
GCC - An Architectural Overview, Current Status and
Future Directions

Diego Novillo
Red Hat Canada

dnovillo@redhat.com

Abstract

The GNU Compiler Collection (GCC) is one
of the most popular compilers available and it
is the de facto system compiler for Linux sys-
tems. Despite its popularity, the internal work-
ings of GCC are relatively unknown outside of
the immediate developer community.

This paper provides a high-level architectural
overview of GCC, its internal modules and how
it manages to support a wide variety of hard-
ware architectures and languages. Special em-
phasis is placed on high-level descriptions of
the different modules to provide a roadmap to
GCC.

Finally, the paper also describes recent techno-
logical improvements that have been added to
GCC and discusses some of the major features
that the developer community is thinking for
future versions of the compiler.

1 Introduction

The GNU Compiler Collection (GCC) has
evolved from a relatively modest C compiler
to a multi-language compiler that can generate
code for more than 30 architectures. This di-
versity of languages and architectures has made

GCC one of the most popular compilers in use
today. It serves as the system compiler for
every Linux distribution and it is also fairly
popular in academic circles, where it is used
for compiler research. Despite this popular-
ity, GCC has traditionally proven difficult to
maintain and enhance, to the extreme that some
features were almost impossible to implement.
And as a result GCC was starting to lag behind
the competition.

Part of the problem is the size of its code base.
While GCC is not huge by industry standards,
it still is a fairly large project, with a core
of about 1.3 MLOC. Including the runtime li-
braries needed for all the language support,
GCC comes to about 2.2 MLOC1.

Size is not the only hurdle presented by GCC.
Compilers are inherently complex and very de-
manding in terms of the theoretical knowl-
edge required, particularly in the area of opti-
mization and analysis. Additionally, compilers
are dull, dreary and rarely provide immediate
gratification, as interesting features often take
weeks or months to implement.

Over the last few releases, GCC’s internal in-
frastructure has been overhauled to address
these problems. This has facilitated the im-

1Data generated using David A. Wheeler’s ’SLOC-
Count’.
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plementation of a new SSA based global opti-
mizer, sophisticated data dependency analyses,
a multi-platform vectoriser, a memory bounds
checker (mudflap) and several other new fea-
tures.

This paper describes the major components in
GCC and their internal organization. Note that
this is not intended to be a replacement for
GCC’s internal documentation. Many modules
are overlooked or described only briefly. The
intent of this document is to serve as introduc-
tory material for anyone interested in extending
or maintaining GCC.

2 Overview of GCC

GCC is essentially a big pipeline that converts
one program representation into another. There
are three main components: front end (FE),
middle end (ME)2 and back end (BE). Source
code enters the front end and flows through the
pipeline, being converted at each stage into suc-
cessively lower-level representation forms until
final code generation in the form of assembly
code that is then fed into the assembler.

Figure 1 shows a bird’s eye view of the com-
piler. Notice that the different phases are se-
quenced by the Call Graph and Pass managers.
The call graph manager builds a call graph for
the compilation unit and decides in which or-
der to process each function. It also drives
the inter-procedural optimizations (IPO) such
as inlining. The pass manager is responsible
for sequencing the individual transformations
and handling pre and post cleanup actions as
needed by each pass.

The source code is organized in three major
groups: core, runtime and support. In what fol-

2Consistency in naming conventions led to this unfor-
tunate term.

lows all directory names are assumed to be rel-
ative to the root directory where GCC sources
live.

2.1 Core

The gcc directory contains the C front end,
middle end, target-independent back end com-
ponents and a host of other modules needed by
various parts of the compiler. This includes di-
agnostic and error machinery, the driver pro-
gram, option handling and data structures such
as bitmaps, sets, etc.

The other front ends are contained in their own
subdirectories: gcc/ada, gcc/cp (C++),
gcc/fortran (Fortran 95), gcc/java,
gcc/objc (Objective-C), gcc/objcp (Ob-
jective C++) and gcc/treelang, which is a
small toy language used as an example of how
to implement front ends.

Directories inside gcc/config contain all
the target-dependent back end components.
This includes the machine description (MD)
files that describe code generation patterns
and support functions used by the target-
independent back end functions.

2.2 Runtime

Most languages and some GCC features require
a runtime component, which can be found at
the top of the directory tree:

The Java runtime is in boehm-gc (garbage
collection), libffi (foreign function in-
terface), libjava and zlib.

The Ada, C++, Fortran 95 and
Objective-C runtime are in libada,
libstdc++-v3, libgfortran and
libobjc respectively.
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The preprocessor is implemented as a separate
library in libcpp.

A decimal arithmetic library is included in
libdecnumber.

The OpenMP [14] runtime is in libgomp.

Mudflap [6], the pointer and memory check
facility, has its runtime component in
libmudflap.

The library functions for SSP (Stack Smash
Protection) are in libssp.

2.3 Support

Various utility functions and generic data struc-
tures, such as bitmaps, sets, queues, etc are im-
plemented in libiberty. The configuration
and build machinery live in build and vari-
ous scripts useful for developers are stored in
contrib.

2.4 Development Model

All the major decisions in GCC are taken by
the GCC Steering Committee. This usually
includes determining maintainership rights for
contributors, interfacing with the FSF, approv-
ing the inclusion of major features and other
administrative and political decisions regard-
ing the project. All these decisions are guided
by GCC’s mission statement (http://gcc.
gnu.org/gccmission.html).

GCC goes through three distinct development
stages, which are coordinated by GCC’s re-
lease manager and its maintainers. Each stage
usually lasts between 3 and 5 months. Dur-
ing Stage 1, big and disruptive changes are
allowed. This is where all the major fea-
tures are incorporated into the compiler. Stage

2 is the stabilization phase, only minor fea-
tures are allowed and bug fixes that maintain-
ers consider safe to include. Stage 3 marks
the preparation for release. During this phase
only bug and documentation fixes are allowed.
In particular, these bug fixes are usually re-
quired to have a corresponding entry in GCC’s
bug tracking database (http://gcc.gnu.
org/bugzilla)

At the end of stage 3, the release manager will
cut a release branch. Stabilization work con-
tinues on the release branch and a release crite-
ria is agreed by consensus between the release
manager and the maintainers. Release block-
ing bugs are identified in the bugzilla database
and the release is done once all the critical bugs
have been fixed3. Once the release branch is
created, Stage 1 for the next release begins.

Using this system, GCC is averaging about a
couple of releases a year. Once version X.Y is
released, subsequent releases in the X.Y series
continues. In this case, another release manager
takes over the X.Y series, which accepts no new
features, just bug fixes.

Major development that spans multiple releases
is done in branches. Anyone with write access
to the GCC repository may create a develop-
ment branch and develop the new feature on
the branch. When that feature is ready, they
can propose including it at the next Stage 1.
Vendors usually create their own branches from
FSF release branches.

All contributors must sign an FSF copyright re-
lease to be able to contribute to GCC. If the
work is done as part of their employment, their
employer must also sign a copyright release
form to the FSF.

3It may also happen that some of these bugs are sim-
ply moved over to the next release, if they are not deemed
to be as critical as initially thought.

4



3 GENERIC Representation

Every language front end is responsible for all
the syntactic and semantic processing for the
corresponding input language. The main inter-
face between an FE and the rest of the compiler
is via the GENERIC representation [12]. Ev-
ery front end is free to use its own internal data
structures for parsing and validation. Once the
compilation unit is parsed and validated, the FE
converts its parse trees into GENERIC, a high-
level tree representation where all the language-
specific features are explicitly represented (e.g.,
exception handling, vtable lookups).

Due to historic reasons, most FEs use the tree
data structure for representing their parse trees.
However, the Fortran 95 FE uses its own data
structures. This is a desirable property because
it shields the FE from the rest of the compiler,
providing a clean hand-off interface to the mid-
dle end via GENERIC.

While GENERIC provides a mechanism for
a language front end to represent entire func-
tions in a language-independent way, there are
some features that are not representable in
GENERIC. For instance, during alias analy-
sis it is often necessary to determine whether
two symbols of different types may occupy the
same memory location. Each language has its
own rules regarding type conflicts, so the com-
piler provides a call-back mechanism to query
the front end. This mechanism is known as lan-
guage hook or langhook and it is used when-
ever the compiler needs to involve the front end
in some transformation or analysis.

All the language semantics must be explic-
itly represented in GENERIC, but there are no
restrictions in how expressions are combined
and/or nested. If necessary, a front end can
use language-dependent trees in its GENERIC
representation, so long as it provides a hook

f(int a, int b, int c)
{

if (g (a + b, c))
c = b++ / a

return c
}

Figure 2: A program in GENERIC form.

for converting them to GIMPLE. In particu-
lar, a front end need not emit GENERIC at
all. For instance, in the current implementa-
tion, the C and C++ parsers do not actually emit
GENERIC during parsing.

In practical terms GENERIC is a C-like lan-
guage. A front end that wants to integrate with
GCC can emit any of the tree codes defined in
tree.def and implement the language hooks
in langhooks.h. Figure 2 shows a code
fragment in GENERIC.

4 GIMPLE Representation

GIMPLE is a subset of GENERIC used for op-
timization. Both its name and the basic gram-
mar are based on the SIMPLE IR used by the
McCAT compiler at McGill University [8]. Es-
sentially, GIMPLE is a 3 address language with
no high-level control flow structures:

1. Each GIMPLE statement contains no
more than 3 operands (except function
calls) and has no implicit side effects.
Temporaries are used to hold intermediate
values as necessary.

2. There are no lexical scopes.

3. Control structures are lowered to condi-
tional gotos.
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f (int a, int b, int c)
{

t1 = a + b
t2 = g (t1, c)
if (t2 != 0)

{
c = b / a
b = b + 1

}
else

{

}
t3 = c
return t3

}

(a) High GIMPLE.

f (int a, int b, int c)
{

t1 = a + b
t2 = g (t1, c)
if (t2 != 0) <D1530> else <D1531>

<D1530>:
c = b / a
b = b + 1

<D1531>:
t3 = c
return t3

}

(b) Low GIMPLE.

Figure 3: High and Low GIMPLE versions for the code in 2.

4. Variables that need to live in memory are
never used in expressions. They are first
loaded into a temporary and the temporary
is used in the expression.

There are two slightly different versions of
GIMPLE used in GCC, namely High GIMPLE
and Low GIMPLE. The main difference is that
in High GIMPLE binding scopes like the body
of an if-then-else construct are nested
with the parent construct, while in Low GIM-
PLE binding scopes are completely linearized
using labels and jumps. Figure 3(a) shows the
High GIMPLE form for the code in Figure 2.
The Low GIMPLE version is shown in Fig-
ure 3(b). The differences between Low and
High GIMPLE are more noticeable when low-
ering other constructs like exception handling
and OpenMP directives.

The process of lowering GENERIC into
GIMPLE is known as gimplification. It
recursively replaces complex statements
with sequences of statements in GIMPLE

form. The gimplifier lives in gimplify.c
and tree-gimple.c. The lowering
between High and Low GIMPLE is in
gimple-low.c.

5 Call Graph

In order to perform interprocedural analyses
and optimizations, GCC builds a call graph for
the whole compilation unit4. This static call
graph is used in two ways: to drive the se-
quence in which functions are optimized and
to perform interprocedural optimizations. Each
node in the call graph represents a function or
procedure in the compilation unit and edges
represent call operations. Data and attributes
are stored both on nodes and edges.

After the front end is done parsing a func-
tion and producing the GENERIC form for it,
the middle end is invoked to create the High

4Only at -O2 and higher.
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GIMPLE form with a call to gimplify_-
function_tree. The gimplified function
is then added to the call graph. Once all the
functions have been parsed and added to the
call graph, the middle end invokes cgraph_-
optimize, which will:

1. Perform interprocedural optimizations
with a call to ipa_passes.

2. Optimize every reachable function in the
call graph with a call to cgraph_-
expand_function which in turn calls
tree_rest_of_compilation to ex-
ecute all the intraprocedural transfor-
mations by calling the pass manager
(execute_pass_list).

The implementation of the call graph lives in
cgraph.c and cgraphunit.c. All passes
executed by the pass manager are defined
and registered by init_optimization_-
passes in passes.c.

6 SSA Form

After a function is in Low GIMPLE form,
the pass manager will build the Control Flow
Graph (CFG) and rewrite the function in Static
Single Assignment (SSA) form [3], which is
the main data structure used for analysis and
optimization in the middle end.

The SSA form is a representation that exposes
data flow by linking read and write operations
using a static versioning scheme. When a vari-
able V is the target of a write operation, a new
version number is created for V and labeled Vi.
Subsequent read operations, without an inter-
vening assignment to V , are modified to use Vi.
For example,

foo (int a, int b, int c)
{

a1 = 3;
b2 = 5;
c3 = a1 + b2;
a4 = c3;
return a4;

}

When analyzing the statement c3 = a1 +b2, the
optimizer can easily determine that a1 can be
replaced with 3 and b2 with 5 because both SSA
names are guaranteed to be assigned exactly
once. But, in many cases, conditional control
flow makes it impossible to statically determine
the most recent version of a variable. For in-
stance,

foo (int a, int b, int c)
{

if (c3 > 10)
c4 = a1 + b2;

else
c5 = a1 − b2;

c6 = PHI <c4, c5>

return c6;
}

Since it is not possible to statically determine
which branch will be taken at runtime, we don’t
know which of c4 or c5 to use at the return state-
ment. So, the SSA renamer creates a new ver-
sion, c6, which is assigned the result of “merg-
ing” c4 and c5. This PHI function tells the com-
piler that at runtime c6 will be either c4 or c5.

GCC uses two different SSA variants, a rewrit-
ing and a non-rewriting form. In the rewrit-
ing form, symbols are replaced with their corre-
sponding SSA names. Each SSA name is con-
sidered a distinct object and, as such, code mo-
tion transformations are allowed to cause two
or more SSA versions for the same symbol to
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be simultaneously live. When the function is
taken out of SSA form, the SSA names are con-
verted into regular symbols and new artificial
symbols are created as needed to satisfy live
range requirements [13]. In the non-rewriting
form, SSA names are only used to connect vari-
able uses to their definition sites, distinct SSA
names for the same symbol are not allowed
to have overlapping live ranges, and so, when
taking the function out of SSA form the SSA
names are simply discarded.

The rewriting form is applied to local scalar
variables that may not be modified in ways un-
known to the compiler. That is, they may not
be modified as a side-effect to a function call,
their address has not been taken by any pointer
and every read/write operation references the
whole object. GCC labels these variables as
GIMPLE registers5. Operand statements that
use GIMPLE registers are referred to as real
operands, and so the rewriting SSA form in
GCC is also known as real SSA form. The
previous two code fragments are examples of
GCC’s real SSA form.

In contrast, the non-rewriting SSA form is used
on memory symbols. These are variables that
may be modified in ways unknown to the com-
piler. That is, they may be clobbered by a
function call or their address has been taken
or they may be partial references to the object
(e.g. symbols of aggregate types like struc-
tures and arrays). Since statements may have
implicit references to memory symbols, GCC
represents them with special virtual operators
attached to the statement. There are two such
operators: V_MAY_DEF to indicate a partial
and/or potential store to the object, and VUSE

to indicate partial and/or potential load from
the object. This non-rewriting form is known
in GCC as virtual SSA form.

5This does not imply that the object will actually be
allocated a physical register.

For example, in the following code fragment
variable A is a global variable that may be clob-
bered by function foo, so when calling foo,
GCC indicates that A may be modified by it
with a V_MAY_DEF operator, resulting in the
following virtual SSA form for A:

int A;

bar ()
{
# A2 = V MAY DEF <A1>
A = 9

# A3 = V MAY DEF <A2>

foo ()

# VUSE <A3>

x4 = A
return x4

}

Notice that the virtual SSA form not only links
uses to definitions (use-def chains). It also links
definitions to other definitions (def-def chains).
This is necessary because V_MAY_DEF oper-
ators represent partial/potential stores. In the
previous code fragment, the store A = 9 may
or may not reach the x4 = A statement, so it is
necessary to link A3 and A2, or transformations
like dead-code elimination would eliminate the
statement A = 9.

The CFG, SSA form and related facilities (such
as incremental SSA updates) are implemented
in tree-cfg.c, tree-into-ssa.c,
tree-ssa.c and tree-outof-ssa.c.

6.1 Aliasing

GCC uses two mechanisms for representing
aliasing: query or oracle based, used during
RTL optimization and an explicit representa-
tion used during GIMPLE optimization.
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The query based mechanism provides functions
that, given two memory references will deter-
mine whether they may overlap or not. Cur-
rently, the analysis done by this mechanism is
mostly type and structural based. If the two
memory references are to objects whose types
may not alias according to the rules of the lan-
guage, then they may not overlap. The basic
mechanism uses the notion of alias set num-
bers, which are associated to the type of the
memory location and organized in a hierarchi-
cal structure according to the rules of the input
language. Given two memory references, the
function alias_sets_conflict_p deter-
mines whether they may occupy the same
memory slot based on their alias set numbers.
The file alias.c contains the implementation
of this mechanism.

The explicit representation is used during GIM-
PLE optimization and it takes advantage of
the virtual SSA representation. After the
code is put into SSA form, an alias analysis
pass (pass_may_alias) computes points-
to information for all referenced pointers.
This is used to build flow-sensitive and flow-
insensitive alias sets that are then associated
with special symbols called memory tags that
represent pointer dereferences. When a pointer
is dereferenced, the compiler will look-up its
associated memory tag, determine what sym-
bols belong to the alias set and insert virtual
operators for every symbol in the alias set.

Each mechanism has its strengths and weak-
nesses. The advantage of an explicit represen-
tation is that optimizers need not concern them-
selves with possible aliasing problems when
doing a transformation. On the other hand,
an explicit representation takes up memory and
compile time (unbearably so in some extreme
cases), so it may become an unnecessary bur-
den. For example, consider the function in
Figure 46. To illustrate the difference be-

6SSA form redacted for simplicity.

tween the explicit representation and the query
based mechanism, consider the problem of re-
ordering the store operations at lines 6 and
7. With a query based mechanism, the trans-
formation pass should call alias_sets_-
conflict_p on the memory references given
by ∗p2 and ∗q3.

1 foo (int i, float *q)
2 {
3 int a, b, *p;
4
5 p2 = (i1 > 10) ? &a : &b
6 *p2 = 42
7 *q3 = 0.42
8 return *p2
9 }

Figure 4: Query-based alias analysis requires
no additional operators in the IL.

1 foo (int i, float *q)
2 {
3 int a, b, *p;
4
5 p2 = (i1 > 10) ? &a : &b

# a5 = V MAY DEF <a4>

# b7 = V MAY DEF <b6>

6 *p2 = 42

# MT9 = V MAY DEF <MT8>

7 *q3 = 0.42

# VUSE <a5>

# VUSE <b7>

8 return *p2
9 }

Figure 5: Explicit representation of aliasing us-
ing virtual SSA form.

But that relation is made explicit when the pro-
gram is in virtual SSA form (Figure 5). Since
p2 points to one of a or b, line 6 contains one
virtual operator for each variable. On the other
hand, pointer q3 does not really point to any
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variable in function foo, so dereferencing q3 is
represented with a virtual operator to its mem-
ory tag (MT). Given this, the stores at line 6 and
7 do not conflict and so the transformation can
proceed safely.

While the explicit representation has several
advantages over the query mechanism, all the
virtual operators required and their PHI nodes
will add more bulk to the IR, resulting in in-
creased compile time and memory consump-
tion (we are currently working on a new rep-
resentation to alleviate this problem).

6.2 SSA Optimizers

In general, transformations at the GIMPLE
level are target-independent because the IL
does not expose attributes such as word size,
address arithmetic, registers, calling conven-
tions, etc. However, there are transformations
that need to span multiple IL abstractions to
work properly. One of the prime examples is
vectorization. The analysis required to deter-
mine whether some code may be vectorized
requires high-level dataflow information that
is available in GIMPLE. However, the actual
transformation depends on hardware capabili-
ties, such as size of vector registers and avail-
able vector operations. This communication is
done via special IL codes and call backs be-
tween the middle end and back end.

A variety of SSA-based analyses and optimiza-
tions have been implemented on the GIMPLE
representation (Figure 1). Together with other
cleanup passes and the fact that some of them
are executed more than once, the middle end
pipeline runs to about 100 stages. Some of the
more notable transformations include

Vectorization [15] supporting multiple archi-
tectures.

Loop optimizations based on chains of recur-
rences to recognize scalar evolutions and
track induction variables [2].

Traditional scalar optimizations, including
constant/copy propagation, dead code
elimination, full and partial redundancy
elimination, value range propagation,
scalar replacement of aggregates, jump
threading, forward propagation and dead
store elimination.

Flow sensitive and flow insensitive alias anal-
ysis, including field-sensitive points-to
analysis for aggregates [1].

Automatic instrumentation for pointer check-
ing for C and C++ [6].

7 RTL

Register Transfer Language (RTL) is the orig-
inal intermediate representation used by GCC.
It was developed at the University of Arizona
as part of their research in re-targetable com-
pilers in the early 80s [4, 5]. It is also used by
VPCC (Very Portable C Compiler). Basically,
RTL is an assembler language for an abstract
machine with an infinite number of registers.
As opposed to the C-like representation used by
GENERIC and GIMPLE, RTL resembles Lisp
(although it is possible to obtain an assembly-
like rendering for debugging purposes). The
code fragment in Figure 6(a) shows a GIMPLE
code fragment and its conversion to RTL (Fig-
ure 6(b)). The exact RTL will contain more de-
tailed information and may vary from one pro-
cessor to another.

RTL is designed to abstract hardware features
such as register classes, memory addressing
modes, word sizes and types (machine modes),
compare-and-branch instructions, calling con-
ventions, bitfield operations, type and sign
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if (a > 10) <L1> else <L2>;

<L1>:

b = a − 1;

<L2>:

(a) GIMPLE version.

(insn 20 18 21 3 (set (reg:CCGC 17 flags)
(compare:CCGC (reg/v:SI 60 [ a ])

(const int 10 [0xa]))))

(jump insn 21 20 22 3 (set (pc)
(if then else (le (reg:CCGC 17 flags)

(const int 0 [0x0]))
(label ref 26)
(pc))))

(code label 22 21 23 4 3 "" [0 uses])

(insn 25 23 26 4 (parallel [
(set (reg/v:SI 59 [ b ])

(plus:SI (reg/v:SI 60 [ a ])
(const int −1 [0xffffffff])))

(clobber (reg:CC 17 flags))
]))

(code label 26 25 27 5 2 "" [1 uses])

(b) RTL version.

Figure 6: GIMPLE and RTL variants of a conditional branch.

conversions, and generic instruction patterns.
These abstractions are defined and controlled
by an elaborate pattern matching mechanism
defined in a machine description (MD) file,
which defines all the necessary code generation
mappings between the back end and the target
processor.

Machine description files together with other
files needed to generate target code are com-
monly referred-to as ports. They are stored
in sub-directories under gcc/config/. Cur-
rently, GCC contains more than 30 such ports,
and while the implementation of a new port
is not a trivial task, it is perhaps one of
the aspects of GCC with the most exten-
sive available documentation (http://gcc.
gnu.org/onlinedocs/). There are two
main components that make up a port:

Instruction templates define the mappings

between generic RTL and the target ma-
chine. For instance, the define_insn
pattern in Figure 7 describes a typical 32-
bit addition operation for a RISC proces-
sor. The top portion defines the pattern
to be matched. In this case, it’s looking
for x = y + z where all the operands are
word-sized (SI), general purpose registers
("register_operand" "r"). It also
indicates that the x operand is modified
by the instruction ("=r"). The bottom
portion indicates the final assembly code
that should be emitted when this pattern is
matched (add x, y, z).

Target description macros describe hard-
ware capabilities such as register classes,
calling conventions, data types and sizes,
predicates that validate moves between
memory and registers, etc.
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(define insn "addsi3"
[(set (match operand:SI 0 "register_operand" "=r")

(plus:SI (match operand:SI "register_operand" "r")
(match operand:SI "register_operand" "r")))]

""
"add %0, %1, %2")

Figure 7: An RTL code generation pattern for 32-bit addition.

7.1 RTL passes

Historically, all the optimization work was
done in RTL, but the current trend is to
move most of the heavy lifting from RTL into
the GIMPLE optimizers (currently there are
around 60 RTL passes and more than 100 GIM-
PLE passes). The final goal is to implement
analyses and transformations at the right level
of abstraction. RTL is ideally suited for low-
level transformations such as register allocation
and scheduling, but most of the generic trans-
formations are more efficient to implement in
GIMPLE.

RTL and GIMPLE also share common infras-
tructure code such as the pass and call graph
managers, the flowgraph, dominance informa-
tion and type-based aliasing. Some of the main
transformations done in RTL include

Register allocation. Arguably, one of the
more complex passes in GCC. It is orga-
nized as a multi-pass allocator: a local
pass (local-alloc.c) allocates regis-
ters within a basic block, and a global pass
(global.c) which works across basic
block boundaries. The actual code mod-
ification is done by a third pass known
as reload (reload.c and reload1.c).
Most of the complexity in register alloca-
tion lies in the multitude of targets sup-
ported by GCC. Every target will have
its own set of register classes and rules

for moving values between registers and
memory. Several efforts exist to re-
implement this pass, but is generally con-
sidered to be a fairly difficult problem
[9, 10, 11, 16].

Scheduling. This pass tries to take advan-
tage of the implicit parallelism provided
by the multiple functional units in mod-
ern processors that allow the simultaneous
execution of multiple instructions. The
scheduler rearranges the instructions ac-
cording to data dependency restrictions
in an effort to increase instruction paral-
lelism. The scheduler is implemented in
haifa-sched.c and sched-rgn.c.

Software pipelining is implemented us-
ing Swing Modulo Scheduling (SMS)
[7]. This pass complements instruction
scheduling by improving parallelism in-
side loops by overlapping the execution of
instructions from different loop iterations.

Other optimizations include common subex-
pression elimination, instruction re-
combination, mode switching reduction,
peephole optimizations and machine
specific reorganizations.

8 Current Status and Future Work

The open development model used by GCC has
all the usual advantages of other FOSS projects.
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It attracts a wide variety of developers and since
it is the system compiler of every Linux dis-
tribution, it is a fairly stable and robust com-
piler. Furthermore, the wide variety of sup-
ported languages, platforms and flexible archi-
tecture makes it a compelling option for both
industry and academic compiler projects.

GCC has changed quite significantly in the
last 3-4 years. The addition of GENERIC,
GIMPLE and the SSA framework allowed the
development of features that had traditionally
been considered difficult or impossible to im-
plement, including vectorization, OpenMP and
advanced loop transformations.

8.1 New languages

The introduction of the GENERIC representa-
tion has further simplified the task of introduc-
ing a new language front end to GCC. The in-
creased separation between the front end and
the rest of the compiler provides a lot of in-
dependence to language designers. While we
do not claim GENERIC to be the perfect tar-
get for all languages, it has proven to be suf-
ficiently flexible for the variety of languages
currently supported by GCC, including C, C++,
Java, Ada, Objective-C/C++ and Fortran 95.

The addition of new languages may require ex-
tending and/or adapting GENERIC. In terms
of language-specific analyses and transforma-
tions, GCC’s strategy is to, as much as possible,
implement in GIMPLE where all the data and
control-flow information is gathered and use
langhooks to communicate with the front end
when necessary. Most transformations in this
area are expected to be in the area of abstrac-
tion removal such as method devirtualization in
OO languages. There is also interest in more
sophisticated escape analysis for languages like
Java.

8.2 Internal modularity

The basic compiler infrastructure is encapsu-
lated as much as C allows. While this re-
mains one of the weakest points in the imple-
mentation, we try to draw strict API bound-
aries to abstract the major conceptual modules,
such as call graph, control flow graph, inter-
mediate representation, fundamental data types
(bitmaps, hash tables), SSA form, etc.

GCC would probably benefit from switching to
an implementation language with more capa-
bilities, such as C++. In fact, the topic comes
up every now and again on the development
lists. The consensus seems to be in favor of
switching, but 1+ million lines of code repre-
sent a lot of inertia to overcome, and imple-
mentation discipline can go a long way. Not
every module of the compiler is implemented
in C, however. Front ends, for instance, are free
to use different implementation languages (Ada
being the prime example).

8.3 High performance computing

With the advent of multi-core processors, opti-
mizations and languages that take advantage of
task/data parallelism will become increasingly
important. GCC includes a multi-platform vec-
toriser that is unique in its class and start-
ing with version 4.2, it will include support
for OpenMP (http://www.openmp.org),
which provides compiler directives for specify-
ing parallelism in C, C++ and Fortran.

Other important features for future releases in-
clude an automatic parallelization option built
on top of the OpenMP framework, memory lo-
cality optimizations, more advanced loop op-
timizations and additional vectorization im-
provements.
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8.4 Static analysis tools

This is another area that is starting to gain
widespread interest. Compilers are in a unique
position to provide this facility because they
already have a synthetic representation of the
input program. However, the set of interest-
ing analyses to perform may vary widely, some
people will want to check for security prob-
lems, others may want to enforce coding guide-
lines, others may want to check for buffer over-
flows, etc.

GCC already includes some of the more
commonly requested features such as pointer
checking and buffer overflow prevention. But
there are other types of checks specific enough
that it usually does not make sense to include
in the compiler. At the same time, people inter-
ested in them may not have the interest nor the
time to invest in delving inside the compiler to
implement their analysis.

There are plans to provide some form of exten-
sibility mechanism so that external developers
would be able to connect ad-hoc analysis code
by interfacing with GCC.

8.5 Dynamic Compilation

Static compilation techniques are generally be-
lieved to have reached a saturation point. Com-
pilers do not have a sufficiently global view of
the program to perform more aggressive opti-
mizations. Modern software is usually spread
over many files and it likely uses many services
from shared libraries, all of which is hidden
from the compiler at compile time. And since
most libraries use dynamic linking. the code
may even be hidden from the compiler at link
time.

To compound this problem, languages like Java
and C# have fairly powerful dynamic proper-
ties, such as class loading. Therefore, static

compilers may only see a small portion of the
whole program. All this provides a big incen-
tive to move parts of the compilation process
into the runtime system.

This is generally known as Just-In-Time com-
pilation (JIT). These systems work on top of a
bytecode language and virtual machine which
converts the bytecodes into native form at run-
time. While this provides a lot of flexibility in
terms of portability and dynamic features, the
runtime overhead can be pretty significant, so
hiding compile time latencies becomes funda-
mentally important in these environments.

We are currently planning to extend GCC to
support such dynamic compilation schemes. At
the time of this writing, we still do not have
any concrete plans, but it is certainly an area in
which we plan to take GCC in the medium to
long term.
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