
Identifying and Validating Irregular Mutual Exclusion
Synchronization in Explicitly Parallel Programs

Diego Novillo1, Ronald C. Unrau1, and Jonathan Schaeffer21 Red Hat Inc., Sunnyvale, CA 94089, USAfdnovillo,runraug@redhat.com2 Computing Science Department, University of Alberta, Edmonton, Alberta, Canada T6G 2H1
jonathan@cs.ualberta.ca

Abstract. Existing work on mutual exclusion synchronization is basedon a
structural definition of mutex bodies. Although correct, this structural notion fails
to identify many important locking patterns present in someprograms. In this pa-
per we present a novel analysis technique for identifying mutual exclusion syn-
chronization patterns in explicitly parallel programs. Weuse this analysis in a
new technique, calledlock-picking, which detects and eliminates redundant mu-
tex operations. We also show that this new mutex analysis technique can be used
as a validation tool in a compiler. Using this analysis, a compiler can detect irreg-
ularities like lock tripping, deadlock patterns, incomplete mutex bodies, dangling
lock andunlock operations and partially protected code.

1 Introduction

In this paper we present a novel analysis technique for identifying mutual exclusion syn-
chronization patterns in explicitly parallel programs. Weapply this analysis to develop a
new technique, calledlock-picking, to detect and eliminate redundant mutex operations.
We also show that this new mutex analysis technique can be used as a validation tool
in a compiler. We build on a concurrent data-flow analysis framework called CSSAME
(Concurrent Static Single Assignment with Mutual Exclusion,pronouncedsesame) [6]
to analyze and optimize the synchronization framework of both task and data parallel
programs. We have implemented these algorithms and apply them to several concurrent
and sequential applications.

2 The CSSAME Form

The CSSAME form is a refinement of the Concurrent SSA (CSSA) framework [3] that
incorporates mutual exclusion synchronization analysis to identify memory interleav-
ings that are not possible at runtime due to the synchronization structure of the program.
CSSAME extends CSSA to include mutual exclusion synchronization and barrier syn-
chronization [5].

Like the sequential SSA form, CSSAME has the property that every use of a vari-
able is reached by exactly one definition. Two merge operators are used in the CSSAME
form:� functions and� functions. A� function merges all the incoming control reach-
ing definitions to create a new definition for the variable. Control reaching definitions
are those that reach a useu via sequential flow of execution (i.e., the definition has been



made by the same thread). The second merge operator is the� function, which merges
concurrent reaching definitions. Concurrent reaching definitions are those that reach a
useu from other threads.

3 Motivation and Overview

Given an arbitrary statements in a program and a lock variableL, a mutex structure
analyzer should be able to answer the question “doess execute under the protection of
lock L?”. The answer to that question should be one ofalways, never or sometimes.
To be conservatively correct, the compiler treatsnever and sometimes as equivalent.
Furthermore, if the analysis determines that statements is sometimes protected and
sometimes not, this information could be used to warn the user about an anomalous
locking pattern.

Existing work on mutual exclusion synchronization is basedon a structural defi-
nition of mutex bodies [2, 4, 6]. A mutex body is indicated by apair of lock and
unlock nodes. All the graph nodes dominated by thelock node and post-dominated
by theunlock node are part of the mutex body. Although correct, this notion of mutex
body fails to identify some valid locking patterns present in some programs.

For example, consider the code fragment in Figure 1, which ispart of a quicksort
algorithm taken from the TreadMarks DSM system. We are interested in the mutual
exclusion sections created by the lock variableTSL. Notice that a structural definition
of mutex bodies will identify no mutex bodies in this function. The onlylock/unlock
pair that might qualify as a mutex body are the statementsL1 andU3 (lines3 and37
respectively). However, the presence of otherlock andunlock operations in between
these statements forces the compiler to disregard this pairas a valid mutex body. A
closer inspection reveals that the only statement that executes without lock protection
is the busy wait statementS1 (line 24).

4 Detecting mutex structures

A mutex structure for lock variableL is the set of all the mutex bodies forL in the
program. To detect mutex structures, the intermediate representation for the program
is modified so that (a) every graph node contains a use foreach lock variable in the
program, and, (b) for each lock variableL the graph entry node is assumed to contain
anunlock(L) operation (i.e., variables are initially “unlocked”).

Mutex structures are detected using sequential reaching definition information for
each lock variableL. Nodes that are only reached by definitions ofL coming from
lock(L) nodes are protected byL. Nodes that can be reached by at least oneun-
lock(L) node are not protected byL. Using this information we build an initial set
of mutex bodies for each individuallock(L) node in the graph. This initial set is then
refined by merging mutex bodies with common nodes [5]. This mutex analysis frame-
work can be used as a validation tool in a compiler. Using thisanalysis, a compiler can
detect irregularities like [5]:

Lock Tripping. LetL be a lock variable andn be alock(L) node. Suppose thatn is
reached by otherlock(L) nodes. If all the definitions come from otherlock(L)



1 int PopWork(TaskElement�task)
2 f
3 L1) lock(TSL);
4 while (TaskStackTop ==0) f
5 if (++NumWaiting == NPROCS)f
6 =� All the threads are waiting for work.
7 � We are done.
8 �=
9 lock(pauselock);

10 pauseflag = 1;
11 unlock(pauselock);
12 U1) unlock(TSL);
13 return DONE;
14 g else f
15 if (NumWaiting == 1) f
16 lock(pauselock);
17 pauseflag = 0;
18 unlock(pauselock);
19 g

20 U2) unlock(TSL);
21 =� Wait for work. This is the only
22 � statementnot protected by TSL.
23 �=
24 S1) while (!pauseflag) ; =� busy-wait �=
25 L2) lock(TSL);
26 if (NumWaiting == NPROCS)f
27 U3) unlock(TSL);
28 return DONE;
29 g
30 ��NumWaiting;
31 g =� endif ++NumWorking == NPROCS�=
32 g =� while task-stack empty�=
33 =� Pop a piece of work from the stack�=
34 TaskStackTop��;
35 task�>left = TaskStack[TaskStackTop].left;
36 task�>right = TaskStack[TaskStackTop].right;
37 U3) unlock(TSL);
38 return 0;
39 g

Fig. 1. Locking pattern in functionPopWork().

nodes, the program is guaranteed to trip over lockL at runtime. If only some def-
initions come from otherlock(L) nodes, the program may or may not trip over
lockL.

Deadlock. LetL andM be two different lock variables such that in threadT1 there is
alock(L) node that reaches alock(M) node. In another threadT2 alock(M)
node reaches alock(L) node. If bothT1 andT2 can execute concurrently, then
the program may deadlock at runtime.

Incomplete mutex bodies. LetBL(n) be a partially built mutex body forL such that
no node inBL(n) is anunlock(L) node. At runtime, if lockL is acquired atn,
it will not be released.

Dangling unlock operations. Let x be an unlock node forL such that the set of
reaching definitions forL at x does not include alock(L) node. This indicates
that the calling thread is releasing a lock that it has not acquired.

5 Lock-picking

Sometimes it is possible to remove synchronization operations from a program without
affecting its semantics. For example, mutual exclusion synchronization is unnecessary
in a sequential program and can be safely removed. In this section we describelock-
picking, a transformation that finds and removes superfluouslock andunlock oper-
ations. We say that a mutex body can belock-picked if its lock and unlock nodes can be
removed. An important property of lock picking is that itdoes not need to examine the
mutex bodies of the program. Only the lock and unlock nodes are analyzed.

The lock-picking algorithm [5] examines the lock nodes for every mutex body in the
program. The decision to lock-pick a mutex body is based on the absence of� functions
for one or more lock variables at each mutex body lock node. The absence of� func-
tions for lock variables at lock nodes means that there are noconcurrent threads trying



double Sum = 0;
parloop (p, 0, N) f

. . .
for (i = 0; i < M; i++) f

S3 = �(S0, S1, S2);
R3 = �(R0, R1, R2);
lock(R1);
for (j = 0; j < M; j++) f

sum reduction(A[i][j]);g
unlock(R2);g

. . .g
sum reduction(double x)f

S4 = �(S0, S1, S2)
R4 = �(R0, R1, R2)
lock(S1);
Sum = Sum + x;
unlock(S2);g

(a) Original CSSAME form.

double Sum = 0;
parloop (p, 0, N) f

. . .
for (i = 0; i < M; i++) f

S3 = �(S0, S1, S2)
R3 = �(R0, R1, R2)
lock(R1);
for (j = 0; j < M; j++) f

S4 = �(S0, S1, S2)
lock(S1);
Sum = Sum + A[i][j];
unlock(S2);g

unlock(R2);g
. . .g

(b) CSSAME form after in-
lining and� pruning.

double Sum = 0;
parloop (p, 0, N) f

. . .
for (i = 0; i < M; i++) f

R3 = �(R0, R1, R2)
lock(R1);
for (j = 0; j < M; j++) f

Sum = Sum + A[i][j];g
unlock(R2);g

. . .g
(c) After lock-picking.

Fig. 2. Effects of lock-picking on nested mutex bodies.

to acquire that lock. These conditions are typically discovered using whole program
analysis. For example, consider the program in Figure 2(a).The inner loop calls the
functionsum reduction to update a global reduction variable. Sincesum reduction is a
generic reduction function, it locks the variable before doing the reduction. However,
as a result of inlining, reduction lockS is no longer necessary because the reduction is
always protected by lockR (Figure 2(b)). Whensum reduction is inlined, the use ofR
at the lock node forS becomes a protected use and its� function can be removed [6]
(Figure 2(c)). In this case we say that the mutex structure for lockS is nested inside the
mutex structure forR.

6 Experimental Results

We selected programs originally written in Java because we anticipated optimization
opportunities due to the thread-safe nature of its libraries. Since Java libraries are
thread-safe, application programs may spend up to half their execution time performing
unnecessary synchronization [1]. The key reason for this overhead is that the libraries
are generic and are not specific to an individual application’s context. Hence, they have
to be conservative in the assumptions they make. Therefore,when considered within
the context of an actual program it might turn out that most ofthe synchronization
operations are not necessary.

Table 1 shows the improvements obtained by applying lock-picking to sequential
Java programs found in the JGL abstract class library these programs. We executed
both the Java and C versions of these programs; in both cases the results were similar.



UnoptimizedOptimizedRelative
Benchmark time (secs) time (secs)Speedup

Array (1,000) 23 20 1.15
Array (10,000) 547 534 1.02
Map (3,000) 32 30 1.07
Map (30,000) 273 227 1.20
Sort (3,000) 32 30 1.07
Sort (30,000) 407 327 1.24

Table 1. Effect of lock-picking (LP) on sequential Java programs.

In general, we obtained performance improvements between 2% and 24% when lock-
picking was applied. The performance gains obtained by removing the unnecessary
locks are directly related to this particular implementation of mutual exclusion. Since
these are sequential programs, all the synchronization overhead is caused by the actual
call to lock andunlock. There is no lock contention. An alternative to removing
the locks would have been to use a more efficient mutual exclusion synchronization
implementation. We are convinced that a combination of compiler optimizations and
efficient lock implementations is the best approach in thesecases.

7 Conclusions

Synchronization analysis techniques are important in the context of an optimizing com-
piler for explicitly parallel programs. By reducing the number of memory conflicts, they
simplify subsequent analysis and allow more aggressive optimizations to be applied.

In this paper we have developed a new technique to analyze non-concurrency for
mutex synchronization that can handle locking patterns notsupported by existing tech-
niques. This allows the analysis of more complex mutual exclusion synchronization
patterns in explicitly parallel programs. We have shown that this analysis can help de-
tect common locking irregularities in parallel programs. Finally, we apply this analysis
to remove mutex synchronization when it can be proven superfluous.

References

[1] D. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin Locks: Featherweight Synchroniza-
tion for Java. InACM SIGPLAN ’98, June 1998.

[2] A. Krishnamurthy and K. Yelick. Analyses and Optimizations for Shared Address Space
Programs.J. Parallel and Distributed Computing, 38:130–144, 1996.

[3] J. Lee, S. Midkiff, and D. A. Padua. Concurrent static single assignment form and constant
propagation for explicitly parallel programs. InLCPC ’97, August 1997.

[4] S. P. Masticola.Static Detection of Deadlocks in Polynomial Time. PhD thesis, Department
of Computer Science, Rutgers University, 1993.

[5] D. Novillo. Compiler Analysis and Optimization Techniques for Explicitly Parallel Pro-
grams. PhD thesis, University of Alberta, February 2000.

[6] D. Novillo, R. Unrau, and J. Schaeffer. Concurrent SSA Form in the Presence of Mutual
Exclusion. InICPP ’98, pages 356–364, August 1998.


