
Memory SSA - A Unified Approach for Sparsely
Representing Memory Operations

Diego Novillo
Red Hat Canada1

1now at Google Canada

1 Introduction

Static Single Assignment (SSA) provides a
sparse data-flow representation for scalars, but
it is not well suited for representing objects of
aggregate types like structures and arrays, or
other memory operations like pointer derefer-
ences and global storage. Several approaches
have been proposed to incorporate memory op-
erations into SSA [2, 4, 10, 13, 14]. In general,
these approaches build a separate web structure
of use-def or def-use chains that are factored
very similarly to the basic SSA form.

This paper presents a unified approach for
representing both scalars and arbitrary mem-
ory expressions in SSA form. It extends the
idea of assignment factoring [13], but instead
of being a separate data structure on top of
the CFG, it integrates both scalar and mem-
ory SSA forms. The representation maintains
all the SSA properties, provides factored use-
def chains, its sparseness can be incrementally
controlled, it efficiently supports scalarization
of memory objects and can use site-specific
aliasing information to weed out false positives
computed by alias analysis.

2 Virtual SSA Form in GCC

Because of the general undecidability of alias-
ing [7, 9], memory LOAD/STORE operations
may involve many different objects. In general,
increasing analysis precision leads to a sparser
SSA web, thus freeing up the optimizers to per-
form more aggressive transformation. How-
ever, this usually means larger data sets for the
compiler to process, which translates into in-
creased compile times and memory consump-
tion.

GCC uses an approach similar to that used by
the SGI compiler [2]. Special compiler gen-
erated symbols, called tags are created to rep-
resent regions of memory and two new virtual
operators VDEF, and VUSE are associated with
statements that make LOAD/STORE operations.

2.1 Alias Representation

GCC represents memory operations explicitly
in the intermediate representation using virtual
operands [11]. In this scheme, alias and struc-
tural analysis creates symbolic names for re-
gions of memory that can be treated as separate
objects. When a statement makes a LOAD or
STORE operation, GCC adds a virtual operand
for every symbolic name associated with that
memory location.

1

For example, given the code fragment in Figure
1(a), GCC creates two symbolic names for the
memory region pointed-to by p3:

The first symbol, called symbol memory tag
(SMT) is the result of flow-insensitive
alias analysis, it (roughly) represents all
the memory locations of type int. This
analysis is almost purely type-based, GCC
will try to do a few pruning decisions
based on other attributes, but SMTs basi-
cally represent memory of a given type.
Thus when a pointer of type int * is
dereferenced in the fragment below, GCC
will consider that a reference to symbol
SMT.7.

The second symbol, called name memory tag
(NMT), is the result of points-to analy-
sis applied to pointers after the program
is in SSA form [12, 6]. Since the anal-
ysis is done over SSA names, the results
inherit the flow-sensitive properties of the
SSA form. Every SSA pointer pi that has
been dereferenced and is found to point
to a common set of symbols, is given the
same name tag.

Notice that the virtual operands do not actu-
ally reference the memory tags. Rather, GCC
looks up the alias set associated with each tag
(i.e., the set of symbols potentially accessed
through that pointer) and adds a virtual operand
for each of them. In this case, the memory
expression ∗p3 is a reference to the name tag
NMT.8 and since NMT.8 has symbols a and
b in its may-alias set, the compiler inserts two
virtual operands, one for a and another for b.

One may wonder why did GCC bother creat-
ing a type tag (SMT.7) in this case. Type tags
are used when the compiler cannot find a name
tag associated to a particular SSA pointer. In
those cases, the compiler retrieves the type tag

associated with the SSA name’s base symbol
(p in this case). If the base symbol does not
have an associated type tag, the compiler will
abort. SSA pointers may “lose” their name tags
in various ways: when points-to analysis could
not compute a known set of pointed-to sym-
bols, or when other transformations create new
SSA pointers and fail to compute a name tag for
them. Note that these are not necessarily error
conditions, nor do they indicate loss of preci-
sion. It may happen that all the SSA names for
a pointer do point to the same set of symbols
that would be computed by the flow-insensitive
analysis. In which case, using the type tag is
perfectly reasonable.

2.2 Representation of aggregates

Aliasing is not the only situation where the
compiler creates artificial symbols to represent
regions of memory. References to aggregate
types like structures and arrays are also han-
dled in a similar fashion. Whenever possible,
the compiler will create symbolic names to rep-
resent distinct regions inside aggregates (called
structure field tags or SFT). For instance, in
Figure 2(b), GCC will create three SFT sym-
bols for this structure, namely SFT.0 for A.x,
SFT.1 for A.b and SFT.2 for A.a.

Once the artificial SFT symbols have been
computed, they are added as virtual operands
to the appropriate statements and those virtual
operands are then put into SSA form. Fur-
thermore, this approach to assigning symbolic
names to regions of aggregates can be com-
bined with alias analysis, so the SFT symbols
may be added to may-alias sets, if necessary.

3 Problems with this approach

The compiler adds a virtual operand for each
member of the may-alias set for the sym-

2

foo (int i)
{

if (i2 > 10)
t.018 = &a

else
t.017 = &b

t.01 = PHI <t.018(3), t.017(4)>
p3 = t.01
D.15274 = i2 + 1

*p3 = D.15274
D.15285 = i2 + 2

a7 = VDEF <a6>

a = D.15285
D.15298 = i2 + 10

b10 = VDEF <b9>

b = D.15298

VUSE <a7>

a.111 = a

VUSE <b10>

b.212 = b
D.153313 = a.111 + b.212

D.153414 = *p3
D.153015 = D.153313 + D.153414

return D.153015
}

p, int *, type memory tag: SMT.7,
may aliases: { a b }

p3, name memory tag: NMT.8,
may aliases: { a b }

foo (int i)
{

if (i2 > 10)
t.018 = &a

else
t.017 = &b

t.01 = PHI <t.018, t.017>

p3 = t.01
D.15274 = i2 + 1

a19 = VDEF <a6>

b20 = VDEF <b9>

*p3 = D.15274
D.15285 = i2 + 2

a7 = VDEF <a19>

a = D.15285
D.15298 = i2 + 10

b10 = VDEF <b20>

b = D.15298

VUSE <a7>

a.111 = a

VUSE <b10>

b.212 = b
D.153313 = a.111 + b.212

VUSE <a7>

VUSE <b10>

D.153414 = *p3
D.153015 = D.153313 + D.153414

return D.153015
}

Figure 1: Current representation of memory operations.

3

struct A
{

int a
int b
float x

}

foo ()
{

a.a = 30

a.b = 10

D.1527 = a.a
D.1528 = (float) D.1527
D.1529 = D.1528 * 2.5e+0

a.x = D.1529

D.1531 = a.x

D.1532 = a.b
D.1533 = (float) D.1532
D.1530 = D.1531 + D.1533

return D.1530
}

(a) Original code before SFT creation.

struct A
{

int a
int b
float x

}

foo ()
{
SFT.22 = VDEF <SFT.21>
a.a = 30

SFT.14 = VDEF <SFT.13>

a.b = 10

VUSE <SFT.22>
D.15275 = a.a
D.15286 = (float) D.15275
D.15297 = D.15286 * 2.5e+0

SFT.09 = VDEF <SFT.08>

a.x = D.15297

VUSE <SFT.09>

D.153110 = a.x

VUSE <SFT.14>
D.153211 = a.b
D.153312 = (float) D.153211
D.153013 = D.153110 + D.153312

return D.153013
}

(b) SFTs in SSA form.

Figure 2: Current representation of memory operations.

4

bol associated with a memory expression.
Since alias analysis results are often con-
servative, may-alias sets may contain tens
and even hundreds of symbols (about 600
in the collection of GCC, MICO, POOMA,
SPEC2000 and TRAMP3D). In some extreme
cases, an alias set may contain millions of
elements. In FreeFEM3D (http://www.
freefem.org/), the generated parser file
parse.ff.cc produces alias sets with 4.8
million elements. Therefore, every memory op-
eration will have as many virtual operands as
the may-alias set.

While the current approach succeeds in keep-
ing the different members of an alias set inde-
pendent of each other, it penalizes memory ex-
pressions involving all the alias sets (i.e., LOAD

and STORE operations via the associated mem-
ory tag).

To alleviate this problem, GCC includes a
grouping heuristic similar to that used in the
SGI compiler [2]. All the members of the same
alias set are grouped under the same symbol
name. This drastically reduces the number of
virtual operands, but also increases the density
of use-def chains, thus preventing many op-
timization opportunities. For instance, given
the expression p = (i > 10) ? &a :
(i > 20) ? &b : &c, the may-alias
set for p’s memory tag is {a, b, c}. There-
fore, LOAD and STORE operations via *p will
contain virtual operands for each of a, b and c.
References to each member of the alias set will
not affect the others. This gives freedom to the
optimizer to do transformations that would not
be possible otherwise (e.g., in Figure 3 propa-
gate the value 5 from line 15 associated with a6
into line 26).

The grouping heuristic used by GCC will asso-
ciate all the members of the same alias set with
the same, resulting in the SSA form in Figure
3(b). Notice that while the representation size
has been greatly reduced, the use-def chains are

now linking the load of a at line 26 with the
store to b at line 18. Which blocks the store at
line 15 to be propagated into the load at line 26.

4 Memory SSA

The approach proposed in this paper attempts
to preserve the sparse properties of the current
virtual SSA form implemented by GCC, while
avoiding the excessive overhead resulting from
voluminous alias sets. The design of this new
approach has been driven by the following de-
sirable properties:

Integration. While scalar SSA and mem-
ory factored SSA have different proper-
ties, they both use the same basic version-
ing scheme and provide a unified view of
the program to the optimizers. This facili-
tates implementation details, as there is no
need for the optimizers to consult on-the-
side data structures to determine if a trans-
formation is valid.

Sparseness. As much as possible, LOAD and
STORE operations to memory locations
that may not overlap should not affect each
other.

Lightweight. In general, this is inversely pro-
portional to sparseness. The sparser the
representation is, the higher the number of
use-def chains or SSA versions that need
to be kept around. In the case of the cur-
rent implementation in GCC, this also im-
plies a large increase in the number of vir-
tual operands associated with LOAD and
STORE operations.

Stability. In some cases, a side effect of opti-
mization results in a reduction of memory
operands. Consider the program in Fig-
ure 4(a), variable a has its address taken

5

1 foo (i)
2 {
3 if (i3 > 10)
4 tmp17 = &a;
5 else
6 if (i3 > 20)
7 tmp16 = &b;
8 else
9 tmp15 = &c;

10
11 # tmp2 = PHI <tmp16, tmp15, tmp17>;
12 p4 = tmp2;
13
14 # a6 = VDEF <a5>;
15 a = 5;
16
17 # b8 = VDEF <b7>;
18 b = 3;
19
20 # VUSE <a6>;
21 # VUSE <b8>;
22 # VUSE <c18>;
23 D.15309 = *p4;
24
25 # VUSE <a6>;
26 a.210 = a;
27
28 D.153211 = D.15309 + a.210;
29 D.152912 = (float) D.153211;
30 return D.152912;
31 }

(a) Ungrouped alias sets. Alias set members are in-
dependent of each other.

1 foo (i)
2 {
3 if (i3 > 10)
4 tmp17 = &a;
5 else
6 if (i3 > 20)
7 tmp16 = &b;
8 else
9 tmp15 = &c;

10
11 # tmp2 = PHI <tmp16, tmp15, tmp17>;
12 p4 = tmp2;
13
14 # TMT.719 = VDEF <TMT.718>;
15 a = 5;
16
17 # TMT.720 = VDEF <TMT.719>;
18 b = 3;
19
20
21
22 # VUSE <TMT.720>;
23 D.15309 = *p4;
24
25 # VUSE <TMT.720>;
26 a.210 = a;
27
28 D.153211 = D.15309 + a.210;
29 D.152912 = (float) D.153211;
30 return D.152912;
31 }

(b) Grouped alias sets. Alias set members affect
each other.

Figure 3: Difference between grouped and ungrouped alias sets.

6

by pointer p1, therefore references to *p
are represented in virtual SSA form as
may references to a. However, constant
propagation will prove that p will only
ever point to a by propagating &a into all
dereferences of p1. This means that a can
now be converted into scalar SSA form
(Figure 4(b)). This transition between vir-
tual and scalar SSA form can be costly, de-
pending on how much work needs to be
done to transition from one form to the
other.

The basic premise in Memory SSA is similar
to the current virtual SSA form as implemented
in GCC. Every memory STORE operation rep-
resents a potential definition for the objects that
may be residing at that location. This is usually
referred to as a preserving or non-killing defini-
tion in the literature. If a STORE operation may
affect more than one memory object, we refer
to it as a factored store. Similarly, memory
LOAD operations represent potential reads for
the objects associated with that memory loca-
tion. If a LOAD operation may read from more
than one memory object, we refer to it as a fac-
tored load.

Memory SSA attacks the memory consumption
problem by systematically reducing the number
of SSA names created at every factored store.
This reduction works using a grouping mech-
anism similar to the one described earlier, but
instead of being an “all or none” grouping, it
can be gradually adjusted to allow a balance be-
tween alias precision information and memory
consumption.

The grouping done by Memory SSA is based
on the concept of memory partitions. Each
memory partition represents an arbitrary set of

1This example is for illustration only. This is not ex-
actly how the current GCC implementation works, but
the final effect is the same.

memory symbols, so that if symbol V belongs
to memory partition P, every reference to V
will be converted into a reference to partition
P. Since the number of partitions is a fraction
of the total number of symbols, this approach
reduces the amount of virtual operands, SSA
names and PHI nodes needed. In turn, this re-
duces compilation times because there is sim-
ply fewer things for the optimizers to deal with.

The drawback of grouping schemes is that it
may reduce the representation precision as dis-
cussed in Section 3. Note that in the context
of this document, we are not interested in the
precision obtained by alias analysis. Rather, we
are interested in the precision used to represent
the alias sets computed by alias analysis.

Given a memory reference M, alias analysis de-
termines that M affects a set of symbols S1. The
representation of that memory reference is a set
of virtual operands S2 such that S2 ⊇ S1. We
say that this representation is precise if S2 = S1
for every memory reference in the program.
Otherwise, the representation is imprecise.

Imprecise representations are always safe from
the point of view of correctness because they
represent more memory symbols than neces-
sary. However, they tend to block optimiza-
tion opportunities as shown in Figure 3(b). The
store a = 5 at line 15 cannot be propagated to
the load of a in line 26 because of the unrelated
store to b at line 18.

We distinguish two types of partitioning
schemes, namely dynamic and static. Dy-
namic partitioning is decided during the SSA
renaming process. Every memory store gen-
erates exactly one SSA name which is associ-
ated with the set of symbols stored by the state-
ment. Static partition, on the other hand, is
determined before renaming. All the symbols
in a single partition set are represented by an
artificial symbol called Memory Partition Tag

7

foo ()
{

p1 = &a;

a6 = VDEF <a5>;
*p1 = 3;

VUSE <a6>;
D.15252 = *p1;

D.15243 = D.15252 + 5;
return D.15243;

}

(a) SSA form before constant propagation.

foo ()
{

p1 = &a;

a7 = 3;

D.15252 = a7;

D.15243 = D.15252 + 5;
return D.15243;

}

(b) SSA form after constant propagation.

Figure 4: Transition from virtual to scalar SSA form for aliased variables.

(MPT). Both techniques are described in the
following sections.

4.1 Dynamic memory partitions

Every factored store generates exactly one SSA
name for an artificial symbol called MEM. Ini-
tially, every aliased memory expression refers
to the same SSA name MEM1. STORE opera-
tions create a new version of MEM and asso-
ciate that version to all the objects related to
that particular memory expression. Similarly,
LOAD operations receive their value from a set
of reaching MEM versions, associated to each of
the objects related to the underlying memory
expression.

STORE operations generate exactly one SSA
name for MEM and serve as the merge point
for all the SSA names that reach the ob-
jects associated with that memory loca-
tion. This is represented with the VDEF
operator:

MEMi = VDEF <MEMx, MEMy, MEMz>.

which indicates that SSA name MEMi is
generated by “killing” the reaching SSA
versions x, y and z.

LOAD operations are represented with the
VUSE operator, which takes as operands
all the reaching definitions for the objects
associated with the memory location.

The SSA numbering for the MEM object is done
using a slight modification of the standard SSA
renaming algorithm [3].

• Every store operation is associated with
a memory tag (i.e., one of SMT, NMT
or SFT). When the SSA renamer finds a
store for a memory expression E, it will

1. Determine what tag T is associated
with E. If T is a type or name tag, it
will retrieve its associated may-alias
set S.

2. For every aliased symbol V in S,

8

if E does conflict with V 2, add
currde f (V) to the set of killed
names.

3. Generate a new SSA name MEMi and
set currde f (V) =MEMi.

4. Add the VDEF operator:
MEMi =VDEF <{killed names}>

• Every load operation is processed simi-
larly to step 2 above. And a VUSE operator
is added as VUSE <{reaching names}>

As an example, consider the code fragment in
Figure 5(a). After alias analysis, GCC will cur-
rently generate the SSA form in Figure 5(b).
For brevity, the pointer setup code that estab-
lishes the points-to sets computed for p5 and q6
has been elided.

Using the memory SSA renaming outlined be-
fore, the SSA form is as shown in Figure 6.
There are a few things worth noting in this ap-
proach:

1. The same MEM version may be “killed”
more than once. After all, these are pre-
serving definitions, so the reaching SSA
name is only used to preserve the factored
use-def and def-def chains. For instance,
stores to a and b at lines 3 and 6 provide a
new name for MEM7.

2. STOREs to distinct members of the same
alias set are not linked in the same use-def
or def-def chain.

3. STOREs to a memory tag (i.e., pointer
dereference expression) serve as merge
points for all the outstanding MEM names
for every member of the tag’s alias set.

2May-alias sets may be imprecise (particularly type-
based sets). In some cases, it is possible to determine
whether a particular memory expression may actually
overlap with a variable or not.

Notice how the name created by the
STORE to *p5 at line 14 is then used by
the LOAD from b at line 17.

In general, the size of the set of operands on the
right hand side of VDEF or VUSE operators will
depend on the number of distinct current reach-
ing definitions for members in the tag’s alias
set.

Call clobbered variables and other global stor-
age (global variables) is modeled similarly. All
call clobbered objects are grouped in a sin-
gle set, the renaming mechanism is exactly the
same (Figure 7). Notice how the second call
clobbering site at line 19 uses the factored name
created by the first clobbering site at line 13.

This new approach is, in principle, more stable
with respect to changes to may-alias sets. As
illustrated in Figure 4(b), alias sets may change
due to optimizations. The current virtual SSA
form used by GCC forces the compiler to per-
form some expensive incremental updates of
the SSA form. The new form should, in princi-
ple, allow for a much quicker incremental up-
date.

Currently, GCC creates artificial symbols to
represent name tags, type tags and structure
field tags. This is necessary so that they can
be added as operands to the virtual operators
VDEF and VUSE. This unnecessarily pollutes
the symbol table and would not be necessary
under the new scheme. These tags may just be
indices or hash values into a lookup data struc-
ture containing may-alias sets.

4.2 Static memory partitions

Although dynamic partitions guarantee that
factored stores will only create one SSA
name, the fact that they create overlapping
live ranges has been found to be problematic

9

foo (i)
{

. . .

a = 2

b = 5

b.3 = b

D.1536 = b.3 + 3

*p = D.1536

b.3 = b
D.1537 = 10 − b.3

*q = D.1537

a.4 = a

X.x = a.4
return

}

(a) Before conversion into SSA form.

p5 points−to {a, b, c}
q6 points−to {b, c}

foo (i)
{

. . .
a8 = VDEF <a7>;
a = 2;

b10 = VDEF <b9>;
b = 5;

VUSE <b10>;
b.311 = b;

D.153612 = b.311 + 3;

a25 = VDEF <a8>;
b26 = VDEF <b10>;
c27 = VDEF <c24>;
*p5 = D.153612;

VUSE <b26>;
b.313 = b;
D.153714 = 10 − b.313;

b28 = VDEF <b26>;
c29 = VDEF <c27>;
*q6 = D.153714;

VUSE <a25>;
a.415 = a;

X17 = VDEF <X16>;
X.x = a.415;
return;

}

(b) After conversion into SSA form.

Figure 5: SSA form with virtual operands as currently implemented in GCC.

10

p5 points−to {a, b, c}
q6 points−to {b, c}

CD(v) means that the generated MEM i name is the “current definition” for v.
LU(v) looks up the “current definition” for v.

The initial SSA name for MEM is MEM7.

foo (i)
{

1 . . .
2 # MEM8 = VDEF <MEM7> ⇒ CD(a)
3 a = 2
4
5 # MEM10 = VDEF <MEM7> ⇒ CD(b)
6 b = 5
7
8 # VUSE <MEM10> ⇒ LU(b)
9 b.311 = b

10
11 D.153612 = b.311 + 3
12
13 # MEM25 = VDEF <MEM8, MEM10> ⇒ CD(a, b, c)
14 *p5 = D.153612
15
16 # VUSE <MEM25> ⇒ LU(b)
17 b.313 = b
18 D.153714 = 10 − b.313
19
20 # MEM26 = VDEF <MEM25> ⇒ CD(b, c)
21 *q6 = D.153714
22
23 # VUSE <MEM25> ⇒ LU(a)
24 a.415 = a
25
26 # MEM17 = VDEF <MEM7> ⇒ CD(SFT.2)
27 X.x = a.415
28 return

}

Figure 6: Memory SSA form for program in 5(a).

11

Call clobbered symbols { A, B, C, D, x, y, z, L, N }
p points to {a, b}

CD(v) means that the generated MEM i name is the “current definition” for v.
LU(v) looks up the “current definition” for v.

The initial SSA name for MEM is MEM1.

foo (i)
{

1 # MEM2 = VDEF <MEM1> ⇒ CD(A)
2 A = . . .
3
4 # MEM3 = VDEF <MEM1> ⇒ CD(B)
5 B = . . .
6
7 # MEM4 = VDEF <MEM1> ⇒ CD(C)
8 C = . . .
9

10 # MEM5 = VDEF <MEM1> ⇒ CD(D)
11 D = . . .
12
13 # MEM6 = VDEF <MEM1, MEM2, MEM3, MEM4, MEM5> ⇒ CD(A, B, C, D, x, y, z, L, N)
14 bar ();
15
16 VUSE <MEM1> ⇒ LU(a, b)
17 . . . = *p;
18
19 # MEM7 = VDEF <MEM6> ⇒ LU(A, B, C, D, x, y, z, L, N)
20 baz ();

}

Figure 7: Memory SSA form for global storage.

12

for certain memory optimizations like PRE
(http://gcc.gnu.org/bugzilla/
show_bug.cgi?id=29680). During
implementation, PRE had to be disabled and
the presence of overlapping live ranges may be
preventing optimizations like store-motion to
work as implemented today because unrelated
stores may be killing the same SSA name.

Another problem we found with pure dynamic
partitions was an explosion in the number of
PHI nodes. Recall that every factored store S
becomes a definition site for every symbol fac-
tored by that store. Therefore, basic blocks at
the dominance frontier of S will require a φ

node for each symbol store by S. This was
essentially undoing all the factoring effects be-
cause φ nodes were separating all the symbols
that had been factored by a previous store. This
is illustrated in Figure 8.

Notice that all of the φ nodes in Figure 8 are
not necessary (they all have the exact same ar-
guments). The same information can be ob-
tained with a single φ node. Besides the mem-
ory consumption problems caused by an ex-
cessive number of unnecessary φ nodes, they
also cause a considerable compile time slow-
down because the SSA renamer must compute
dominance frontier information for every sym-
bol separately.

These problems can be addressed using static
memory partitions. A memory partition tag
(MPT) is a symbol that represents a fixed set of
aliased or call-clobbered symbols. There does
not need to be an alias or type relationship be-
tween an MPT and the symbols in its set.

The partitioning can be completely arbitrary,
and it can even change as long as this rule
is followed: Given two partitions MPT.i and
MPT.j, they must not contain symbols in com-
mon. From this, it follows that given a symbol
V, V may only belong to exactly one partition.

When the operand scanner finds symbol V in
a memory expression, it asks whether V be-
longs to a partition, if it does, then an operand
is added for V ’s partition.

This static partitioning can be used directly or
to complement dynamic partitioning.

4.2.1 Pure static partitioning

Once computed, memory partitions can be used
as direct replacement of all the grouped mem-
ory symbols. This way, instead of dealing
with statements producing hundreds of virtual
operators, only a handful will be required.
This threshold can be configured using the
parameters -param max-aliased-vops
and -param avg-aliased-vops

While this representation is not precise, the
heuristics used for grouping can be altered
to minimize the grouping side-effects. The
heuristic counts the total number of memory
references in the function. With that, it will es-
timate the number of virtual operators needed
for stores and loads and compare them against
two thresholds:

• A maximum number of virtual oper-
ators allowed for the whole function
(max-aliased-vops).

• An average number of virtual op-
erators allowed per statement
(avg-aliased-vops).

If both values are below the threshold, noth-
ing is done. Otherwise, the heuristic in
compute_memory_partitions triggers
and symbols are added to a work list. Given
a memory variable V in the list, its “partition-
ing score” (pscore) is a weighted given by the
following formula:

13

foo (i)
{

. . . p2 is set to point to { a, b, c, d, e, f, g } . . .

if (i > 10)
MEM3 = VDEF <MEM1> STORES { a, b, c, d, e, f, g }
*p2 = . . .

else
MEM6 = VDEF <MEM1> STORES { a, b, c, d, e, f, g }
*p2 = . . .

endif
a7 = PHI <MEM3, MEM6>

b8 = PHI <MEM3, MEM6>

c9 = PHI <MEM3, MEM6>

d10 = PHI <MEM3, MEM6>

e11 = PHI <MEM3, MEM6>

f12 = PHI <MEM3, MEM6>

g13 = PHI <MEM3, MEM6>

VUSE <a7, b8, c9, d10, e11, f12, g13>

x15 = *p2
}

Figure 8: Unfactoring effects due to φ nodes and dynamic partitions.

f requency_writes ∗ 64 + f requency_reads ∗
32 + num_direct_writes ∗ 16 +
num_direct_reads∗8+num_indirect_writes∗
4+num_indirect_reads∗2+noalias_state

Where

frequency_writes is the aggregate execution
frequency of all the write operations to V .

frequency_reads is the aggregate execution
frequency of all the read operations from
V .

num_direct_writes is the number of direct
write operations to V .

num_direct_reads is the number of direct read
operations from V .

num_indirect_writes is the number of indirect
(i.e., through a pointer or call site) write
operations to V .

num_indirect_reads is the number of indirect
read operations from V .

noalias_state is an integer in the range 0− 4
indicating the value of the family of flags
-fargument-noalias-*.

The higher this score is for V , the less likely
that V will be added to a partition.

This makes the partitioning better, particularly
in small functions (where we just don’t care
about how many virtual operators are needed)
and allows a much smoother control over the
partitioning behaviour.

There are 3 different preset values for
the parameters max-aliased-vops and
avg-aliased-vops. One for each of -O1,
-O2 and -O3. At -O1 the idea is to make compi-
lation time very quick. The current values give

14

us about 1-2% memory savings at -O1 and a
3-5% compile-time savings.

For -O2, the compile-time and memory utiliza-
tion is roughly the same (though in some cases,
you’ll notice an increase, so I may have to ad-
just further).

At -O3, the settings should be such that we very
rarely partition.

4.2.2 Hybrid partitioning

As discussed earlier, pure dynamic partitioning
leads to a proliferation of φ nodes that essen-
tially undo all the benefits of factored stores.
To address this problem, we can use the static
partitions when placing φ nodes. Instead of
computing dominance frontiers and creating φ

nodes for every individual memory symbol, the
compiler places φ nodes using partitions. This
reduces precision as φ nodes will now group
symbols that may have had unrelated stores.

For instance, suppose that x and y belong to the
same partition MPT.1. The load of y at line 11
is now reached by the unrelated store to x in
line 3.

1 if (. . .)
2 # x4 = VDEF <x3>

3 x = . . .
4 else
5 # y5 = VDEF <y2>

6 y = . . .
7 endif
8 # MPT.19 = PHI <x4, y5>

9
10 # VUSE <MPT.19>

11 k3 = y

Another effect that occurs when mixing static
and dynamic partitions is that it is now possible
for a φ node to have multiple reaching defini-
tions for a single argument. Recall that with

dynamic partitioning, every single store gener-
ates a name for the unique symbol being stored.
Only factored stores will generate a name for
MEM. In contrast, with static partitioning indi-
vidual stores to grouped symbols are consid-
ered stores to their holding partition.

For instance, using static partitioning, stores to
x and y will always affect each other:

1 if (. . .)
2 # MPT.13 = VDEF <MPT.11>

3 x = . . .
4
5 # MPT.14 = VDEF <MPT.13>

6 y = . . .
7 else
8 # MPT.15 = VDEF <MPT.11>

9 x = . . .
10 endif
11 # MPT.16 = PHI <MPT.14, MPT.15>

Notice how the unrelated stores to x and y in
lines 3 and 6 are linked with a def-def link.
But using dynamic partitioning, this link is not
needed:

1 if (. . .)
2 # x3 = VDEF <x1>

3 x = . . .
4
5 # y4 = VDEF <y2>
6 y = . . .
7 else
8 # x5 = VDEF <x1>

9 x = . . .
10 endif
11 # MPT.16 = PHI <???, x5>

By splitting the stores to x and y we avoid un-
necessary def-def links but this creates a sec-
ondary problem: the first argument for the φ

node at line 11 needs to be reached by two dif-
ferent names, namely x3 and y4.

The first approach I tried was to split these φ

nodes during renaming so that instead of having

15

a single φ node for MPT.1, the renamer would
create one φ node for x and another for y. This
approach proved to be extremely hard to imple-
ment and brittle.

Since new φ nodes would appear during re-
naming, this meant that the renamer would fre-
quently need to go back to rename dominance
sub-trees that had already been renamed be-
cause φ nodes higher up in the dominance hier-
archy had been split after the children sub-trees
had been renamed. This also slowed down the
renaming process and greatly increased imple-
mentation complexity.

An alternate approach involves a new factoring
device to gather the multiple reaching defini-
tions in these cases. This new device, called σ

node is inserted during renaming when neces-
sary. A σ node acts as a “sink” that receives
all the conflicting reaching definitions and pro-
duces a new name that can be used as the argu-
ment for the receiving φ node. In the previous
example, we would have

if (. . .)
x3 = VDEF <x1>

x = . . .

y4 = VDEF <y2>
y = . . .

MPT.16 = SIGMA <x3, y4>

else
x5 = VDEF <x1>

x = . . .
endif
MPT.17 = PHI <MPT.16 x5>

Note that though this mechanism is fairly
straightforward and does not require complex
changes in the renamer, it is still very experi-
mental. It is not yet clear whether it provides
major benefits in code generation versus a pure
static approach.

5 Experimental results

The current implementation uses pure static
partitioning. The hybrid partitioning scheme is
being implemented on the mem-ssa branch.

Experiments use a set of C and C++ files
taken from various applications: GCC, SPEC
2000, MICO (a Corba implementation), DLV
(a disjunctive catalog system), TraMP-3d (as-
trophysical hydrodynamics simulation) and a
few test cases from GCC’s bugzilla database.

Static partitioning shows marked improve-
ments in compile times, on average compilation
times are 5% to 25% faster than before. The
following tables summarize the compile time
speedups obtained by the Memory SSA imple-
mentation. Phase timing is reported by GCC
using the switch -ftime-report. Only
the phases that showed significant changes are
included. All the timings were measured on an
Intel Core Duo 64bits @2.13 Ghz. Figures 9,
10, 11, 12, 13 and 14 show the compile time
improvements obtained with static partitioning
on GCC, DLV, MICO, SPEC 2000, TraMP-3D
and PR 12850 (http://gcc.gnu.org/
bugzilla/show_bug.cgi?id=12850)
respectively.

6 Related Work

SGI’s approach is to use as many different sym-
bols as possible [2], but they still link all the
names for the same symbol. All the variables
that are grouped under the same symbol are al-
ways linked together. Use-def chains over these
symbols are sparse, but every use is linked to
every definition.

Steensgaard proposed assignment factoring
[13]. It overlays factored use-def links over

16

Phase Before After % change
tree PTA 16.39 15.35 -6.3%
tree alias analysis 12.33 11.75 -4.7%
tree SSA rewrite 6.24 5.13 -17.8%
tree SSA incremental 15.79 12.09 -23.4%
tree operand scan 85.90 52.28 -39.1%
TOTAL 476.43 437.47 -8.2%

Figure 9: Compile time improvements on GCC

Phase Before After % change
tree PTA 4.22 3.69 -12.6%
tree SSA incremental 4.09 2.89 -29.3%
tree operand scan 20.85 14.47 -30.6%
TOTAL 101.39 91.69 -9.6%

Figure 10: Compile time improvements on DLV

Phase Before After % change
tree SSA rewrite 4.56 3.13 -31.4%
tree SSA incremental 10.00 5.93 -40.7%
tree operand scan 90.19 50.24 -44.3%
TOTAL 444.08 391.64 -11.8%

Figure 11: Compile time improvements on MICO

Phase Before After % change
tree alias analysis 6.01 5.31 -11.6%
tree SSA rewrite 4.54 2.66 -41.4%
tree SSA incremental 9.47 5.08 -46.4%
tree operand scan 49.93 43.83 -12.2%
TOTAL 287.97 271.64 -5.7%

Figure 12: Compile time improvements on SPEC 2000

Phase Before After % change
tree SSA rewrite 3.80 2.71 -28.7%
tree SSA incremental 3.29 1.92 -41.6%
tree operand scan 22.72 16.87 -25.7%
expand 5.88 5.06 -13.9%
TOTAL 88.78 77.68 -12.5%

Figure 13: Compile time improvements on TraMP-3D

17

Phase Before After % change
tree alias analysis 4.61 3.66 -20.6%
tree SSA rewrite 4.77 3.10 -35.0%
tree SSA incremental 5.85 1.87 -68.0%
tree operand scan 54.29 26.98 -50.3%
TOTAL 159.39 118.16 -25.9%

Figure 14: Compile time improvements on PR12850

the CFG. No details on application to aggre-
gate types or global storage. Store fragmenta-
tion (i.e. points-to analysis) determines what
statements conflict. No details on forming the
SSA form nor keeping it up-to-date.

Cytron et.al. proposed iterating SSA formation
using results of alias analysis [4]. But the ap-
proach is too expensive, it requires building the
SSA form over and over.

Choi et.al. proposed location factoring [1].
This is a precursor to Steensgaard’s assignment
factoring where use-def links are inserted be-
tween statements that access the same memory
location. It’s the same idea, but less factored
than assignment factoring.

Fink et.al. proposed Heap SSA [5]. Based on
Array SSA [8].

References

[1] J.-D. Choi, R. Cytron, and J. Ferrante.
On the efficient engineering of ambitious
program analysis. IEEE Transactions
on Software Engineering, 20(2):105–114,
February 1994.

[2] F. C. Chow, S. Chan, S.-M. Liu, R. Lo,
and M. Streich. Effective Representation
of Aliases and Indirect Memory Opera-
tions in SSA Form. In Computational
Complexity, pages 253–267, 1996.

[3] R. Cytron, J. Ferrante, B. Rosen, M. Weg-
man, and K. Zadeck. Efficiently comput-
ing static single assignment form and the
control dependence graph. ACM Trans-
actions on Programming Languages and
Systems, 13(4):451–490, October 1991.

[4] R. Cytron and R. Gershbein. Efficient
accommodation of may-alias information
in SSA form. ACM SIGPLAN Notices,
28(6):36–45, 1993.

[5] S. J. Fink, K. Knobe, and V. Sarkar. Uni-
fied analysis of array and object refer-
ences in strongly typed languages. In
Static Analysis Symposium, pages 155–
174, 2000.

[6] N. Heintze and O. Tardieu. Ultra-fast
aliasing analysis using CLA: A million
lines of c code in a second. In SIG-
PLAN Conference on Programming Lan-
guage Design and Implementation, pages
254–263, 2001.

[7] S. Horwitz. Precise flow-insensitive may-
alias analysis is NP-hard. ACM Trans-
actions on Programming Languages and
Systems, 19(1):1–6, January 1997.

[8] K. Knobe and V. Sarkar. Array SSA form
and its use in parallelization. In Sympo-
sium on Principles of Programming Lan-
guages, pages 107–120, 1998.

[9] William Landi. Undecidability of static
analysis. ACM Letters on Programming

18

Languages and Systems, 1(4):323–337,
December 1992.

[10] C. Lapkowski and L. J. Hendren. Ex-
tended SSA Numbering: Introducing
SSA Properties to Language with Multi-
level Pointers. In Computational Com-
plexity, pages 128–143, 1998.

[11] D. Novillo. Design and Implementation
of Tree SSA. In 2004 GCC Developers’
Summit, pages 119–130, 2004.

[12] D. J. Pearce, P. H. J. Kelly, and C. Han-
kin. Efficient field-sensitive pointer anal-
ysis for C. In Proceedings of the ACM
workshop on Program Analysis for Soft-
ware Tools and Engineering. ACM Press,
2004.

[13] B. Steensgaard. Sparse functional stores
for imperative programs. ACM SIGPLAN
Notices, 30(3):62–70, 1995.

[14] M. Wolfe. High Performance Compilers
for Parallel Computing. Addison-Wesley,
1996.

19

