| dentifying and Validating Irregular Mutual Exclusion
Synchronization in Explicitly Parallel Programs

Diego Novillo', Ronald C. Unrat, and Jonathan Schaeffer

! Red Hat Inc., Sunnyvale, CA 94089, USA
{dnovi |l o, runrau}@ edhat . com

2 Computing Science Department, University of Alberta, Edioa, Alberta, Canada T6G 2H1
j onat han@s. ual berta. ca

Abstract. Existing work on mutual exclusion synchronization is baseda
structural definition of mutex bodies. Although correctsttructural notion fails

to identify many important locking patterns present in sqragrams. In this pa-
per we present a novel analysis technique for identifyingualuexclusion syn-
chronization patterns in explicitly parallel programs. Wee this analysis in a
new technique, callelbck-picking, which detects and eliminates redundant mu-
tex operations. We also show that this new mutex analysisitqae can be used
as a validation tool in a compiler. Using this analysis, a piben can detect irreg-
ularities like lock tripping, deadlock patterns, incomplenutex bodies, dangling

| ock andunl ock operations and partially protected code.

1 Introduction

In this paper we present a novel analysis technique for ifyémy mutual exclusion syn-
chronization patterns in explicitly parallel programs. gply this analysis to develop a
new technique, callelck-picking, to detect and eliminate redundant mutex operations.
We also show that this new mutex analysis technique can lkassa validation tool

in a compiler. We build on a concurrent data-flow analysigteork called CSSAME
(Concurrent Static Single Assignment with Mutual Exclusmronouncedesame) [6]

to analyze and optimize the synchronization framework dhliask and data parallel
programs. We have implemented these algorithms and apgty th several concurrent
and sequential applications.

2 TheCSSAME Form

The CSSAME form is a refinement of the Concurrent SSA (CSSamawork [3] that
incorporates mutual exclusion synchronization analysigléntify memory interleav-
ings that are not possible at runtime due to the synchrdoizatructure of the program.
CSSAME extends CSSA to include mutual exclusion synchaiitin and barrier syn-
chronization [5].

Like the sequential SSA form, CSSAME has the property thatyeuse of a vari-
able is reached by exactly one definition. Two merge opesaia used in the CSSAME
form: ¢ functions andr functions. A¢ function merges all the incoming control reach-
ing definitions to create a new definition for the variablen€ol reaching definitions
are those that reach a us@ia sequential flow of execution (i.e., the definition hasrbee

made by the same thread). The second merge operatorisfthretion, which merges
concurrent reaching definitions. Concurrent reaching défirs are those that reach a
useu from other threads.

3 Motivation and Overview

Given an arbitrary statemeatin a program and a lock variable, a mutex structure
analyzer should be able to answer the question “daesecute under the protection of
lock L?". The answer to that question should be onalefays, never or sometimes.
To be conservatively correct, the compiler trenéser and sometimes as equivalent.
Furthermore, if the analysis determines that statemestsometimes protected and
sometimes not, this information could be used to warn the aseut an anomalous
locking pattern.

Existing work on mutual exclusion synchronization is baseda structural defi-
nition of mutex bodies [2, 4, 6]. A mutex body is indicated byair of | ock and
unl ock nodes. All the graph nodes dominated by ltleee k node and post-dominated
by theunl ock node are part of the mutex body. Although correct, this motibmutex
body fails to identify some valid locking patterns presensdme programs.

For example, consider the code fragment in Figure 1, whigyais of a quicksort
algorithm taken from the TreadMarks DSM system. We are @#texd in the mutual
exclusion sections created by the lock variab&l.. Notice that a structural definition
of mutex bodies will identify no mutex bodies in this funatid@he onlyl ock/unl ock
pair that might qualify as a mutex body are the stateméntandU; (lines3 and37
respectively). However, the presence of otheck andunl ock operationsin between
these statements forces the compiler to disregard thisgsa& valid mutex body. A
closer inspection reveals that the only statement thatuggeavithout lock protection
is the busy wait statemensy (line 24).

4 Detecting mutex structures

A mutex structure for lock variablé is the set of all the mutex bodies fdrin the
program. To detect mutex structures, the intermediateesgmtation for the program
is modified so that (a) every graph node contains a useddr lock variable in the
program, and, (b) for each lock variabhlethe graph entry node is assumed to contain
anunl ock(L) operation (i.e., variables are initially “unlocked”).

Mutex structures are detected using sequential reachifigitia information for
each lock variabld.. Nodes that are only reached by definitionsloEoming from
| ock(L) nodes are protected bly. Nodes that can be reached by at least one
I ock(L) node are not protected bly. Using this information we build an initial set
of mutex bodies for each individuabck(L) node in the graph. This initial set is then
refined by merging mutex bodies with common nodes [5]. Thisexanalysis frame-
work can be used as a validation tool in a compiler. Usingdhiglysis, a compiler can
detect irregularities like [5]:

Lock Tripping. Let L be a lock variable and be al ock(L) node. Suppose thatis
reached by othdrock(L) nodes. If all the definitions come from otHewck (L)

1 int PopWorKTaskElement«task 20 U, = unlock(TSL);
2 21 /* Wait for work. This is the only
3 L, =lock(TSL); 22 * statementnot protected by TSL.
4 while (TaskStackTop ==0) { 23 */
5 if (++NumWaiting == NPROCSY 24 S, = while (lpauseflag) ; /* busy-wait x/
6 /* All the threads are waiting for work. 25 L, = lock(TSL);
7 * We are done. 26 if (NumWaiting == NPROCS)
8 */ 27 U, = unlock(TSL);
9 lock(pauselock); 28 return DONE:
10 pauseflag = 1; 29 '
11 unlock(pauselock); 30 — _ NumWaiting;
12 U, = unlock(TSL); 31 } /+ endif ++NumWorking == NPROCS:/
13 return DONE; 32} /# while task-stack empty/
14 } ese { B 33 /x Pop a piece of work from the stack/
15 if (NumWaiting ==1) { 34 TaskStackTop —:
16 lock(pauselock); 35 task—>left = TaskStack[TaskStackTop].left;
17 pauseflag = 0; 36 task->right = TaskStack[TaskStackTop].right;
18 unlock(pauselock); 37 Ug = unlock(TSL);
19 } 38 return 0;
39 }

Fig. 1. Locking pattern in functiorPopWork()

nodes, the program is guaranteed to trip over lackt runtime. If only some def-
initions come from other ock(L) nodes, the program may or may not trip over
lock L.

Deadlock. Let L and M be two different lock variables such that in thréBdthere is
al ock(L) nodethatreacheslack(M node. In another thredf; al ock(M
node reaches bock(L) node. If both7} andT, can execute concurrently, then
the program may deadlock at runtime.

Incomplete mutex bodies. Let By, (n) be a partially built mutex body fok such that
no node inBy, (n) is anunl ock(L) node. At runtime, if lockL is acquired at:,
it will not be released.

Dangling unlock operations. Let z be an unlock node fof. such that the set of
reaching definitions for. at z does not include &ock(L) node. This indicates
that the calling thread is releasing a lock that it has notiaed.

5 Lock-picking

Sometimes it is possible to remove synchronization opanatirom a program without
affecting its semantics. For example, mutual exclusiorchyonization is unnecessary
in a sequential program and can be safely removed. In thitsosewe describdock-
picking, a transformation that finds and removes superfliaesk andunl ock oper-
ations. We say that a mutex body canlbek-picked if its lock and unlock nodes can be
removed. An important property of lock picking is thatlites not need to examine the
mutex bodies of the program. Only the lock and unlock nodesaalyzed.

The lock-picking algorithm [5] examines the lock nodes fegiy mutex body in the
program. The decision to lock-pick a mutex body is based embsence af functions
for one or more lock variables at each mutex body lock node. dltsence of func-
tions for lock variables at lock nodes means that there amoneourrent threads trying

double Sum = 0;
parloop (p, 0, N) {

for (i = 0;i < M; i++) {
S;=7(S;, S, S));
R, =7(R,, R, Ry);
lock(R,);
for (= 0; < M; j+4) {
sum.reduction(A[i][i]);

}
unlock(R,);

double Sum = 0;
parloop (p, 0, N) {

for (i = 0; i < M; i++) {
S, = 7r(SO, S, S,)
R, =7m(Ry Ry, Ry)
lock(R,);
for =0;j < M; j++) {
S, =7(Sy: Sp)
lock(S,);

double Sum = 0;
parloop (p, 0, N) {
for (i =01 < M; i++) {
R, =7(R;, R, R,)
lock(R,);
for =0;j < M; j++) {
Sum = Sum + A[l[j];

}
unlock(R,);

Sum = Sum + A[il[j]; }

} unlock(S,);)
} unlock(R,);
sum.reduction@ouble x) })

S,=7(S,S,.S,) 4

R,=7(R,, R, R,)

lock(S,);

Sum = Sum + X;

unlock(s,);
}

(a) Original CSSAME form. (b) CSSAME form after in- (c) After lock-picking.

lining and = pruning.

Fig. 2. Effects of lock-picking on nested mutex bodies.

to acquire that lock. These conditions are typically digred using whole program
analysis. For example, consider the program in Figure A{lag. inner loop calls the
functionsum.reduction to update a global reduction variable. Sirsen_reduction is a
generic reduction function, it locks the variable beforéndothe reduction. However,
as a result of inlining, reduction lock is no longer necessary because the reduction is
always protected by locR (Figure 2(b)). Whersum_reduction is inlined, the use oR

at the lock node fol5 becomes a protected use andstéunction can be removed [6]
(Figure 2(c)). In this case we say that the mutex structurbofik S is nested inside the
mutex structure foiR.

6 Experimental Results

We selected programs originally written in Java because ntigipated optimization
opportunities due to the thread-safe nature of its libmrgince Java libraries are
thread-safe, application programs may spend up to half éxecution time performing
unnecessary synchronization [1]. The key reason for théstmad is that the libraries
are generic and are not specific to an individual applic&ioontext. Hence, they have
to be conservative in the assumptions they make. Therefidren considered within
the context of an actual program it might turn out that mosthaf synchronization
operations are not necessary.

Table 1 shows the improvements obtained by applying lockipg to sequential
Java programs found in the JGL abstract class library thesgrams. We executed
both the Java and C versions of these programs; in both dasesdults were similar.

UnoptimizedOptimize Relativq
Benchmark | time (secs)|time (secgSpeedup

Array (1,000) 23 20 1.15
Array (10,000 547 534 1.02
Map (3,000) 32 30 1.07
Map (30,000) 273 227 1.20
Sort (3,000) 32 30 1.07
Sort (30,000) 407 327 1.24

Table 1. Effect of lock-picking (LP) on sequential Java programs.

In general, we obtained performance improvements betwéearid 24% when lock-
picking was applied. The performance gains obtained by vémgothe unnecessary
locks are directly related to this particular implemerdatof mutual exclusion. Since
these are sequential programs, all the synchronizatiorheael is caused by the actual
call tol ock andunl ock. There is no lock contention. An alternative to removing
the locks would have been to use a more efficient mutual exelus/nchronization
implementation. We are convinced that a combination of d@npptimizations and
efficient lock implementations is the best approach in tlrases.

7 Conclusions

Synchronization analysis techniques are important in dmeext of an optimizing com-
piler for explicitly parallel programs. By reducing the nber of memory conflicts, they
simplify subsequent analysis and allow more aggressivienggstions to be applied.

In this paper we have developed a new technique to analyz&aweurrency for
mutex synchronization that can handle locking patternsnpported by existing tech-
niques. This allows the analysis of more complex mutualesioh synchronization
patterns in explicitly parallel programs. We have showrt thes analysis can help de-
tect common locking irregularities in parallel programmadfly, we apply this analysis
to remove mutex synchronization when it can be proven suymrd.

References

[1] D. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin Lockeatherweight Synchroniza-
tion for Java. INPACM S GPLAN 98, June 1998.

[2] A. Krishnamurthy and K. Yelick. Analyses and Optimizats for Shared Address Space
Programs.J. Parallel and Distributed Computing, 38:130-144, 1996.

[3] J. Lee, S. Midkiff, and D. A. Padua. Concurrent statigghinassignment form and constant
propagation for explicitly parallel programs. LCPC ' 97, August 1997.

[4] S. P. MasticolaSatic Detection of Deadlocks in Polynomial Time. PhD thesis, Department
of Computer Science, Rutgers University, 1993.

[5] D. Novillo. Compiler Analysis and Optimization Techniques for Explicitly Parallel Pro-
grams. PhD thesis, University of Alberta, February 2000.

[6] D. Novillo, R. Unrau, and J. Schaeffer. Concurrent SSArrdn the Presence of Mutual
Exclusion. InICPP ' 98, pages 356—364, August 1998.

