
May 31, 2006 1

Parallel Programming with GCC
Diego Novillo

dnovillo@redhat.com

Red Hat Canada

mailto:dnovillo@redhat.com

May 31, 2006 2

Outline
● Introduction to parallel computing
● Parallel programming models

– Automatic parallelization
– Shared memory
– Message passing

● Vectorization in GCC
● Introduction to OpenMP
● Status and Conclusions

May 31, 2006 3

Parallel Computing
● Use hardware concurrency for increased

– Performance
– Problem size

● Two main models
– Shared memory
– Distributed memory

● Nature of problem dictates
– Computation/communication ratio
– Hardware requirements

May 31, 2006 4

Shared Memory

Memory

Interconnect

CPU CPUCPUCPUCPUCPU

● Processors share common memory
● Implicit communication
● Explicit synchronization
● Simple to program but hidden side-effects

May 31, 2006 5

Distributed Memory

● Each processor has its own private memory
● Explicit communication
● Explicit synchronization
● Difficult to program but no/few hidden side-effects

Interconnect

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

May 31, 2006 6

Programming Models
● Shared/Distributed memory often combined

– Networks of multi-core nodes
– Parallelism available at various levels

● Additional requirements over sequential
– Task creation
– Communication
– Synchronization

● How do we program these systems?

May 31, 2006 7

Automatic Parallelization
● Holy grail for a long time
● Limited success
● Hampered by need to preserve sequential

semantics
● Useful in certain application domains

– Loop intensive codes
– No “complex” data dependencies across

iterations
● Vectorization, instruction-level

parallellism (ILP), loop parallelism

May 31, 2006 8

Explicit Parallelism
● User controls: Tasks, communication and

synchronization
● Increased programming complexity

– Often require different algorithms
● Many different approaches

– Parallel languages or language extensions: HPF,
Occam, Java

– Compiler annotations: OpenMP
– Libraries: Pthreads, MPI

May 31, 2006 9

Parallelism in GCC

GCC supports four concurrency models

HardHardEasyEasy

MPIMPIOpenMPOpenMPVectorizationVectorizationILPILP

Ease of use not necessarily related to speedups!Ease of use not necessarily related to speedups!

✔ automaticautomatic
✔ no user controlno user control
✔ not intrusivenot intrusive

✔ automaticautomatic
✔ compiler optioncompiler option
✔ not intrusivenot intrusive

✔ manualmanual
✔ compiler directivescompiler directives
✔ somewhat intrusivesomewhat intrusive

✔ manualmanual
✔ special librariesspecial libraries
✔ very intrusivevery intrusive

May 31, 2006 10

Vectorization
● Perform multiple array computations at once
● Two distinct phases

– Analysis → high-level
– Transformation → low-level

● Successful analysis depends on
– Data dependency analysis
– Alias analysis
– Pattern matching

● Suitable only on loop intensive code

May 31, 2006 11

Vectorization

● Enable vectorizer
$ gcc -ftree-vectorize -O2 prog.c

● Additional -m flags on some architectures
– PowerPC → -maltivec

– x86 → -msse2

● Speedups depend greatly on
– Regular, compute-intensive loops
– Data size and alignment
– “Simple” code patterns in inner loops
– Aliasing

May 31, 2006 12

Vectorization
● Debugging

-fdump-tree-vect enables dump

-ftree-vectorizer-verbose=[0-7] controls
verbosity

● Features and limitations
– Multi-platform vectorization: x86, ppc, ia64, etc
– Recognized patterns grow with each release
– Only works on loops (straight-line code in progress)

May 31, 2006 13

Vectorization

int a[256], b[256], c[256];

foo ()
{
 for (i = 0; i < 256; i++)
 a[i] = b[i] + c[i];
}

.L2:
 movdqa c(%eax), %xmm0
 paddd b(%eax), %xmm0
 movdqa %xmm0, a(%eax)
 addl $16, %eax
 cmpl $1024, %eax
 jne .L2

.L2:
 movl c(,%edx,4), %eax
 addl b(,%edx,4), %eax
 movl %eax, a(,%edx,4)
 addl $1, %edx
 cmpl $256, %edx
 jne .L2

Vectorized

Scalar

(~2x on P4)

May 31, 2006 14

OpenMP - Introduction
● Language extensions for shared memory

concurrency
● Supports C, C++ and Fortran
● Embedded directives specify

– Parallelism
– Data sharing semantics
– Work sharing semantics

● Standard and increasingly popular

May 31, 2006 15

OpenMP – Programming Model
● Based on fork/join semantics

– Master thread spawns teams of children threads
– All threads share common memory

● Allows sequential and parallel execution

fork join

Parallel region

Master
thread

May 31, 2006 16

OpenMP - Programming Model
● Compiler directives via pragmas (C, C++) or

comments (Fortran).
● Compiler replaces directives with calls to

runtime library (libgomp)
● Runtime controls available via library API

and environment variables
● Environment variables control parallelism

OMP_NUM_THREADS OMP_SCHEDULE

OMP_DYNAMIC OMP_NESTED

May 31, 2006 17

OpenMP – Programming Model
● Explicit sharing and synchronization
● Threads interact via shared variables

– Several ways for specifying shared data
– Sharing always at the variable level

● Programmer responsible for synchronization
– Unintended sharing leads to “data races”
– Use synchronization directives and library API
– Synchronization is expensive

May 31, 2006 18

OpenMP - Hello World

#include <omp.h>

main()

{

 #pragma omp parallel

 printf (“[%d] Hello\n”, omp_get_thread_num());

}

$ gcc -fopenmp -o hello hello.c
$./hello
[2] Hello
[3] Hello
[0] Hello ← Master thread
[1] Hello

$ gcc -o hello hello.c
$./hello
[0] Hello

May 31, 2006 19

OpenMP – Directives and Clauses
● Directives are the main OpenMP construct
● Clauses provide modifiers and attributes to

the directives
● General syntax is

– C/C++

– Fortran

#pragma omp directive [clause [clause] ...]

c$omp directive [clause [clause] ...]
!$omp directive [clause [clause] ...]
*$omp directive [clause [clause] ...]

May 31, 2006 20

OpenMP – Directives and Clauses
● Directives are enabled with -fopenmp
● Most directives only apply to structured

blocks
– No early exits except program termination

● Directives control
– Thread creation
– Work sharing
– Synchronization

● Clauses control data sharing

May 31, 2006 21

OpenMP – Thread creation
● Exactly one way to specify parallelism

● Every thread executes the block
● Number of threads created depends on

– Environment variable OMP_NUM_THREADS

– Clauses num_threads and if

– Library function omp_set_num_threads

#pragma omp parallel [clauses]
structured-block

May 31, 2006 22

OpenMP – Thread creation
● Number of threads involved may be dynamic

– Environment variable OMP_DYNAMIC

– Library function omp_set_dynamic

● No implicit synchronization between threads
● At end of parallel region all children threads

disappear
● Every thread has a unique ID starting at 0

– Useful for distributing work (work sharing)

May 31, 2006 23

OpenMP – Work Sharing
● Different threads should work on different

parts of a problem
● Distribution can be specified manually using

thread IDs
● Directives for common work sharing patterns

– Data parallel loops

– cobegin/coend

#pragma omp for [clauses]

#pragma omp sections [clauses]

May 31, 2006 24

OpenMP – Parallel loops
● Most common work sharing mechanism
● Threads execute subset of iteration space

● Scheduling determines distribution of chunks
● No synchronization other than implicit barrier

at the end of the loop

#pragma omp parallel
#pragma omp for
for (i = 0; i < 16; i++)
 a[i] = i;

03 47 811 1215

T
0

T
1

T
2

T
3

May 31, 2006 25

OpenMP – Parallel loops
● #pragma omp for schedule(type[, chunk])

● Schedule type is
– static Static round-robin distribution

– dynamic First-come, first-serve queue

– guided Same as dynamic but varying chunk size
proportional to outstanding iterations

– runtime Taken from environment OMP_SCHEDULE.

● Dynamic and guided schedules may achieve
better load balancing

● Runtime useful to avoid re-compiling.

May 31, 2006 26

OpenMP – Parallel sections

Can be combined#pragma omp
{
 #pragma omp section
 t1();
 #pragma omp section
 t2();
 #pragma omp section
 t3();
}

parallel sections

●#pragma omp sections

●cobegin/coend parallelism
●Sections delimited with #pragma omp section

●Each section is executed by a different thread

May 31, 2006 27

OpenMP – Fortran arrays
● #pragma omp workshare
● Distributes execution of Fortran FORALL,

WHERE and array assignments
● Distribution of units of work is up to the

compiler

integer :: a (10), b (10)
!$omp parallel workshare
 a = 10
 b = 20
 a(1:5) = max (a(1:5), b(1:5))
!$omp end parallel workshare

May 31, 2006 28

OpenMP – Data sharing

● Sharing specified at variable level
● #pragma omp [...] shared (x,y)

– All threads access the same variable
● #pragma omp [...] private (x,y)

– All threads have their own copy
● #pragma omp [...] firstprivate (x,y)

– Private with initial value taken from master thread

May 31, 2006 29

OpenMP – Data sharing
● #pragma omp [...] lastprivate (x,y)

– Private with last value taken from last iteration
or lexically last section

– Only valid for parallel loops and sections
● #pragma omp [...]reduction (op:x)

– Apply reduction operator op to private copy of x and
update original at the end

– C/C++ → + * - & | ^ && ||

– Fortran → + * - .and. .or. .eqv. .neqv.
max min iand ior ieor

May 31, 2006 30

OpenMP – Data sharing
● #pragma omp single copyprivate (x)

– Broadcast private x to all the threads that did not enter
the region

● #pragma omp threadprivate (x, y)

– Global variables x and y are private to each thread
● #pragma omp [...] copyin(x, y)

– Initialize threadprivate variables with the value from
the master thread.

May 31, 2006 31

OpenMP – Data sharing
● Various rules to determine default/implicit

sharing properties
– Globals and heap allocated variables are shared
– Locals declared outside a directive body are

shared
– Locals declared inside a directive body are

private
– Loop iteration variables for parallel loops are

private

May 31, 2006 32

OpenMP – Synchronization
● With few exceptions user is ultimately

responsible for preventing data races using
OpenMP directives

● #pragma omp single
– Only one thread in thread team enters block

● #pragma omp master
– Only master thread enters block

● #pragma omp critical
– Mutual exclusion

May 31, 2006 33

OpenMP – Synchronization
● #pragma omp barrier
● #pragma omp atomic

– Atomic storage update: x op= expr, x++, x
● #pragma omp ordered

– Used in loops, threads enter in loop iteration
order.

May 31, 2006 34

● Vectorization support started in 4.0 series
– New patterns added with every release
– Use on loop-intensive code

● OpenMP will be released with 4.2 later this
year

● Implementation available in Fedora Core 5
● Automatic parallelism planned using OpenMP

infrastructure

Status and Future Work

May 31, 2006 35

Status and Future Work

Benchmark ICC 9.0 GCC 4.2.0 % Diff

wupwise 227.0 224.0 -1.3%

swim 140.0 138.0 -1.4%

mgrid 146.0 140.0 -4.1%

applu 154.9 147.3 -4.9%

equake 267.2 264.5 -1.0%

apsi 179.0 179.0 0.0%

fma3d 139.0 133.0 -4.3%

ammp 140.0 153.0 9.3%

Mean 169.11 167.31 -1.1%

wupwise
swim

mgrid
applu

equake
apsi

fma3d
ammp

Mean

0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

200.0

225.0

250.0

275.0

SPEC OMP2001 (-O2)

ICC 9.0
GCC 4.2.0

Benchmarks

S
co

re

SPEC OMP2001 scores on dual-core EM64T

May 31, 2006 36

Message Passing
● Completely library based
● No special compiler support required
● The “assembly language” of parallel

programming
– Ultimate control
– Ultimate pain when things go wrong
– Computation/communication ratio must be high

● Message Passing Interface (MPI) most
popular model

May 31, 2006 37

Message Passing
● Separate address spaces

– It may also be used on a shared memory
machine

● Heavy weight processes
● Communication explicit via network

messages
– User responsible for marshalling, sending and

receiving

May 31, 2006 38

● There is no “right” choice
– Granularity of work main indicator
– Evaluate complexity ↔ speedup trade-offs

● Combined approach for complex applications
● Algorithms matter!
● Good sequential algorithms may make bad

parallel ones

Conclusions
HardHardEasyEasy

MPIMPIOpenMPOpenMPVectorizationVectorizationILPILP

