Tree SSA
Design and Implementation

Diego Novillo
Red Hat Canada

dnovillo@redhat.com

GCC & GNU Toolchain Developers' Summit
June 2004 — Ottawa, Canada

Project History - 1

Late 2000 Project starts.
Mar 2001 CFG/Factored UD chains on C trees.

Jul 2001 Addedto ast-optimizer-branch.

Jan 2002 Pretty printing and SIMPLE for C.

May 2002 SSA-PRE.

Jun 2002 Move to tree-ssa-20020619-branch.
SIMPLE for C++.

Project History - 2

Jul 2002 SSA-CCP.
Flow 1nsensitive points-to analysis.
Aug 2002 Mudflap and SSA-DCE.
Oct 2002 GIMPLE and GENERIC.
Nov 2002 Tree browser.

Jan 2003 Replace FUD chains with rewriting
SSA form.

Feb 2003
Apr 2003
Jun 2003

Jul 2003
Sep 2003
Nov 2003

Project History - 3

Statement iterators.

Out of SSA pass.
Dominator-based optimizations.
GIMPLE for Java.

Fortran 95 front end.

EH lowering.

Memory management for SSA names
and PHI nodes.

Project History - 4

Nov 2003 Scalar Replacement of Aggregates.
Dec 2003 Statement operands API.

Pass manager.
Jan 2004 Complex numbers lowering.

Feb 2004 Flow-sensitive and escape analysis,
PHI optimization, forward

propagation, function unnesting, tree
profiling, DSE, NRV.

Compile Process

Generates a whole function representation.
Emits GENERIC and/or provides GIMPLE hook.

Makes inlining decisions.
Manages optimization ordering.

GIMPLE: a 3-address representation.
Lowers control structures to conditional jumps.

Renames GIMPLE into SSA.
SSA form includes aliasing and memory objects.
Pass manager sequences all analyses/optimizations.

Statement Operands - 1

e Real operands are for non-aliased scalars
int x, y, Z;
X =Y T zZ;
Whole object reference
* Virtual operands are for aliased or aggregates
int all0], *p;
*p = al2] + 5;

Partial, global or potential references.

Statement Operands - 2

* Real operands are part of the statement.

int x, vy

X 5 =y 3 + 2

* Virtual operands are not.

int x[10], yI[10]
x 5 = VDEF <x 4>
VUSE <y 3>

x[0] = y[0] + 2

int x,

V2

vy 3
X 5

Statement Operands - 3

Y

3 <+— | DEAD

10
y 3 + 2

int a, b, c, *vy

y 2 = ¢ (&a, &b)
a_6 = VDEF <a_1>

b_7 = VDEF <b_3>

b 8 = VDEF <b_7>

b = 10 <«—|NOTDEAD

VUSE <a_6> <b_8>

c b = *y 2 + 2

Alias Analysis - 1

* GIMPLE only has single level pointers.

* Pointer dereferences represented by artificial
symbols = memory tags (MT).
e If p points-to x = p's tag 1s aliased with x.
MT_2 = VDEF <MT 1>
*D 3 = ...
* Since MT 1s aliased with x:

x 2 = VDEF <x_ 1>
*D 3 = ...

Alias Analysis - 2

* Type Memory Tags (TMT)

— Used in type-based and flow-1nsensitive points-to
analyses.

— Tags are associated with symbols.
e Name Memory Tags (NMT)

— Used 1n flow-sensitive points-to analysis.

— Tags are associated with SSA names.

e Compiler tries to use name tags first.

Implementing SSA passes - 1

1.Add entry in struct tree_opt_pass
2.Declare it in tree-pass.h

3.Sequence 1t In init_ tree optimization passes

e Access CFG with FOR_EACH BB
e Use block stmt iterator tO access statements

* Use get_stmt_operands and {USE, DEF, VUSE,
VDEF}_OPS to access operands

Implementing SSA passes - 2

basic block bb;
block stmt i1terator si;

FOR_EACH BB (bb)
for (si = bsi start (bb);
'bsi _end p (si);
bsi next (&si))

tree stmt = bsgi_stmt (si);
print_generic_stmt (stderr, stmt, O0);

}

Implementation Status

e Infrastructure

— Pass manager
- CFG, statement and operand iteration/manipulation
- SSA renaming and verification
— Alias analysis built in the representation
— Pointer and array bound checking (mudflap)
e Optimizations

— Most traditional scalar passes: DCE, CCP, DSE,
SRA, tail call, etc.

Future Work - 1

e Short term
- Split up DOM
- GVN PRE
- Range propagation
— Must-def for aggregates and globals

— Not go out of SSA form for some transformations
- Make C / C++ front ends emit GENERIC

e Medium term

— Stabilization and speedup (Bugzilla)
— Make RTL expanders work directly on SSA form

Future Work - 2

e LNO
* OpenMP
* Code factoring/hoisting for size

* Various type-based optimizations

— Devirtualization
— Redundant type checking elimination

— Escape analysis for Java

