that does not need to beloked outside the mutex body.Lok-Independent Code Motion (LICM) is a ode motion tehnique thatattempts to minimize the amount of ode exeuted inside a mutex body. Thisoptimization di�ers from lok piking in that it does not target the lokoperations diretly. Rather, it analyzes the mutex body itself to �nd ode thatan be moved outside. If at the end of the transformation a mutex body onlyontains unlok nodes, then the lok and unlok instrutions are removed.De�nition 5.1 (Lok-independene) An expression E inside a mutexbody BL is lok-independent with respet to L if moving E outside BL doesnot hange the meaning of the program. Similarly, a statement (or group ofstatements) S is lok independent with respet to L if all the expressions andde�nitions in S are lok-independent. A owgraph node n is lok independentif all its statements are lok-independent. 2Lok-independent ode is moved to speial nodes alled premutex andpostmutex nodes. For every mutex body BL(N) there is a premutex node,denoted premutex (ni), for eah lok node ni 2 N . Premutex nodes are reated



98 Optimizing expliitly parallel programsas immediate dominators of eah lok node ni. Similarly, there is a postmutexnode, denoted postmutex (xi) for every unlok node xi. Postmutex nodes arereated as immediate post-dominators of eah exit node xi.The onept of lok-independene is similar to the onept of loop-invariantode for standard loop optimization tehniques (Aho et al. 1986). However,the onditions that make ode to be lok-independent are di�erent from thosethat make it loop invariant. Lok-independent ode omputes the sameresult whether it is inside a mutex body or not. For instane, a statementthat referenes variables private to the thread will ompute the same valuewhether it is exeuted inside a mutex body or not. This is also true if thestatement referenes variables not modi�ed by any other onurrent thread inthe program.5.4.1 Moving Lok-Independent StatementsLok-independene is a neessary ondition for moving a statement outsidethe mutex body, but it is not suÆient. The suÆient ondition is that afterthe motion, the statement should preserve all its original ontrol and datadependenies. For instane, if the statement is inside a loop it annot bemoved out unless it is also loop invariant. This setion develops an algorithm todetet and move lok-independent statements outside mutex bodies. Setions5.4.2 extends this to ontrol strutures and 5.4.3 deals with lok-independentexpressions.Moving Statements to Premutex NodesGiven a lok-independent statement s inside a mutex body BL(N), LICM willattempt to move s to premutex or postmutex nodes for BL(N). This setiondesribes the onditions required when attempting to move s to premutexnodes for BL(N). The seletion of lok nodes to reeive statement s in theirpremutex node is done satisfying the following onditions:Protetion. Candidate lok nodes are initially seleted amongall the lok nodes in N that reah the node ontaining s(denoted node(s)). For instane, onsider the program in Figure



5.4 Lok-Independent Code Motion 99
1 A = 0;2 obegin3 T0: begin4 x = 1;5 y = 0;6 done = 0;7 lok(L);8 while (!done) f9 y = y + 3;10 A = A + x;11 unlok(L);12 x = x + 1;13 if (x > 0) f14 lok(L);15 done = 1;16 x = x � A;17 g else f18 lok(L);19 A = A � x;20 x = x + 5;21 g22 y = y � 2;23 g24 if (A < x) f25 A = A + x;26 unlok(L);27 x �= 3;28 g else f29 A = A � x;30 unlok(L);31 g32 print(A, x, y);33 end3435 T1: begin36 lok(L);37 A += f();38 unlok(L);39 end40 oend(a) Original program.

1 A = 0;2 obegin3 T0: begin4 x = 1;5 y = 0;6 done = 0;7 lok(L);8 while (!done) f9 A = A + x;10 unlok(L);11 x = x + 1;12 if (x > 0) f13 ) y = y + 3;14 ) done = 1;15 lok(L);16 x = x � A;17 g else f18 ) y = y + 3;19 lok(L);20 A = A � x;21 x = x + 5;22 g23 y = y � 2;24 g25 if (A < x) f26 A = A + x;27 unlok(L);28 x �= 3;29 g else f30 A = A � x;31 unlok(L);32 g33 print(A, x, y);34 end3536 T1: begin37 lok(L);38 A += f();39 unlok(L);40 end41 oend(b) After LICMS.Figure 5.5: Moving lok-independent statements. Moved statements are markedwith arrows ()).



100 Optimizing expliitly parallel programs5.5(a). Thread T0 ontains one mutex body BL(f7; 14; 18g) =f8; 9; 10; 11; 15; 16; 19; 20; 21; 22; 23; 24; 25; 28; 29g1. Statement A = A+xat line 10 is reahed by the lok nodes at lines 7, 14 and 18. However,statement x = x + 5 at line 20 is only reahed by the lok node at line18. This ondition provides an initial set of andidate lok nodes alledprotetors(s).Reahability. Sine s is reahed by all the nodes in protetors(s), thereis a ontrol path between eah lok node in protetors(s) and node(s).Therefore, when statement s is removed from its original loation, thestatement must be replaed on every path from eah lok node tonode(s). This implies that s may need to be repliated to more thanone premutex node.To determine whih lok nodes ould reeive a opy of s we performreahability analysis among the lok nodes reahing s (protetors(s)).This analysis omputes a partition of protetors(s), alled reeivers(s),that ontains all the lok nodes that may reeive a opy of statements. The seletion of reeiver nodes is done so that (a) there exists a pathbetween s and every lok node in protetors(s), and (b) instanes ofs our only one along any of these paths (i.e., s is not unneessarilyrepliated).Besides having multiple premutex nodes that ould reeive s, a mutexbody ould have multiple ombinations of reeiver nodes for s. Forinstane, in the program fragment of Figure 5.5(a), lok-independentstatement s : y = y + 3 at line 9 is reahed by lok nodes 7,14 and 18. For the purpose of this disussion we disregard otheronsiderations that might prevent moving s outside the mutex body(e.g., data dependenies). Notie that moving s to all three premutexnodes is not a valid option beause this reates dupliate instanes of son a single ontrol path. There are two sets of reeiver nodes for s inthis program, namely f7g and f14; 18g. Further analysis will determinewhih of these reeiver sets is the better hoie.1For simpliity we are assuming that eah line orresponds to a node in the CCFG.



5.4 Lok-Independent Code Motion 101Algorithm 5.3 omputes all the di�erent sets of lok nodes thatmay reeive a lok-independent statement s in their premutex nodes.Basially, the algorithm omputes reahability sets among the nodesin protetors(s). The set protetors(s) is partitioned into k partitionsP1; P2; : : : Pk. Nodes in eah partition Pj annot reah eah other but puttogether they reah or are reahed by every other node in protetors(s).These partitions are the sets of lok nodes that an reeive a opy of sin their premutex nodes.Data Dependenies. When moving a statement s to one of the reeiversets for s, the motion must not alter the original data dependenies forthe statement and other statements in the program. If Pj is the seletedreeiver set for s, two restritions must be observed:1. No variable de�ned by s may be used or de�ned along any pathfrom node(s) to every node in Pj.2. No variable used by s may be de�ned along any path from node(s)to every node in Pj.These two restritions are used to prune the set of reeiver nodesomputed in Algorithm 5.3. Notie that sine the program is in CSSAMEform, � funtions are also onsidered de�nitions and uses for a variable.In the example program of Figure 5.5(a) the reeiver node for statementx = x+5 at line 20 is node 18, whih annot reeive it beause x is usedat line 19. Statement y = y + 3 has two sets of reeiver nodes: f7g andf14; 18g. Node 7 annot be used beause of the � funtion for y at thehead of the while loop. However, both nodes 14 and 18 ould reeive aopy of the statement.When more than one statement is moved to the same premutex node, theoriginal data dependenies among the statements in the same premutexnode must also be preserved. This is aomplished by maintaining theoriginal ontrol preedene when moving statements into the premutexnode.



102 Optimizing expliitly parallel programsAlgorithm 5.3 Compute andidate premutex nodes (reeivers).input: A mutex body BL(N) and a lok-independent statement s.output: A list of reeiver sets. Eah reeiver set Pi ontains the lok nodes whose premutex nodesmay reeive s.1: protetors(s) set of lok nodes that reah s.2: Q protetors(s)3: k 14: while Q 6= ; do5: ni  �rst node in Q6: P (k) fnig7: remove ni from Q /* Add to P (k) all the nodes that are not onneted with ni */8: foreah node nj 2 Q and Q 6= ; do9: if (there is no path ni ! nj) and (there is no path nj ! ni) then10: P (k) P (k)Sfnjg11: remove nj from Q12: end if13: end for14: k k + 115: end while16: return reeivers  P (1); P (2); : : : ; P (k � 1)Theorem 5.2 (Hoistable statements) Let s be a lok-independentstatement s inside a mutex body BL(N). Let protetors(s) be a set of loknodes in N suh that:1. 8ni 2 protetors(s) : node ni reahes node(s),2. there exist k partitions P : P1; P2; : : : ; Pk (k � 1) of the setprotetors(s) omputed as per Algorithm 5.3, and3. there exists a partition Pj 2 P for whih (a) no variable de�nedby s is de�ned nor used in any path between node(s) and nodes inPj, and (b) no variable used by s is de�ned in any path betweennode(s) and nodes in Pj.If these onditions hold for at least one partition Pj then it is possible tomove s to the premutex nodes for the lok nodes in Pj. 2Proof Sine node(s) is reahed by every node ni 2 protetors(s), there existsa path between ni and node(s). Let Pj be a set of nodes that omplies with thethree onditions in the theorem. The nodes in Pj have the following properties:



5.4 Lok-Independent Code Motion 1031. 8ni; nk 2 Pj suh that ni 6= nk, there is no ontrol path betweenni and nk. This is immediate from the way the algorithm seletsthe nodes (lines 9-10 of Algorithm 5.3).2. 8ni 2 protetors(s) : if ni 62 Pj then 9nk 2 Pj suh that thereis a path between ni and nk. Suppose that there is a node ni 2protetors(s) that annot be reahed by any node in Pj then thealgorithm would have plaed ni in Pj, whih is a ontradition.The previous two onditions guarantee that if s is removed from node(s)and repliated to every node in Pj then one and only one instane of s willstill be available on paths leading to or from nodes in protetors(s). Finally,let Ds be the set of variables de�ned in s. Sine no path between node(s) andthe nodes in Pj de�nes or uses a variable in Ds, moving s will not alter datadependenies for s. Similarly, let Us be the set of variables used in s. Sine nopath between node(s) and ni de�nes de�nes variables in Us, it is safe to moves. �Moving Statements to Postmutex NodesThe LICM transformation may also move statements to postmutex nodes ofa mutex body BL(N). The analysis for postmutex nodes is similar to theprevious ase. The onditions are essentially the reverse of the onditionsrequired for premutex nodes.Protetion. Unlok node xi must be reahed by the same lok nodes thatreah statement s. This guarantees that there exists a ontrol pathbetween node(s) to xi. This ondition provides an initial set of unloknodes to onsider as andidates. In the example program in Figure5.5(a), the statement y = y + 3 at line 9 is reahed by lok nodes 7, 14and 18 whih also reah unlok nodes 11, 26 and 30.Reahability. Algorithm 5.4 omputes all the di�erent sets of unlok nodesthat may reeive a lok-independent statement s in their postmutexnodes. The algorithm performs the same reahability analysis doneby Algorithm 5.3. The set releasers(s) ontains all the unlok nodes



104 Optimizing expliitly parallel programsreahed by the same lok nodes that reah s. The set releasers(s) ispartitioned into k partitions X1; X2; : : :Xk. Nodes in eah partition Xjannot reah eah other but put together they reah or are reahed byevery other node in releasers(s). These partitions are the sets of unloknodes that an reeive a opy of s in their postmutex nodes.Data dependenies. The same requirements needed for premutex nodesare neessary for postmutex nodes. If any variable de�ned by s is de�nedor used in any path from s to a node in releasers(s) then s may not bemoved. Similarly, if any variable used by s is de�ned in any path from sto a node in releasers(s) then s may not be moved.Algorithm 5.4 Compute andidate postmutex nodes (releasers).input: A mutex body BL(N) and a lok-independent statement s.output: A list of releaser sets. Eah releaser set Xi ontains the unlok nodes whose postmutexnodes may reeive s.1: protetors(s) set of lok nodes that reah s.2: Q fxi 2 BL(N) suh that xi is reahed by a node in protetors(s)g3: k 14: while Q 6= ; do5: xi  �rst node in Q6: X(k) fxig7: remove xi from Q /* Add to X(k) all the nodes that are not onneted with xi */8: foreah node xj 2 Q and Q 6= ; do9: if (there is no path xi ! xj) and (there is no path xj ! xi) then10: X(k) X(k)Sfxjg11: remove xj from Q12: end if13: end for14: k k + 115: end while16: return releasers  X(1); X(2); : : : ;X(k � 1)Theorem 5.3 (Downward-movable statements) Let s be alok-independent statement s inside a mutex body BL(N). Let releasers(s)be a set of unlok nodes in BL suh that:



5.4 Lok-Independent Code Motion 1051. 8xi 2 releasers(s) : node xi is reahed by a node in protetors(s),2. there exist k subsets X : X1; X2; : : : ; Xk (k � 1) of the setreleasers(s) omputed as per Algorithm 5.4, and3. there exists a partition Xj 2 X for whih (a) no variable de�nedby s is de�ned nor used in any path between node(s) and nodes inXj, and (b) no variable used by s is de�ned in any path betweennode(s) and nodes in Xj.If these onditions hold for at least one partition Xj then it is possible tomove s to the postmutex nodes for the unlok nodes in Xj. 2Proof Similar to the proof for Theorem 5.2. �LICM for Statements (LICMS)Theorems 5.2 and 5.3 are used as the basis for the algorithm to movestatements outside mutex bodies (Algorithm 5.5). Notie that even though werefer to hoistable statements for statements that an be moved to a premutexnode, the movement is not neessarily made against the ow of ontrol. Thename was hosen beause that is what happens in the most general ase.Similarly, downward-movable statements may be moved up.The LICMS algorithm sans all the mutex bodies in the program lookingfor lok-independent statements to move outside the mutex body. Eahlok-independent statement s is heked against the onditions desribedpreviously. Lines 8 � 15 in Algorithm 5.5 determine the sets of premutexreeivers for s. The initial set of andidates omputed by Algorithm 5.3 heksevery lok node in a mutex body against eah other looking for paths betweenthem. If mb is the number of mutex bodies in the program, this an beaomplished in O(mb2) time. To hek data dependenies eah statementhas to be ompared with all the statements in paths to eah premutex node(lines 9 � 15). Given that there may be up to mb premutex nodes, datadependenies an be heked in O(mb�jSj2), where S is the set of statementsin the program. This yields a total time omplexity for lines 8 � 15 ofO(mb2+mb�jSj2). Similarly, lines 16�24 ompute sets of postmutex reeiversin time O(mb2 +mb � jSj2).



106 Optimizing expliitly parallel programsNotie that it might be possible that a statement an be moved to boththe premutex and the postmutex nodes. In that ase a ost model shoulddetermine whih node is more onvenient. We will base our ost model on thee�ets of lok ontention. Suppose that there is high ontention on a partiularlok. All the statements moved to premutex nodes will not be a�eted byit beause they exeute before aquisition of the lok. However, statementsmoved to the postmutex node will be delayed if there is ontention beausethey exeute after the lok has been released. Therefore, when a statementan be moved to both the premutex and postmutex nodes, the premutex nodeis seleted.When more than one set of premutex or postmutex nodes an reeive astatement s a ost model should be use to selet the more pro�table target.Although not addressed in this doument, ost models may inlude simplefators like heking that statements are not moved into loops or even delayingall the hoisting deisions until the algorithm has �nished analyzing all thestatements in a single mutex body.Finally, if the mutex body is empty at the end of the transformation, thelok and unlok nodes are removed (lines 36�39). The total time omplexityfor the LICMS algorithm is then O(m�mb�(mb2+mb�jSj2)). In general, weexpet the ost to be dominated by jSj beause m (number of lok variables)and mb (number of mutex bodies in the program) will be relatively smallompared to jSj. The e�ets of LICMS on the program in Figure 5.5(a) areshown in Figure 5.5(b). Notie that the statement y = y+3 at line 9 in Figure5.5(a) as been repliated into lines 13 and 18 in the transformed programof Figure 5.5(b). It is neessary to repliate the statement, otherwise thetransformed program will not ompute the same value of y than the originalone.5.4.2 LICM for Control StruturesThe basi mehanism for moving statements outside mutex bodies an be usedto move lok-independent ontrol strutures. Control strutures are handledby heking and aggregating all the nodes ontained in the struture into asingle super-node and treating it like a single statement. After this proess,



5.4 Lok-Independent Code Motion 107
Algorithm 5.5 Lok-Independent Code Motion for Statements (LICMS).input: A CCFG G = hN;E;EntryG;ExitGi in CSSAME form with pre and postmutex nodesinserted in every mutex bodyoutput: The program with lok-independent statements moved to the orresponding premutex andpostmutex nodes1: foreah lok variable Li do2: foreah mutex body BLi (N) 2MutexStrut(Li) do3: ni  node(Li)4: foreah lok-independent statement s reahed by ni do5: Ds  variables de�ned by s6: Us  variables used by s7: /* Determine whih premutex nodes an reeive s. */8: P  reeivers of s at premutex nodes (Algorithm 5.3)9: foreah Pi 2 P do10: foreah node n 2 Pi do11: if (any path between n and node(s) de�nes or uses a variable in Ds)or (any path between n and node(s) de�nes a variable in Us) then12: remove Pi from P13: end if14: end for15: end for16: /* Determine whih postmutex nodes an reeive s. */17: X  reeivers of s at postmutex nodes (Algorithm 5.4)18: foreah Xi 2 X do19: foreah node x 2 Xi do20: if (any path between x and node(s) de�nes or uses a variable in Ds)or (any path between x and node(s) de�nes a variable in Us) then21: remove Xi from X22: end if23: end for24: end for25: /* Sets P and X ontain sets of premutex and postmutex nodes that an reeive s. */26: if P 6= ; then27: selet one Pi 2 P (ost model or random)28: remove s from its original loation29: repliate s to eah node n 2 Pi30: else if X 6= ; then31: selet one Xi 2 X (ost model or random)32: remove s from its original loation33: repliate s to eah node x 2 Xi34: end if35: end for36: /* Remove the mutex body if it is empty. */37: if BLi (N) = ; then38: remove all the lok and unlok nodes of BLi(N)39: end if40: end for41: end for



108 Optimizing expliitly parallel programsAlgorithm 5.5 an be used to hoist the strutures outside mutex bodies.Algorithm 5.6 looks for ontrol strutures that only ontainlok-independent statements. Control strutures are identi�ed usingstandard interval analysis tehniques (Aho et al. 1986). Basially, ontrolstrutures form a single-entry, single-exit region of the graph. An entry nodedominates all the nodes in the ontrol struture. An exit node post-dominatesall the nodes in the ontrol struture.One identi�ed, sub-graphs inside a mutex body are sanned to determineif all their interior statements are lok-independent. If so, the variables de�nedand used by eah statement are aggregated into the sets DH and UH for eahsub-graph (lines 9 � 22 in Algorithm 5.6). After all the sub-graphs in everymutex body of the program have been identi�ed, Algorithm 5.5 is used to hoistthem out of mutex bodies. The identi�ation of lok-independent sub-graphsan be done in O(m�mb�jSj) time. Where m is the number of lok variablesused in the program, mb the number of mutex bodies and S is the set ofstatements in the program.Algorithm 5.6 LICM for Control Strutures (LICMT).input: A CCFG G = hN;E;EntryG;ExitGi in CSSAME formoutput: The graph with lok independent ontrol strutures moved to the orresponding premutexand postmutex nodes1: build sub-graphs for all ontrol strutures in the program2: foreah lok variable Li do3: foreah mutex body BLi (N) 2MutexStrut(Li) do4: /* Build sub-graphs for all the ontrol strutures in the mutex body. */5: /* Find lok-independent sub-graphs. */6: foreah subgraph H inside BLi (N) do7: DH  ;8: UH  ;9: foreah statement s in H do10: if s is not lok-independent then11: mark H as lok-dependent (i.e., it annot be moved)12: ontinue with next sub-graph13: else14: /* Add de�nes and uses made by s to the sub-graph. */15: DH  DH SDs16: UH  UH SUs17: end if18: end for19: mark H as lok-independent20: end for21: end for22: end for23: hoist lok-independent sub-graphs using Algorithm 5.5



5.4 Lok-Independent Code Motion 1095.4.3 LICM for ExpressionsIf hoisting statements or ontrol strutures outside mutex bodies is notpossible, it may still be possible to onsider moving lok-independentsub-expressions outside mutex bodies. This strategy is similar to movingstatements (Algorithm 5.5) with the following di�erenes:1. Sub-expressions do not de�ne variables. They only read variables orprogram onstants.2. If a sub-expression is moved from its original loation, the omputationperformed by the expression must be stored in a temporary variablereated by the ompiler. The original expression is then replaed bythe temporary variable. This is the same substitution performed byommon sub-expression and partial redundany elimination algorithms(Aho et al. 1986; Chow et al. 1997).3. Contrary to the ase with statements and ontrol strutures, expressionsan only be moved against the ow of ontrol. The reason is that thevalue omputed by the expression needs to be available at the statementontaining the original expression.Algorithm 5.7 �nds and removes lok-independent expressions from mutexbodies in the program. The proess of gathering andidate expressions issimilar to that of SSAPRE, an SSA based partial redundany eliminationalgorithm (Chow et al. 1997). Mutex bodies are sanned for lok-independent�rst-order expressions, whih are expressions that ontain only one operator.Higher order expressions are handled by suessive iterations of the algorithm.One lok-independent expressions are identi�ed, the algorithm looks forsuitable premutex or postmutex nodes to reeive eah expression. We observethat sine expressions an only be hoisted up in the graph, it is not neessaryto onsider postmutex nodes when moving lok-independent expressions.Theorem 5.4 (Target nodes for lok-independent expressions) Let ebe a lok-independent expression inside mutex bodyBL(N). If e an be hoistedto a postmutex node of BL(N) there exists a premutex node of BL(N) thatan also reeive e. 2



110 Optimizing expliitly parallel programsAlgorithm 5.7 Lok-Independent Code Motion for Expressions (LICME).input: A CCFG in CSSAME formoutput: The graph with lok-independent expressions moved to the orresponding premutex nodes1: repeat2: foreah lok variable Li do3: foreah mutex body BLi (N) 2MLi do4: E  ES set of lok-independent expressions in BLi (N).5: if E 6= ; then6: foreah expression Ej 2 E do7: P  premutex reeivers for Ej (Algorithm 5.3)8: andidates  ;9: foreah Pi 2 P do10: if 8n 2 Pi : (n DOM node(Ej)) or (node(Ej) PDOM n) then11: andidates  Pi12: stop looking for andidates13: end if14: end for15: if andidates 6= ; then16: insert the statement tj = Ej in all the premutex nodes for lok nodes in andidates17: end if18: end for19: end if20: end for21: end for22: /* Replae hoisted expressions inside eah mutex body. */23: foreah lok variable Li do24: foreah mutex body BLi (N) 2MLi do25: replae hoisted expressions in BLi (N) with their orresponding temporaries26: end for27: end for28: until no more hanges have been madeProof Let x be an unlok node in BL(N) suh that postmutex (x) an reeivee. Sine e an only be moved against the ow of ontrol, there exists a ontrolpath from x to node(e). Furthermore, sine e is inside the mutex body, node(e)must be reahed by some lok node n 2 N suh that every path from x tonode(e) goes through n. Therefore, if e an be plaed in postmutex (x) it analso be moved to premutex (n). �We use the previous result to redue the number of andidate nodes to beonsidered when moving lok-independent expressions. Only lok nodes areonsidered by the algorithm. Furthermore, the andidate lok must dominateor be post-dominated by the node holding the expression (lines 7 � 13 inAlgorithm 5.7).The aeptable reeiver sets are stored in the set andidates. Using asimilar reasoning to Theorem 5.4 it an be shown that in this ase, thealgorithm for omputing reeiver premutex nodes (Algorithm 5.3) will �nd



5.5 Mutex Body Loalization 111none or exatly one set of lok nodes that an reeive the expression in theirpremutex nodes.Figure 5.6 shows an example program before and after running the LICMalgorithm. When LICM is applied to the program in Figure 5.6(a), the �rstphase of the algorithm moves the statement at line 9 and the assignment j = 0to the premutex node. The statement at line 13 is sunk to the postmutexnode resulting in the equivalent program in Figure 5.6(b). There is still somelok-independent ode in the mutex body, namely the expressions j < M atline 11, the statement j++ at line 11 and the expression y[j℄+sqrt(a)�sqrt(b)at line 12. The only hoistable expression is sqrt(a) � sqrt(b) beause it is theonly expression with all its reahing de�nitions outside the mutex body. Notethat a loop-invariane transformation would have deteted this expression andhoisted it out of the loop. LICM goes a step further and hoists the expressionoutside the mutex body.5.4.4 Putting it All Together: Lok-Independent CodeMotion (LICM)The individual algorithms disussed in previous setions an be ombined intoa single LICM algorithm (Algorithm 5.8). There are four main phases tothe algorithm. The �rst phase looks for mutex bodies that have nothing butlok-independent nodes. These are the simplest ases. If all the nodes ina mutex body are lok-independent, then the lok operations at the loknodes and the unlok operations in the body an be removed. The nextthree phases move interior lok-independent statements, ontrol strutures andexpressions outside the mutex bodies in the program (Algorithms 5.5, 5.6 and5.7). We show the e�et of the LICM transformation in several expliitlyparallel programs in Chapter 6.5.5 Mutex Body LoalizationIn this setion we disuss a transformation tehnique that may enhane theopportunities for further optimization of the program. Consider a mutex body



112 Optimizing expliitly parallel programs
1 double X[ ℄; =� shared �=23 parloop (i, 0, N) f4 double a, b; =� loal �=5 double y[ ℄; =� loal �=67 . . .8 lok(L);9 b = a � sin(a);10 for (j = 0; j < M; j++) f11 X[j℄ = y[j℄ + sqrt(a) � sqrt(b);12 g13 a = y[i℄;14 unlok(L);15 . . .16 g(a) Program before LICM.1 double X[ ℄; =� shared �=23 parloop (i, 0, N) f4 double a, b; =� loal �=5 double y[ ℄; =� loal �=67 . . .8 b = a � sin(a);9 j = 0;10 lok(L);11 for (; j < M; j++) f12 X[j℄ = y[j℄ + sqrt(a) � sqrt(b);13 g14 unlok(L);15 a = y[i℄;16 . . .17 g(b) After LICM on statements.

1 double X[ ℄; =� shared �=23 parloop (i, 0, N) f4 double a, b; =� loal �=5 double y[ ℄; =� loal �=67 . . .8 b = a � sin(a);9 j = 0;10 t1 = sqrt(a) � sqrt(b);11 lok(L);12 for (; j < M; j++) f13 X[j℄ = y[j℄ + t1;14 g15 unlok(L);16 a = y[i℄;17 . . .18 g() After LICM on expressions.Figure 5.6: E�ets of lok-independent ode motion (LICM).



5.5 Mutex Body Loalization 113Algorithm 5.8 Lok-Independent Code Motion (LICM).input: A CCFG in CSSAME formoutput: The graph with lok-independent expressions moved to the orresponding premutex nodes/* First phase. Try to remove lok and unlok nodes for mutex bodies with nothing but LI nodes. */foreah lok variable Li doforeah mutex body BLi (N) doif all the nodes a 2 BLi (N) are lok independent thenremove all lok and unlok nodes for BLi (N)end ifend forend for/* Seond phase. Move whole ontrol strutures out. */perform LICM on strutures (Algorithm 5.6)/* Third phase. Move individual statements out. */perform LICM on statements (Algorithm 5.5)/* Fourth phase. Try to move expressions. */perform LICM on expressions (Algorithm 5.7)BL that modi�es a shared variable V (Figure 5.7(a)). With the exeption ofthe de�nition reahing the unlok node of BL, all the modi�ations done to Vinside the mutex body an only be observed by the thread.Given these onditions, it is possible to reate a loal opy of V and replaeall the referenes to V inside the mutex body to referenes to the loal opy(Figure 5.7(b)). We all this transformation mutex body loalization (MBL).It is the dual tehnique to LICM. While LICM looks for lok-independentode, MBL reates lok-independent ode by modifying the left-hand side ofstatements. The basi transformation is straightforward:1. At the start of the mutex body a loal opy of the shared variableis reated if there is at least one use for the variable with reahingde�nitions outside the mutex body.2. At the mutex body exits, the shared opy is updated from the loal opyof the variable if at least one internal de�nition of the variable reahesthat partiular unlok node.3. All the interior referenes to the shared variable are modi�ed so thatthey referene the loal opy.Notie that this transformation is legal provided that the a�eted referenesare always made inside mutex bodies. Otherwise, the transformation mightprevent memory interleavings that were allowed in the original program.
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double V = 0;parloop (i, 0, N) fdouble x, y[ ℄;int i;. . .lok(L);i = 0;while (V <= x) fV = V + y[i++℄;gunlok(L);. . .g(a) A mutex body before loalization.

double V = 0;parloop (i, 0, N) fdouble x, y[ ℄, p V;int i;. . .lok(L);p V = V;i = 0;while (p V <= x) fp V = p V + y[i++℄;gV = p V;unlok(L);. . .g (b) After loalization.
double V = 0;parloop (i, 0, N) fdouble x, y[ ℄, p V;int i;. . .lok(L);p V = 0;i = 0;while (p V <= x) fp V = p V + y[i++℄;gV = V + p V;unlok(L);. . .g() After redution reognition.

double V = 0;parloop (i, 0, N) fdouble x, y[ ℄, p V;int i;. . .p V = 0;i = 0;while (p V <= x) fp V = p V + y[i++℄;glok(L);V = V + p V;unlok(L);. . .g (d) After LICM.Figure 5.7: Appliations of mutex body loalization.



5.5 Mutex Body Loalization 115Algorithm 5.10 makes loal opies of a variable a inside a mutex bodyBL(N) if the variable an be loalized. To determine whether the variable aan be loalized it alls Algorithm 5.9 (a subroutine of Algorithm 5.10) whihreturns true if a an be loalized inside mutex body BL(N). The loalizationalgorithm relies on two data strutures that an be built during the � rewritingphase of the CSSAME algorithm (Algorithm 4.5):exposedUses(N) is the set of upward-exposed uses from the mutex bodyBL(N). This set is assoiated with the entry nodes in N .reahingDefs(X) is the set of de�nitions that an reah the exit nodes X ofBL(N).Algorithm 5.10 starts by heking whether the variable an be loalized(lines 1 � 4). It then heks where the loal opies are needed. If there areupward-exposed uses of a, a opy is needed at the start of the mutex body(lines 5 � 16). If there are de�nitions of a reahing an exit node, the sharedopy of a must be updated before exiting the mutex body (lines 17� 29). The�nal phase of the algorithm updates the interior referenes to a to be referenesto p a (lines 30 � 34). After this phase, the CSSAME form for the programhas been altered and it should be updated. The simplest way to do this is torun the CSSAME algorithm again (Algorithm 4.7). However, this might beexpensive if the loalization proess is repeated many times.An alternate solution is to inrementally update the CSSAME form afterthe variable has been loalized. The following are some guidelines that shouldbe onsidered when performing an inremental update of the CSSAME form:1. If the loal opy is reated at the start of the mutex body, the statementp a = a ontains a use of a. This use of a will have the same ontrolreahing de�nition that the upward-exposed uses of a have. Notiethat all the upward-exposed uses of a have the same ontrol reahingde�nition.Sine this statement has a oniting use of a, it requires a � funtion.The argument list to this � funtion is the union of all the argumentsto all the � funtions for a inside the mutex body. Notie that the �



116 Optimizing expliitly parallel programsfuntions for a should be for upward-exposed uses of a. This is beausethe program is in CSSAME form and all oniting referenes to aare made inside mutex bodies of the same mutex struture (i.e., a isloalizable).2. All the � funtions for a inside the mutex body must disappear beauseall the interior referenes to a are replaed by referenes to p a.3. All the interior � funtions for a must be onverted into � funtions forp a.4. If the shared opy is updated at the end of the mutex body, the statementa = p a ontains a use of p a whose ontrol reahing de�nition shouldbe the de�nition of p a reahing the exit node x.Algorithm 5.9 Loalization test (loalizable).input: A variable a and mutex body BL(N)output: true if a an be loalized in BL(N), false otherwise1: ML  mutex struture ontaining BL(N)2: /* Chek every oniting referene r to a in the program. All the oniting */3: /* referenes to a must our inside mutex bodies of ML, otherwise a is not loalizable. */4: foreah oniting referene r 2 Refs(a) do5: /* If we annot �nd r in any of the mutex bodies of ML, then a is not loalizable. */6: proteted  false7: foreah mutex body B0L(N 0) 2ML do8: if node(r) is reahed by some lok node in N 0 then9: proteted  true10: end if11: end for12: if not proteted then13: return false14: end if15: end for16: /* All the referenes to a are proteted. Therefore, a is loalizable. */17: return trueThe MBL transformation by itself does not neessarily improve theperformane of a program but it opens up new optimization opportunities.The main e�et of loalization is that it might reate more lok-independentode. For instane, if a thread ontains read-only referenes to a variable V ,loalizing V will make those reads into lok-independent operations whih inturn might make the whole statement lok-independent. Consider the sampleprogram in Figure 5.7(a). After loalization (Figure 5.7(b)), most statements



5.5 Mutex Body Loalization 117Algorithm 5.10 Mutex body loalization.input: (1) An expliitly parallel program P in CSSAME form, (2) A variable a to be loalized, (3)A mutex body BL(N)output: BL(N) with variable a loalized1: /* Chek if a an be loalized (Algorithm 5.9) */2: if not loalizable(a;BL(N)) then3: return4: end if5: /* Chek for upward-exposed uses of a. Sine the program is in CSSAME form, */6: /* upward-exposed uses have already been omputed (Algorithm 4.5). If there are */7: /* upward-exposed uses of a then we need to make a loal opy of a at the start of BL(N). */8: needEntryCopy  false9: foreah use u 2 exposedUses(N) do10: if u is a use of a then11: needEntryCopy  true12: end if13: end for14: if needEntryCopy then15: insert the statement p a = a at the start of the mutex body16: end if17: /* Chek if any de�nition of a reahes the exit nodes of BL(N). */18: /* Sine the program is in CSSAME form, the de�nitions that reah the exit nodes X */19: /* have already been omputed (Algorithm 4.5). If a de�nition */20: /* of a reahes x, we need to make a opy of a before leaving the mutex body. */21: needExitCopy  false22: foreah de�nition d 2 reahingDefs(X ) do23: if d is a de�nition of a then24: needExitCopy  true25: end if26: end for27: if needExitCopy then28: insert the statement a = p a at the exit nodes of the mutex body29: end if30: /* Update referenes to a inside the mutex body to referene */31: /* the loal version pa instead of the shared version a. */32: foreah referene to a inside BL(N) do33: replae a with p a34: end for35: update CSSAME information for all referenes to p a inside BL(N)inside the mutex body for L are lok-independent. However, none an bemoved outside beause of the read and write operations to the shared variableV at the fringes of the mutex body. If the ompiler inorporates a redutionreognition pass, it is possible to do the redution loally and only update Vat the end (Figure 5.7()). Now all the lok-independent ode in the mutexbody an be moved to the premutex node resulting in the equivalent program inFigure 5.7(d). As we will disuss in Chapter 6 this is a ommon transformationperformed manually by programmers. Using these tehniques, it is possible tomake this transformation automatially in the ompiler.



118 Optimizing expliitly parallel programs5.5.1 Single Writer, Multiple Readers Lok PikingSuppose that a parallel program exhibits an aess pattern to a shared variableV suh that1. V is read and written by exatly one thread Tw and it is read-only inall of the threads onurrent with Tw (i.e. there is a single writer andmultiple readers for V ),2. all the referenes to V are atomi with respet to the operation beingperformed (i.e., V is not an aggregate data type that may requiremultiple memory operations to update or retrieve),3. within the onurrent threads (i.e., the writer Tw and all the readers),variable V is only aessed inside ritial setions of the ode, and4. the underlying memory model is strongly onsistent.Under these irumstanes it is possible to loalize the referenes to V inTw so that atomiity an be maintained without requiring loks. For example,onsider the program in Figure 5.8(a). Thread T0 omputes a value for V ,heks a bound and updates V if neessary (assume that global variables Xand Y have no onits). Both threads T1 and T2 read V but never modifyit. The synhronization on V is neessary to prevent threads T1 and T2 fromreading intermediate values of V while T0 omputes. Suppose that we loalizevariable V inside T0 to obtain the equivalent program in 5.8(b). Sine Xand Y ontain no onits and the referenes to V have been loalized, allthe statements inside the mutex body are now lok-independent and an bemoved out to obtain the program in Figure 5.8(). Finally, sine thread T0writes to V only one, the loks are not really neessary and an be removedto obtain the equivalent program in in Figure 5.8(d).5.6 SummaryIn this hapter we used the CSSAME framework to develop two types ofoptimizing transformations: the adaptation of sequential tehniques to work on



5.6 Summary 119X = . . .Y = . . .obeginT0: begin. . .lok(L);a = 0;while (a <= X) fa = a + Y;gunlok(L);endT1: beginlok(L);. . . = a;unlok(L);endT2: beginlok(L);. . . = a;unlok(L);endoend(a) Original program.

X = . . .Y = . . .obeginT0: begin. . .lok(L);p a = 0;while (p a <= X) fp a = p a + Y;ga = p a;unlok(L);endT1: beginlok(L);. . . = a;unlok(L);endT2: beginlok(L);. . . = a;unlok(L);endoend(b) After loalization.X = . . .Y = . . .obeginT0: begin. . .p a = 0;while (p a <= X) fp a = p a + Y;glok(L);a = p a;unlok(L);endT1: beginlok(L);. . . = a;unlok(L);endT2: beginlok(L);. . . = a;unlok(L);endoend() After LICM.

X = . . .Y = . . .obeginT0: begin. . .p a = 0;while (p a <= X) fp a = p a + Y;ga = p a;endT1: begin. . . = a;endT2: begin. . . = a;endoend(d) After relaxing lok independene.Figure 5.8: E�ets of MBL in the presene of single-writer, multiple-readers.



120 Optimizing expliitly parallel programsexpliitly parallel programs and the diret optimization of the synhronizationstruture of a parallel program. To our knowledge the tehniques presented inthis hapter are the �rst to address the problem of optimizing mutual exlusionstrutures in an expliitly parallel program.These transformations will bene�t expliitly parallel programs that usemutex synhronization frequently. In partiular, programs that make useof thread-safe libraries (e.g., multi-threaded Java appliations) may ontainsuperuous mutex synhronization that slow down the program unneessarily.In this ontext we observed that these tehniques an have a signi�antimpat on performane. Even sequential programs an bene�t from thesetransformations. In the following hapter we study the e�etiveness of thesetehniques in several C and Java appliations.



Chapter 6ResultsThe tehniques developed in this thesis are the �rst step towards a generaloptimizing ompiler for expliitly parallel programs. We have implementedmany of the analysis and optimization algorithms presented in this thesis intoa ompiler for the C language. All the example program fragments desribedin previous hapters have been analyzed and optimized by our ompiler. Wehave also been able to perform experiments to demonstrate the potential forsome of these tehniques in omplete programs.We studied two main types of appliations: those in whih the user haslittle ontrol over synhronization strutures in the program and those in whihthe user has omplete ontrol over all the synhronization used in the program.Appliations in the �rst group are developed in languages that exposemost of the synhronization and parallelism details. We have seleted someappliations from the SPLASH suite of shared-memory parallel programs(Singh et al. 1992) and appliations bundled with the TreadMarks DSM system(Keleher et al. 1994). These appliations represent ode developed by expertprogrammers who are very onsious about the performane impliationsof synhronization operations. The synhronization strutures found inthese appliations have been optimized manually by the programmer. Asa onsequene we did not expet to �nd many opportunities for optimizationin the ontext of the tehniques developed in this thesis. However, we did �ndthat some of the manual modi�ations made by the programmer ould havebeen performed automatially using our tehniques.121



122 ResultsThe seond group onsists of appliations typially developed inprogramming environments that produe generi skeleton ode and systemsthat provide thread-safe libraries. Consider a high-level programming languagelike Java. Due to the thread-safe harateristis of the Java libraries,appliation programs may spend up to half their exeution time performingunneessary synhronization (Baon et al. 1998). The key reason for thisoverhead is that the libraries are generi and are not spei� to an individualappliation's ontext. Hene, they have to be onservative in the assumptionsthey make. Therefore, when onsidered within the ontext of an atualprogram it might turn out that most of the synhronization operations arenot neessary. Tehniques like the lok-piking strategies or lok-independentode motion bene�t these appliations. Similar bene�ts are obtained inparallel programs generated via high-level programming environments. Thesetools must generate onservatively orret ode, and are typially based onode skeletons that, beause of their generality, must ontain over-onstrainedsynhronization. Similar to the previous ase, mahine generated ode mustbe overly onservative for generality and safety.6.1 ImplementationMany of the algorithms disussed in previous setions have been implemented1in a prototype ompiler for the C language using the SUIF ompiler system(Hall et al. 1996). To avoid modifying SUIF's front-end we added support forobegin/oend and parloop parallel strutures via language maros. Thesemaros re-de�ne ontrol strutures of the C language so that the ompileran reognize them at the intermediate language level. The obegin/oendstruture is represented by a swith statement. A speially named indexvariable helps the ompiler distinguish a regular swith statement from aobegin. Eah di�erent ase setion will be exeuted by a di�erent threadat runtime. Our system leverages on the SUIF runtime system to exeutethe parallel program. SUIF's runtime system is designed to run SPMD styleprograms. Our ompiler annotates obegin statements to be exeuted in1A preliminary version is available at http://www.s.ualberta.a/�jonathan/CSSAME/



6.2 Experimental Results 123parallel and modi�es the index variable to be the thread id. Parallel loops arereognized using a similar tehnique. A parloop is a for loop with a speiallynamed index variable. Sine SUIF diretly supports parloop style parallelismall the ompiler has to do is mark seleted for loops as parallel loops.One the program has been parsed by the SUIF front-end, the ompilerreates the orresponding CCFG and its CSSAME form. We do not transformthe input program into SSA form. Instead we use fatored use-def hains(Wolfe 1996) in the owgraph and display the soure ode annotated withthe appropriate � and � funtions (variables are not renamed but referenedusing line number information in the orresponding � or � funtions). TheCCFG implementation is an extension of the sequential Control Flow Graphlibrary provided by Mahine SUIF (Holloway and Young 1997). The CCFGan be displayed using a variety of graph visualization systems. The owgraphs in this thesis were generated by the ompiler and laid out usingthe GraphViz system (North and Koutso�os 1994). The CSSAME formfor the program an also be displayed as an option. Finally, the mutualexlusion validation tehniques disussed in Setion 3.3.2 are implemented asompile-time warnings to the user.A basi form of inter-proedural analysis (IPA) information is gatheredby the urrent implementation. At eah proedure all, shared variablesreferened and mutex bodies de�ned by the alled proedure are propagatedto the all site. This allows the onit and synhronization analyzer totreat funtion alls almost as if they were inlined ode. Finally, we haveimplemented partial support for redutions based on the SUIF redutionreognizer. Currently, the ompiler is limited to redutions inside for loops.6.2 Experimental ResultsSynhronization overhead is sometimes aused by an expensive implementationof lok and unlok operations. To address this problem, several tehniqueshave been proposed to implement more eÆient loking primitives (Baon et al.1998; Mellor-Crummey and Sott 1991; Unrau et al. 1994). The tehniquesfor eliminating superuous synhronization operations developed in this thesis



124 Resultsan omplement the bene�ts of using an eÆient loking mehanism.There is another soure of overhead that even the most eÆientimplementation annot alleviate: ontention. Lok ontention ours whenthe demand for a partiular lok variable is so high that threads spend asigni�ant amount of time waiting for other threads to release the lok. In thefollowing setions we demonstrate the e�ets of the tehniques developed inthis thesis on several programs. Setion 6.2.1 desribes two appliations fromthe SPLASH suite. Setion 6.2.2 studies some parallel and sequential Javaprograms.Note that at the time of this writing, the ompiler is not yet ready to takleall the programs desribed in this setion. In the urrent implementation,alias analysis is limited to simple pointer aliasing: the ompiler only detetsaliases for pointers that expliitly take the address of a shared variable. Theompiler also laks array analysis; it treats arrays as atomi memory referenes.The Omega library (Pugh and Wonnaott 1992) ould be used to performarray setion analysis. Alternatively, the array SSA form proposed by Collard(Collard 1999) ould be used. This work is beyond the sope of the thesis.Beause of these limitations we simpli�ed the input program for some ofthese appliations to help the urrent implementation analyze and optimize theode. The modi�ations inluded replaing the original thread reation odewith parallel loops and/or obegin/oend strutures, inlining some funtionsto irumvent limitations during synhronization analysis and substitutingarrays of loks by single salar lok variables. One the ompiler analyzedand optimized the simpli�ed version, we made the same modi�ations to theoriginal programs. This proess was applied to the appliations in SetionsSetions 6.2.1 and 6.2.3.The framework developed in this thesis annot be diretly applied toJava beause Java has a di�erent high-level model for onurreny andsynhronization. However, we believe that it is possible to adapt the tehniquesdeveloped in this doument to �t the Java model. As a preliminary feasibilitystudy, we manually applied the transformation algorithms to a set of Javaappliations. The results of our experimentation are desribed in Setion6.2.2 where we desribe the results and the potential performane bene�ts



6.2 Experimental Results 125of adapting our transformations to Java.6.2.1 SPLASH AppliationsSPLASH (Stanford Parallel Appliations for Shared-Memory) (Singh et al.1992; Woo et al. 1995) is a benhmark suite for shared memory arhiteturesdesigned as a ase study to evaluate di�erent issues in shared memoryarhitetures. In the following setions we disuss our optimization tehniquesin the ontext of two SPLASH appliations: Water and Oean.Some of the mutual exlusion synhronization strutures used in theseappliations were manually optimized by the original developers. We willshow that using the tehniques desribed in this thesis, it would have beenpossible to obtain similar performane bene�ts without the added omplexityof manually modifying the ode.WaterThe Water appliation simulates fores and potentials in a system of liquidwater moleules. The simulation is done over a spei�ed number of time-stepsuntil the system reahes equilibrium. Mutual exlusion synhronization is usedwhen omputing inter-moleular interations and for keeping a global sum thatis omputed every time-step.The omputation of inter-moleular interations is synhronized usingone lok per moleule. The ode fragment in Figure 6.1 shows themutex bodies in the proedure UPDATE FORCES. Eah mutex body updatesa shared three-dimensional array. The right hand side of eah expressionis lok-independent. After the LICM transformation, the mutex bodies inthis proedure are onverted to their equivalent versions shown in Figure 6.2(for spae reasons we only inlude the �rst mutex body, the modi�ationsto the seond mutex body are idential). The transformation hoisted theright-hand side of every assignment statement to the temporary variablest1; t2; : : : t9. Furthermore, the address omputation needed to perform thearray referenes are also lok-independent. Therefore, the ompiler was ableto move the assignments to variables suif tmp19; suif tmp21; : : : suif tmp35



126 ResultsUPDATE FORCES(DEST, mol, omp, XL, YL, ZL, FF)=� from the omputed distanes et., ompute theintermoleular fores and update the fore (oraeleration) loations �=double XL[ ℄, YL[ ℄, ZL[ ℄, FF[ ℄;f double G110[3℄, G23[3℄, G45[3℄, TT1[3℄, TT[3℄, TT2[3℄;double GG[15℄[3℄;=� ompute loal arrays G110, G23, G45, TT1, TT, TT2 and GG �=. . .=� lok loations for the moleule to be updated �=lok(MolLok[mol % MAXMOLLOCKS℄);VAR[mol℄.F[DEST℄[XDIR℄[O℄ +=G110[XDIR℄ + GG[11℄[XDIR℄ +GG[12℄[XDIR℄+C1�G23[XDIR℄;VAR[mol℄.F[DEST℄[XDIR℄[H1℄ +=GG[6℄[XDIR℄+GG[7℄[XDIR℄+GG[13℄[XDIR℄+TT[XDIR℄+GG[4℄[XDIR℄;VAR[mol℄.F[DEST℄[XDIR℄[H2℄ +=GG[8℄[XDIR℄+GG[9℄[XDIR℄+GG[14℄[XDIR℄+TT[XDIR℄+GG[5℄[XDIR℄;VAR[mol℄.F[DEST℄[YDIR℄[O℄ +=G110[YDIR℄+GG[11℄[YDIR℄+GG[12℄[YDIR℄+C1�G23[YDIR℄;VAR[mol℄.F[DEST℄[YDIR℄[H1℄ +=GG[6℄[YDIR℄+GG[7℄[YDIR℄+GG[13℄[YDIR℄+TT[YDIR℄+GG[4℄[YDIR℄;VAR[mol℄.F[DEST℄[YDIR℄[H2℄ +=GG[8℄[YDIR℄+GG[9℄[YDIR℄+GG[14℄[YDIR℄+TT[YDIR℄+GG[5℄[YDIR℄;VAR[mol℄.F[DEST℄[ZDIR℄[O℄ +=G110[ZDIR℄+GG[11℄[ZDIR℄+GG[12℄[ZDIR℄+C1�G23[ZDIR℄;VAR[mol℄.F[DEST℄[ZDIR℄[H1℄ +=GG[6℄[ZDIR℄+GG[7℄[ZDIR℄+GG[13℄[ZDIR℄+TT[ZDIR℄+GG[4℄[ZDIR℄;VAR[mol℄.F[DEST℄[ZDIR℄[H2℄ +=GG[8℄[ZDIR℄+GG[9℄[ZDIR℄+GG[14℄[ZDIR℄+TT[ZDIR℄+GG[5℄[ZDIR℄;unlok(MolLok[mol % MAXMOLLOCKS℄);lok(MolLok[omp % MAXMOLLOCKS℄);VAR[omp℄.F[DEST℄[XDIR℄[O℄ +=�G110[XDIR℄�GG[13℄[XDIR℄�GG[14℄[XDIR℄�C1�G45[XDIR℄;VAR[omp℄.F[DEST℄[XDIR℄[H1℄ +=�GG[6℄[XDIR℄�GG[8℄[XDIR℄�GG[11℄[XDIR℄�TT2[XDIR℄�GG[2℄[XDIR℄;VAR[omp℄.F[DEST℄[XDIR℄[H2℄ +=�GG[7℄[XDIR℄�GG[9℄[XDIR℄�GG[12℄[XDIR℄�TT2[XDIR℄�GG[3℄[XDIR℄;VAR[omp℄.F[DEST℄[YDIR℄[O℄ +=�G110[YDIR℄�GG[13℄[YDIR℄�GG[14℄[YDIR℄�C1�G45[YDIR℄;VAR[omp℄.F[DEST℄[YDIR℄[H1℄ +=�GG[6℄[YDIR℄�GG[8℄[YDIR℄�GG[11℄[YDIR℄�TT2[YDIR℄�GG[2℄[YDIR℄;VAR[omp℄.F[DEST℄[YDIR℄[H2℄ +=�GG[7℄[YDIR℄�GG[9℄[YDIR℄�GG[12℄[YDIR℄�TT2[YDIR℄�GG[3℄[YDIR℄;VAR[omp℄.F[DEST℄[ZDIR℄[O℄ +=�G110[ZDIR℄�GG[13℄[ZDIR℄�GG[14℄[ZDIR℄�C1�G45[ZDIR℄;VAR[omp℄.F[DEST℄[ZDIR℄[H1℄ +=�GG[6℄[ZDIR℄�GG[8℄[ZDIR℄�GG[11℄[ZDIR℄�TT2[ZDIR℄�GG[2℄[ZDIR℄;VAR[omp℄.F[DEST℄[ZDIR℄[H2℄ +=�GG[7℄[ZDIR℄�GG[9℄[ZDIR℄�GG[12℄[ZDIR℄�TT2[ZDIR℄�GG[3℄[ZDIR℄;unlok(MolLok[omp % MAXMOLLOCKS℄);g =� end of subroutine UPDATE FORCES �=Figure 6.1: Computation of inter-moleular interations in Water.



6.2 Experimental Results 127outside the mutex body. The resulting mutex body ontains the minimalset of omputations needed to maintain the semantis of the original ode inFigure 6.1.In a more reent version of the SPLASH suite, the Water appliation hasbeen modi�ed so that the ode that omputes inter-moleular interationsdoes not need this synhronization anymore (Woo et al. 1995). Therefore,when applied to the new version, the LICM optimization has no e�et. Thee�et of reduing the size of mutual exlusion setions is only measurable ifthere exists a high lok overhead in the original program. In the ase of Water,mutual exlusion setions are very small (the setions in Figure 6.1 are the twobiggest ones) and total synhronization overhead an be redued by solvinglarger problems (Singh et al. 1992).To study the e�ets of LICM in Water, we performed experiments thata�eted the total number of moleules (N), the number of moleule loks(ML), and, the number of simulation time-steps (TS). Experiments wereperformed on an SGI PowerChallenge with 8 proessors and 384Mb of memory.The implementation uses SGI native threads (spro) and hardware loks(ulok). All the experiments were exeuted on 8 proessors with no othersystem ativity.The �rst experiment studies the performane e�ets of LICM as a funtionof synhronization overhead. As the number of time-steps inreases, so doessynhronization overhead. Table 6.1 shows the speedups obtained as a funtionof the number of time-steps and number of moleules simulated. Notie howthe speedups obtained by LICM are lower when a larger number of moleulesare simulated. This is aused by the larger omputation to synhronizationratio in the larger problem. Also, by restriting the number of moleuleloks available we are inreasing lok ontention. Naturally, as the numberof available loks inreases, the e�ets of LICM are diminished.Sine moleule loks are aessed more as the number of time-stepsinreases, the ontention on these loks also inreases. To measure lokontention we used the hardware timers provided by the system to measurethe average delay of aquiring a lok. We then omputed the average delayover the 10 moleule loks. This is shown in Table 6.2. This table shows how



128 ResultsUPDATE FORCES(DEST, mol, omp, XL, YL, ZL, FF)double XL[ ℄, YL[ ℄, ZL[ ℄, FF[ ℄;f . . .t1 = �G110 + GG[11℄[0℄ + GG[12℄[0℄ + C1 � �G23;t2 = GG[6℄[0℄ + GG[7℄[0℄ + GG[13℄[0℄ + �TT + GG[4℄[0℄;t3 = GG[8℄[0℄ + GG[9℄[0℄ + GG[14℄[0℄ + �TT + GG[5℄[0℄;t4 = G110[1℄ + GG[11℄[1℄ + GG[12℄[1℄ + C1 � G23[1℄;t5 = GG[6℄[1℄ + GG[7℄[1℄ + GG[13℄[1℄ + TT[1℄ + GG[4℄[1℄;t6 = GG[8℄[1℄ + GG[9℄[1℄ + GG[14℄[1℄ + TT[1℄ + GG[5℄[1℄;t7 = G110[2℄ + GG[11℄[2℄ + GG[12℄[2℄ + C1 � G23[2℄;t8 = GG[6℄[2℄ + GG[7℄[2℄ + GG[13℄[2℄ + TT[2℄ + GG[4℄[2℄;t9 = GG[8℄[2℄ + GG[9℄[2℄ + GG[14℄[2℄ + TT[2℄ + GG[5℄[2℄;suif tmp19 = &VAR[mol℄.F[7℄[0℄[1℄;suif tmp21 = &VAR[mol℄.F[7℄[0℄[0℄;suif tmp23 = &VAR[mol℄.F[7℄[0℄[2℄;suif tmp25 = &VAR[mol℄.F[7℄[1℄[1℄;suif tmp27 = &VAR[mol℄.F[7℄[1℄[0℄;suif tmp29 = &VAR[mol℄.F[7℄[1℄[2℄;suif tmp31 = &VAR[mol℄.F[7℄[2℄[1℄;suif tmp33 = &VAR[mol℄.F[7℄[2℄[0℄;suif tmp35 = &VAR[mol℄.F[7℄[2℄[2℄;lok(MolLok[mol % 216℄);�suif tmp19 = �suif tmp19 + t1;�suif tmp21 = �suif tmp21 + t2;�suif tmp23 = �suif tmp23 + t3;�suif tmp25 = �suif tmp25 + t4;�suif tmp27 = �suif tmp27 + t5;�suif tmp29 = �suif tmp29 + t6;�suif tmp31 = �suif tmp31 + t7;�suif tmp33 = �suif tmp33 + t8;�suif tmp35 = �suif tmp35 + t9;unlok(MolLok[mol % 216℄);. . .=� Seond mutex body removed for spae onsiderations. �=gFigure 6.2: E�et of LICM on the �rst mutex body of Figure 6.1.64 moleules (10 moleule loks) 216 moleules (10 moleule loks)Time Unopt Opt Relative Unopt Opt Relativesteps time (ses) time (ses) Speedup time (ses) time (ses) Speedup70 157 144 1.09 1527 1463 1.0480 183 171 1.07 1772 1763 1.00100 235 219 1.07 2344 2285 1.02120 296 269 1.10 2827 2809 1.00Table 6.1: Speedups obtained by LICM on Water as a funtion of the number ofsimulation time-steps.



6.2 Experimental Results 12964 moleules 216 moleulesUnoptimized Optimized Unoptimized OptimizedTime avg delay avg delay Ratio avg delay avg delay Ratiosteps (�ses) (�ses) (�ses) (�ses)70 699 72 9.71 561 68 8.2580 712 73 9.75 575 72 7.99100 718 71 10.11 557 70 7.96120 729 85 8.58 564 62 9.10Table 6.2: E�ets of LICM on lok ontention in Water.average lok ontention on the moleule loks inreases as a funtion of thenumber of simulation time-steps. Notie that although LICM redues lokontention signi�antly, its impat on the runtime of the program may not betoo notieable if the ratio of omputation to synhronization is high enough.Again notie how lok ontention dereases with the larger problem size. Thisexplains the diminished e�ets of LICM on large problems.This implementation of Water ontains another optimization that has beenapplied manually by the programmer: the simulation omputes global sumsthat are �rst omputed loally and then propagated to the global ounter. Totest the e�ets of MBL and LICM, we simpli�ed these routines to performall the omputations on the shared variables diretly. The intent of thisexperiment is to show that it is possible to automate ommon optimizationpatterns that experiened programmers implement manually.Figure 6.3 shows a fragment of a routine that omputes a redution onthe global variable VIR. After reognizing the redution, the ompiler appliedMBL and LICM to obtain the equivalent and more eÆient ode in Figure 6.4.2This is virtually the same ode inluded in the original Water appliation.OeanOean studies eddy and boundary urrents in large-sale oean movements.Mutual exlusion is used to update global sums and to aess a globalonvergene ag used in the iterative solver. The update of global sums isdone with the same strategy used in Water. A loal sum is omputed and2We needed to annotate referenes to array VAR as non-oniting to irumventlimitations in the ompiler.



130 Results
INTRAF()f . . .=� alulate summation of the produt of the displaement and omputedfore for every moleule, diretion, and atom �=lok(gl�>IntrafVirLok)for (mol = StartMol[ProID℄; mol < StartMol[ProID+1℄; mol++)for ( dir = XDIR; dir <= ZDIR; dir++)for (atom = 0; atom < NATOM; atom++)VIR += VAR[mol℄.F[DISP℄[dir℄[atom℄ � VAR[mol℄.F[FORCES℄[dir℄[atom℄;unlok(gl�>IntrafVirLok)g =� end of subroutine INTRAF �=Figure 6.3: Simpli�ed version of funtion INTRAF in Water.
INTRAF()f . . .loal VIR = 0.0;for (mol = StartMol[ProID℄; mol < StartMol[ProID+1℄; mol++)for (dir = 0; dir <= 2; dir++)for (atom = 0; atom < 3; atom++)loal VIR = loal VIR + VAR[mol℄.F[0℄[dir℄[atom℄ � VAR[mol℄.F[7℄[dir℄[atom℄;lok(gl�>IntrafVirLok)VIR = VIR + loal VIR;unlok(gl�>IntrafVirLok)gFigure 6.4: E�ets of MBL and LICM on the ode in Figure 6.3.



6.2 Experimental Results 131Oean Unoptimized Optimized Relativesize time (se) time (se) Speedup66� 66 21 19 1.11130� 130 69 56 1.23258� 258 258 198 1.30514� 514 865 787 1.10Table 6.3: E�ets of MBL and LICM on Simple Oean.aggregated to the global sum.To study the e�et of MBL and LICM on this appliation, we re-wrotesome routines in Oean to use the simpler method of updating global sums.We named this new version Simple Oean. The intention is to demonstratehow some of the optimizations that are traditionally performed manually bythe programmer an be automated using the tehniques developed in thisthesis. Table 6.3 shows the performane improvements obtained by applyingMBL and LICM to Simple Oean. The program was exeuted on 8 proessorswith four di�erent oean sizes and a time-step of 180 seonds.Proedure slave in Figure 6.5 ontains a mutex body that updates a globalsum (variable psibi). This version is di�erent from the original in that theredution is omputed diretly on the shared variable psibi. After redutionreognition and the appliation of MBL and LICM to the ode in Figure 6.5,the ompiler generated the equivalent and more eÆient version of Figure6.6. The resulting ode is the same ode for proedure slave inluded inthe original Oean appliation, but in this ase the ompiler performed theoptimization, not the programmer.The performane improvements obtained on Simple Oean are the sameimprovements obtained by the manual optimizations done in the originalprogram. The important point of this experiment is to show that usingthe tehniques developed in this thesis it is possible to automatiallyoptimize ineÆient (but simple) synhronization patterns. We do not expetexperiened programmers to write suh ineÆient synhronization, but thiskind of ode ould be found in programs written by a less experienedprogrammer or generated from generi ode templates in a programmingenvironment.



132 Results
voidslave ()f . . .=� update the shared variable psibi by summing all the psibisof the individual proesses into it. This is a simpler butmore ineÆient version of the original Oean appliation. �=lok (psibilok);if (proid == MASTER) fpsibi = psibi + 0.25 � (wrk1�>psib[0℄[0℄);gif (proid == xpros � 1) fpsibi = psibi + 0.25 � (wrk1�>psib[0℄[jm � 1℄);gif (proid == npros � xpros) fpsibi = psibi + 0.25 � (wrk1�>psib[im � 1℄[0℄);gif (proid == npros � 1) fpsibi = psibi + 0.25 � (wrk1�>psib[im � 1℄[jm � 1℄);gif (�rstrow == 1) ffor (j = �rstol; j <= lastol; j++) fpsibi = psibi + 0.5 � wrk1�>psib[0℄[j℄;ggif ((�rstrow + numrows) == im � 1) ffor (j = �rstol; j <= lastol; j++) fpsibi = psibi + 0.5 � wrk1�>psib[im � 1℄[j℄;ggif (�rstol == 1) ffor (j = �rstrow; j <= lastrow; j++) fpsibi = psibi + 0.5 � wrk1�>psib[j℄[0℄;ggif ((�rstol + numols) == jm � 1) ffor (j = �rstrow; j <= lastrow; j++) fpsibi = psibi + 0.5 � wrk1�>psib[j℄[jm � 1℄;ggfor (iindex = �rstol; iindex <= lastol; iindex++) ffor (i = �rstrow; i <= lastrow; i++) fpsibi = psibi + wrk1�>psib[i℄[iindex℄;ggunlok (>psibilok);. . .g Figure 6.5: Proedure slave in Simple Oean.



6.2 Experimental Results 133
voidslave ()f . . .loal psibi = 0.0;if (proid == MASTER) floal psibi = loal psibi + 0.25 � (wrk1�>psib[0℄[0℄);gif (proid == xpros � 1) floal psibi = loal psibi + 0.25 � (wrk1�>psib[0℄[jm � 1℄);gif (proid == npros � xpros) floal psibi = loal psibi + 0.25 � (wrk1�>psib[im � 1℄[0℄);gif (proid == npros � 1) floal psibi = loal psibi + 0.25 � (wrk1�>psib[im � 1℄[jm � 1℄);gif (�rstrow == 1) ffor (j = �rstol; j <= lastol; j++) floal psibi = loal psibi + 0.5 � wrk1�>psib[0℄[j℄;ggif ((�rstrow + numrows) == im � 1) ffor (j = �rstol; j <= lastol; j++) floal psibi = loal psibi + 0.5 � wrk1�>psib[im � 1℄[j℄;ggif (�rstol == 1) ffor (j = �rstrow; j <= lastrow; j++) floal psibi = loal psibi + 0.5 � wrk1�>psib[j℄[0℄;ggif ((�rstol + numols) == jm � 1) ffor (j = �rstrow; j <= lastrow; j++) floal psibi = loal psibi + 0.5 � wrk1�>psib[j℄[jm � 1℄;ggfor (iindex = �rstol; iindex <= lastol; iindex++) ffor (i = �rstrow; i <= lastrow; i++) floal psibi = loal psibi + wrk1�>psib[i℄[iindex℄;gglok (psibilok);psibi = psibi + loal psibi;unlok (psibilok);. . .gFigure 6.6: E�ets of MBL and LICM on the ode in Figure 6.5.



134 Results6.2.2 Java AppliationsWe seleted programs originally written in Java beause we antiipatedoptimization opportunities due to the thread-safe nature of its libraries.Although the onurreny and synhronization model used in Java are di�erentfrom the assumptions made in this thesis, we think that it might be possibleto apply these ideas to the Java environment. We study the potential bene�tsof LICM and Lok Piking in the ontext of onurrent and sequential Javaprograms. To illustrate the e�ets of LICM we show two parallel appliations:parallel sorting and parallel matrix multiply.PSRS (Parallel Sorting by Regular Sampling) is an expliitly parallelsorting algorithm (Shi and Shae�er 1992) that samples the datato generate pivot elements that evenly distribute data among theproessors. Eah proess uses a sequential sort algorithm to sort itsown partition. The resulting data is then merged to obtain the �nalsorted list. The original Java program was implemented using theJGL (Java Generi Library) lass library whih provides a sequentialquiksort algorithm and lasses for reating abstrat arrays. Sine JGLis a thread-safe library, many of its lasses and methods are synhronized.In this partiular appliation, some of the synhronization is unneessary.When a proess is sorting, it never reads or writes outside its designatedpartition. Therefore, referenes to the shared array are lok independentand an be hoisted using LICM.Matrix multiply (MM): input matrix A is bloked into non-overlappingsetions whih are assigned to a di�erent proess. Eah proess writesto a di�erent ell of the result matrix C and makes read-only referenesto the input matries A and B. No synhronization is required in thisalgorithm but the lass libraries make use of synhronized methods toread and write to the di�erent arrays.Java ImplementationWe performed two sets of experiments with these appliations. First, wemodi�ed the Java implementation of these algorithms to emulate the e�et of



6.2 Experimental Results 135Unoptimized Optimized RelativeList size time time Speedup(ses) (ses)50,000 13 11 1.18100,000 24 13 1.85500,000 123 51 2.41750,000 187 75 2.501,000,000 276 113 2.441,250,000 336 141 2.38Table 6.4: E�ets of LICM on the original Java implementation of the PSRS sortingalgorithm (8 proessors). Unoptimized Optimized RelativeMatrix size time time Speedup(ses) (ses)64�64 4 4 1.00128�128 9 8 1.13256�256 33 17 1.94512�512 172 100 1.721024�1024 1484 810 1.83Table 6.5: E�ets of LICM on the Java implementation of matrix multipliation (8proessors).Lok-Independent Code Motion. Essentially we transformed two synhronizedmethods into regular methods. In the ase of PSRS, this is the at methodin the JGL ObjetArray lass. In the ase of matrix multiply, this is theintAt method in the JGL IntArray lass. Both methods are automatiallysynhronized by the library but in these appliations, suh synhronization isunneessary beause the di�erent threads never make oniting referenesto ommon array loations. Tables 6.4 and 6.5 show the performaneimprovements obtained by applying LICM to the PSRS and matrix multiplyappliations respetively. The programs were exeuted on a dediated8-proessor SGI PowerChallenge.Notie that this seemingly simple transformation has a notieable impaton performane. On average, the optimized version of PSRS performs twieas fast as the unoptimized version. This is a strong indiation of the potentialthat these types of tehniques have on high-level languages like Java. We



136 ResultsUnoptimized Optimized RelativeList size time time Speedup(ses) (ses)50,000 197 67 2.94100,000 27 10 2.70500,000 170 62 2.74750,000 299 76 3.931,000,000 407 160 2.541,250,000 618 359 1.72Table 6.6: E�ets of LICM on the C implementation implementation of the PSRSsorting algorithm (2 proessors).Unoptimized Optimized RelativeMatrix size time time Speedup(ses) (ses)64�64 2 1 2.00128�128 12 5 2.40256�256 82 22 3.73512�512 638 163 3.911024�1024 5077 1276 3.98Table 6.7: E�ets of LICM on the C implementation of matrix multipliation (2proessors).obtained similar improvement fators in matrix multiply. For small matries,both versions performed roughly the same but as the size of the matries grows,the e�ets of LICM tend to be more signi�ant.C ImplementationIn the seond experiment we onverted the Java programs into C using theToba translator (Proebsting et al. 1998). Sine the ompiler annot handle theode generated by Toba automatially, we manually applied the optimizationsto the generated C programs.These experiments were exeuted on a di�erent mahine beause the Tobaruntime libraries did not work on the PowerChallenge. We used a dediatedtwo-proessor SGI Otane for the C implementation of PSRS and matrixmultiply. Tables 6.6 and 6.7 show the results obtained for PSRS and matrix



6.2 Experimental Results 137multiply respetively.3Although the exeution environment for both experiments is di�erent,we observed an interesting fat. The performane improvements obtainedin the C version of these programs are better than those obtained in theirJava ounterparts. In the ase of matrix multiply, these improvements aresigni�antly better. Using the SpeedShop pro�ling tool available on SGImahines we determined that in some ases the unoptimized programs spentup to 30% of their time trying to enter the monitor proteting the synhronizedmethods. In these experiments we only used two threads to exeute theappliation and the pro�ling tool did not report any other thread ativity.There are two explanations for this exessive synhronization overhead: (a)the implementation of loks in Toba is inferior to that of Java, or, (b) theindividual threads in the C version are so muh faster than the Java versionthat one they leave the ritial setion they quikly try to aquire the lokagain.The pro�ling logs show that the funtion ating as the entry point tothe monitor spends roughly 70% of its time spinning on the lok variablethat implements the monitor. We onlude that the exessive synhronizationoverhead of the C version is mostly due to lok ontention. However, as theresults in the next setion show, the lok implementation is also important asit may also a�et the performane of sequential programs.Sequential Java ProgramsIn this setion we show how our transformation tehniques might bene�tsequential programs. Sine the CSSAME form for a sequential program has no� funtions, the Lok-Piking transformation an easily traverse all the mutexbodies in the program removing the synhronization operations. To illustratethe potential bene�ts of this optimization we used a set of benhmark programsthat exerise di�erent omponents of the JGL abstrat lass library. There arethree programs:(1) Array exerises ommon operations on abstrat arrays: get, put,3We also ran the Java version on the SGI Otane. The speedup ratios were the same asthose shown in Tables 6.4 and 6.5.



138 ResultsUnoptimized Optimized RelativeBenhmark time time Speedup(ses) (ses)Array (1,000) 23 20 1.15Array (10,000) 547 534 1.02Map (3,000) 32 30 1.07Map (30,000) 273 227 1.20Sort (3,000) 32 30 1.07Sort (30,000) 407 327 1.24Table 6.8: E�et of Lok-Piking (LP) on sequential Java programs.iterate, lear and remove.(2) Map exerises ommon operations on hash tables: add, �nd, removeand lear.(3) Sort ompares the sorting algorithm provided by JGL against ahand-oded quiksort algorithm.Table 6.8 shows the improvements obtained by applying lok-piking tothese programs. We exeuted both the Java and C versions of these programs;in both ases the results were similar. In general, we obtained performaneimprovements between 10% and 20% when lok-piking was applied.The performane gains obtained by removing the unneessary loks arediretly related to this partiular implementation of mutual exlusion. Sinethese are sequential programs, all the synhronization overhead is aused bythe atual all to lok and unlok. There is no lok ontention. An alternativeto removing the loks would have been to use a more eÆient mutual exlusionsynhronization implementation (Baon et al. 1998). We are onvined thata ombination of ompiler optimizations and eÆient lok implementations isthe best approah in these ases.6.2.3 Other AppliationsWe also studied two appliations inluded in the TreadMarks DSM system(Keleher et al. 1994), namely the Traveling Salesman Problem (TSP) anda parallel quiksort implementation (QS). Lok ontention is not a problemin these two implementations. The LICM transformation made some minor



6.3 Conlusions 139modi�ations to the mutex strutures in these programs that did not a�etthe runtime performane of either program. However, the analysis tehniqueshelped us loate data raes and loking irregularities.This TSP implementation takes advantage of the weak memory semantisin TreadMarks. Sine updates to shared variables are only visible atsynhronization points, TSP makes unproteted referenes to shared variableswithout ausing data raes. However, with the strong memory semantis usedin our model it was neessary to privatize some global variables to avoid dataraes in the program. While none of the synhronization transformationsfound opportunities for optimization, the analysis of mutex setions detetedan irregularity in the original program: one of the proedures was trippingover a lok. (i.e., the same lok was being aquired more than one). Theompiler also found several data raes triggered by oniting data referenesoutside mutex bodies.The quiksort implementation used another implementation \trik" tofore propagating the update to a ag variable shared between the workerthreads. The ode fragment in Figure 6.7 shows how this is implemented.Note that this is the same ode from Figure 3.5. We have reprodued ithere for easier referene. To propagate an update of the shared variablepause flag in TreadMarks, it is neessary to use lok and unlok operationsto fore a onsisteny operation in the DSM system. However, using thestronger memory semantis assumed in our model the ompiler determinedthat sine the mutex body for lok variable pause lok was always nestedinside a mutex body for lok variable TSL, it ould be eliminated. Therefore,the lok operations at lines 13, 15, 21 and 23 were all removed by the ompiler.6.3 ConlusionsThe programs desribed in this hapter represent two di�erent types ofexpliitly parallel programs whih we all high-level and low-level parallelism.The �rst group (low-level parallelism) are programs developed in environmentswhere the user has omplete ontrol over the parallel and synhronizationstruture of the program. Typially, these programs have been manually



140 Results
1 #de�ne NPROCS 52 #de�ne DONE �134 int PopWork(TaskElement �task)5 f6 lok(TSL);78 while (TaskStakTop == 0) f9 if (++NumWaiting == NPROCS) f10 =� All the threads are waiting for work.11 � We are done.12 �=13 lok(pause lok);14 pause ag = 1;15 unlok(pause lok);1617 unlok(TSL);18 return DONE;19 g else f20 if (NumWaiting == 1) f21 lok(pause lok);22 pause ag = 0;23 unlok(pause lok);24 g2526 unlok(TSL)2728 =� Wait for work. This is the only29 � statement not proteted by TSL.30 �=31 while (!pause ag) ; =� busy-wait �=3233 lok(TSL);3435 if (NumWaiting == NPROCS) f36 unlok(TSL);37 return DONE;38 g39 ��NumWaiting;40 g41 g =� while task-stak empty �=4243 =� Pop a piee of work from the stak �=44 TaskStakTop��;45 task�>left = TaskStak[TaskStakTop℄.left;46 task�>right = TaskStak[TaskStakTop℄.right;4748 unlok(TSL);4950 return 0;51 gFigure 6.7: Nested mutex bodies in funtion PopWork().



6.3 Conlusions 141optimized by experiened programmers who make an e�ort to minimize mutualexlusion setions as muh as possible.The seond group (high-level parallelism) inludes systems that o�erthread-safe libraries and programs developed in programming environmentsthat generate generi ode templates on behalf of the user. Theseappliations an ontain onservative mutual exlusion strutures that mayhurt performane unneessarily.We have shown that the tehniques developed in this thesis an havea signi�ant impat on the performane of high-level parallel appliations.Furthermore, we have also shown that performane gains an be obtainedin low-level parallel programs. We have demonstrated that it is possible toautomate some of the manual transformations that programmers routinelymake to minimize mutual exlusion setions.We onsider these tehniques a �rst step to fully exploiting the optimizationpossibilities in expliitly parallel programs. Currently, our tehnology allowsthe ompiler to perform some of the same optimizations that an experienedprogrammer an do manually. In the future we expet this situation tobe reversed: ompilers for parallel programs will make more and bettertransformations that annot be easily dupliated by programmers.
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Chapter 7Conlusions and Future Work
7.1 Summary of ContributionsExpliitly parallel programs for shared memory arhitetures o�er newhallenges to an optimizing ompiler; multiple threads of ativity in a parallelprogram an alter data and ontrol dependenies in ways that existing ompilertehnology annot detet. The new analysis and optimization tehniquesdeveloped in this thesis represent a signi�ant step towards improving theapabilities of ompilers for expliitly parallel programs. We expet thesetehniques to be partiularly useful in the ontext of high-level onurrent orthread-based languages. Of partiular importane in these environments is theability of the ompiler to understand synhronization operations whih an bea soure of substantial overhead in some appliations.Although ompilers for parallel omputing have been the fous ofintense researh and development, most e�orts have been onentrated onthe automati transformation of sequential programs into their parallelounterpart. Parallelizing and vetorizing ompilers take a sequential programand turn it into their equivalent parallel version. The topi of analyzingexpliitly parallel ode for the purpose of optimization has reeived santattention. The CSSAME framework proposed in this thesis provides theneessary tools for a ompiler to reason about and optimize an expliitlyparallel program ontaining synhronization.143



144 Conlusions and Future Work7.1.1 AnalysisThe CSSAME form provides a omprehensive data-ow framework foranalyzing expliitly parallel programs. Inter-proess interations via datasharing and synhronization onstruts are taken into onsideration. In thisthesis we have shown how to build the fundamental data strutures and wehave used them to �nd basi information like reahing de�nitions, reaheduses and mutual exlusion synhronization patterns. We have also shown howexisting synhronization analyses an be inorporated into the base frameworkto augment the non-onurreny information needed to disregard sharedmemory interations that are made impossible by synhronization restritions.The memory semantis onsidered by this work represent the most generalsenario from the point of view of an optimizing ompiler, sine every update toa shared memory variable is immediately visible to other threads, the ompileran make no assumptions about the value of the variable at any point in theprogram.Weaker memory models allow shared memory updates to be propagatedat later time. This is typially used in Distributed Shared Memory systems tooptimize traÆ through the memory interonnet. Shared memory is updatedafter ertain events like synhronization points or via spei� memory barrierinstrutions inserted in the program. Inorporating these semantis into theCSSAME onstrution algorithm may lead to fewer � funtions whih in turnwill allow more aggressive transformations.Synhronization is an important omponent of every parallel program. Anoptimizing ompiler must be aware of synhronization onstruts in a parallelprogram for two fundamental reasons:1. Validation. We have shown how the ompiler an warn the userabout illegal or inonsistent synhronization patterns when using mutualexlusion. This an be augmented with other existing synhronizationanalysis methods that an detet deadloks and rae onditions in aprogram. Although it has been shown that some of these methods areexponentially expensive, simpli�ed versions an still be used to provideompile-time warnings to the user.



7.1 Summary of Contributions 1452. Optimization. Synhronization an provide several optimizationopportunities. The main e�et of synhronization is the eliminationof some shared memory interations that may be preventing atransformation. It is also possible to detet overly restritivesynhronization patterns like nested mutex strutures that an beeliminated (Setion 5.3).7.1.2 OptimizationWe have shown how the CSSAME form is unique in allowing newoptimization opportunities by taking advantage of the semantis imposedby synhronization. Two types of optimization are possible: the adaptationof existing sequential tehniques and the diret optimization of parallel andsynhronization strutures in the program.Adapting Sequential TehniquesThe redution of memory onits aross threads an improve the e�etivenessof adapted salar optimization strategies like onstant propagation. We haveadapted a sequential dead-ode elimination algorithm. In general, the proessof adapting an existing sequential tehnique is mainly an implementation issue,espeially if the tehnique is SSA based.The onurrent version needs to onsider � funtions in addition to �funtions. Also, ost models might need to be altered. For instane, in ommonsub-expression elimination, if a subexpression is ommon aross several threadsit might be heaper to make eah thread ompute the expression instead ofpushing it up into a sequential setion of the program.Optimizing the Struture of a Parallel ProgramIn this thesis we have introdued three new optimization tehniques that arespei�ally targeted at expliitly parallel programs: lok piking examinesand removes unneessary lok and unlok operations, lok-independent odemotion moves ode that does not need to be loked outside ritial setionsand mutex body loalization onverts shared memory referenes into loal



146 Conlusions and Future Workmemory referenes. Although we do not expet experiened programmersto write overly restritive synhronization patterns, high-level systems likeJava make use of generi thread-safe libraries that must make onservativeassumptions about the appliation's ontext. Therefore, when onsideredwithin the ontext of a partiular program it might turn out that manysynhronization operations are not neessary. We have shown how tehniqueslike lok piking and lok independent ode motion bene�t these appliations.We onsider these tehniques a signi�ant step towards failitating theadoption of high-level systems with language-supported parallelism andsynhronization. These systems typially provide powerful abstrations thatmake parallel programming easier, but those same abstrations often hinderperformane. Experiened programmers reognize these limitations andmanually irumvent them by removing abstration layers to speed-up theirode. This defeats the purpose of having the high-level abstrations and it issomething that should be addressed by the ompiler, not the user.7.2 Future WorkOur long-term goal is to ahieve the same level of sophistiation inompilers for expliitly parallel languages as that of urrent ompilertehnology for sequential languages. The development of a ompleteompilation/performane tuning system for expliitly parallel programs isa massive multi-year projet. In this thesis we have presented the baseframework for suh a projet. The following setions disuss future workdiretions and our vision for what an optimizing ompiler for parallel languagesshould provide.7.2.1 ParallelismThere are many ways of speifying parallel ativity in a program. Theprimitives used in this work, obegin/oend and parloop, were seletedbeause of their oneptual simpliity and expressive power. They an beused to desribe a wide variety of task and data parallel programs.



7.2 Future Work 147main()f =� Call funtion f() to exeuteonurrently with the mainthread.�=fork(f);do work();=� Wait for hild thread. �=wait();gf()f do work();gFigure 7.1: Expressing parallel ativity using fork.Other mehanisms an be inorporated into the framework. For instane,many platforms provide a fork system all that takes a funtion name as itsargument. When invoked, fork launhes a new thread to exeute the givenfuntion in parallel. The alling thread ontinues to exeute onurrently withthe newly launhed thread (Figure 7.1).The important information to be gathered is the onurreny relation givenby Algorithm 3.2. Given two owgraph nodes a and b, the onurreny analysisdetermines whether a and b may exeute onurrently. This auray of theonurreny information is subjet to the assumptions made by the analysismethod, but it must be onservatively orret. When it is not lear whethertwo nodes may exeute onurrently or not, the analysis must assume thatthey will.In some ases, gathering this information may be a simple task. Forinstane, in a high-level programming environment like Enterprise (Shae�eret al. 1993), all the onurreny information is ontained in an external graphrepresentation of the program modules whih an be readily used by theompiler. In other ases, this might be more diÆult. In the ase of theexample program in Figure 7.1 the analysis should traverse the ow graph foreah funtion marking for eah statement whih other statements an exeute



148 Conlusions and Future Workonurrently. Initial support for the pthreads library (Lewis and Berg 1998)has been implemented in our ompiler.7.2.2 SynhronizationSynhronization analysis is a fundamental omponent of every optimizingompiler for expliitly parallel languages. Information gathered from thesynhronization patterns in the program an be used to warn the user aboutpotential problems and to make optimization deisions.It is important to observe that some synhronization mehanisms o�erlittle non-onurreny information to a stati analyzer. Consider for instaneounting semaphores (Tanenbaum 1992). Counting semaphores are used toallow a limited number of threads to have onurrent aess to the sameresoure pool. These semantis do not failitate the elimination of � funtionsas is the ase with lok, barrier and set/wait onstruts. However, ifthe ompiler an determine that a partiular ounting semaphore is alwaysinitialized to 1 then it an be treated like a mutual exlusion operation.Synhronization an also be ahieved without using speial onstruts. Atypial example is given in Figure 7.2. Thread T1 will not start exeutinguntil thread T0 sets variable busy to 0. Although deteting this patternmight be more involved than reognizing synhronization primitives, it stillould be inorporated and its e�ets would be the same as any other mutualexlusion onstrut. Both alls to funtion ompute() in this example will benon-onurrent.7.2.3 Other Memory ModelsDi�erent memory models have an impat on the plaement of � funtionsbeause they allow di�erent memory interleavings than the semantisonsidered in this thesis. Earlier SSA frameworks for expliitly parallelprograms were based on opy-in/opy-out semantis, a weaker formof onsisteny that guarantees updates at ertain synhronization points(Srinivasan et al. 1993).We plan to adapt the CSSAME infrastruture to di�erent memory models.



7.2 Future Work 149main()f busy = 1;obegin fT0: beginompute();busy = 0;endT1: begin=� busy-wait until T0 has omputed �=while ( busy == 1 ); =� busy wait �=ompute();endggFigure 7.2: Mutual exlusion synhronization without loks.Currently we are investigating release-onsistent models (Keleher et al. 1994).In a release-onsistent memory, updates to shared variables are only visible atsynhronization points. This may lead to the elimination of more � funtionswhih in turn allow more aggressive optimizations.7.2.4 Dependeny AnalysisResults obtained in vetorizing and parallelizing ompilers are also importantin a ompiler for expliitly parallel programs. In partiular, the dependenyanalysis tehniques developed for vetorizing and parallelizing ompilers arean invaluable tool to �ne-tune information about shared array referenes.Reent work proposes adapting a sequential array SSA form to the parallelase (Collard 1999).7.2.5 Other OptimizationsPartial Redundany Elimination (PRE)Chow et al. developed an SSA-based partial redundany eliminationalgorithm for sequential programs alled SSAPRE (Chow et al. 1997).



150 Conlusions and Future Worka = 5;b = 4; = 2;obeginT0: begint = a � b;endT1: beginv =  = 3;endoendprint(t, v);(a) Before thread propagation.
obeginT0: begina = 5;b = 4;t = a � b;endT1: begin = 2;v =  = 3;endoendprint(t, v);(b) After thread propagation.Figure 7.3: Thread propagation optimization.The transformation builds SSA information for seleted sub-expressions.Expressions are assigned to hypothetial temporaries and the SSA informationis built on those temporaries. Whenever one of the operands of the expressionis modi�ed, the assoiated temporary is also onsidered modi�ed. AdaptingSSAPRE to the parallel ase involves building CSSAME information for thetemporaries and treating them like any other variable in the program.Thread PropagationThread Propagation is a ode motion strategy designed to inrease thegranularity of individual threads and avoid the sequential proessing overheadfor threads that do not use omputations made in sequential portions of theode. We will use a simple example to illustrate the idea. Consider theprogram in Figure 7.3(a). The �rst three lines of the program ompute newvalues for variables a, b and . Thread T0 uses variables a and b and thread T1only uses . Figure 7.3(b) shows the results of applying the thread propagationoptimization to the program on the left. Sine thread T1 does not use variablesa or b, both assignments in the sequential setion of the program an bemoved inside T0 so that T1 does not have to pay the sequential overhead foromputations that it will not use. The same reasoning is applied to thread T0when moving the assignment of variable  to the body of thread T1.



7.3 Conlusions 151Lok PartitioningLok partitioning examines all the mutex bodies in a single mutex struture todetermine whether they aess the same set of variables. Consider a programthat uses a single lok L to serialize the aess to variables a, b, x and y.Assume that only one mutex body referenes x and y while the other mutexbodies in the program referene a and b. We an safely replae L with twoloks, one for the mutex body referening x and y and another one for themutex bodies referening a and b.The key idea is that if the mutex bodies are aessing di�erent sets ofvariables, then proteting all the referenes with a single lok is not neessaryand restrits onurreny in the program. Lok partitioning should determinehow many disjoint sets of variables are referened by the di�erent mutex bodiesand replae the original lok with one lok for eah set of variables.7.3 ConlusionsAn optimizing ompiler for expliitly parallel languages must be ableto handle di�erent types of parallelism, synhronization onstruts, andshared memory semantis. For instane, the ompiler should reognizedi�erent synhronization onstruts and adjust the data-ow representationappropriately. In this thesis we developed an SSA-based framework foranalyzing these three elements. Regardless of the hosen analysis framework,it is important that it inorporates these three elements. Otherwise, deisionsbased on this analysis might yield erroneous transformations.Optimizing transformations an be ategorized as either adaptations oftraditional sequential optimizations from or tehniques that target one ofthe three elements mentioned above: parallelism, synhronization and sharedmemory semantis. In this thesis we have onentrated on the optimizationof mutual exlusion synhronization. Using the prototype ompiler that weare building, we will ontinue to investigate new analysis and optimizationtehniques for expliitly parallel programs.
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