Write gec in C++

lan Lance Taylor
Google

Write gcc in C++

lan Lance Taylor
Google

June 17, 2008

C++ Write gec in C++

vV v.v. v Y

lan Lance Taylor
Google

C++ is a standardized, well known, popular language.
C++ is nearly a superset of C90 used in gcc.
The C subset of C4++ is just as efficient as C.
C++ supports cleaner code in several significant cases.

C++ makes it easier to write cleaner interfaces by
making it harder to break interface boundaries.

» C+4+ never requires uglier code.

» C+4+ is not a panacea but it is an improvement.

VEC or vector? e

lan Lance Taylor
Google

/x C x/

typedef struct loop *loop_p;
DEF_VEC_P (loop_p);
DEF_VEC_ALLOC_P (loop-p, gc);

VEC (loop_p, gc) *superloops;

VEC_reserve (loop_p, gc, superloops, depth);
VEC.index (loop_-p, superloops , depth)
VEC_quick-push (loop_p, superloops , father);

VEC or vector? el

lan Lance Taylor
Google

/x C x/

typedef struct loop *loop_p;
DEF_VEC_P (loop_p);
DEF_VEC_ALLOC_P (loop-p, gc);

VEC (loop_p, gc) *superloops;

VEC_reserve (loop_p, gc, superloops, depth);
VEC.index (loop_-p, superloops , depth)
VEC_quick-push (loop_p, superloops , father);

// G
typedef std::vector<struct loopx*, gc_allocator> loop.vec;
loop-vecx* superloops;
superloops —>reserve (depth);
superloops[depth];
superloops —>push_back(father);

tree_contains_struct Wit g=s i G

lan Lance Taylor

/x €=/ Google

tree_contains_struct [VAR.DECL][TS-DECL.WITH_VIS] = 1; g
#define CONTAINS_STRUCT_CHECK(T, STRUCT) __extension.__ \
({ --typeof (T) const __t = (T); \
if (tree_contains_struct [TREE.CODE(.-t)][(STRUCT)] != 1) \
tree_contains_struct_check_failed (--t, (STRUCT), __FILE__, \
__LINE__, __FUNCTION_.); \

-_t;
#define DECL.WITH_VIS_.CHECK(T) CONTAINS_.STRUCT_CHECK (T, TS_DECL-WITH_VIS)
#define DECL_.DEFER.OUTPUT (NODE) \
(DECL.WITH_VIS_CHECK (NODE)—>decl_with_vis.defer_output)
struct tree_decl_with_vis GTY(())
{

struct tree_decl_with_rtl common;
unsigned defer_output:1;
struct tree_var_decl GTY(())

{

struct tree_decl_with_vis common;

tree_contains_struct Wit g=s i G

lan Lance Taylor

fx €2/ Google

tree_contains_struct [VAR.DECL][TS-DECL.WITH_VIS] = 1; g
#define CONTAINS_STRUCT_CHECK(T, STRUCT) __extension.__ \
({ --typeof (T) const __t = (T); \
if (tree_contains_struct [TREE.CODE(.-t)][(STRUCT)] != 1) \
tree_contains_struct_check_failed (--t, (STRUCT), __FILE__, \
__LINE__, __FUNCTION_.); \

-_t;

#define DECL.WITH_VIS_.CHECK(T) CONTAINS_.STRUCT_CHECK (T, TS_DECL-WITH_VIS)
#define DECL.DEFER.OUTPUT (NODE) \
(DECL.WITH_VIS_CHECK (NODE)—>decl_with_vis.defer_output)
struct tree_decl_with_vis GTY(())
{

struct tree_decl_with_rtl common;
unsigned defer_output:1;

struct tree_var_decl GTY(())

{

struct tree_decl_with_vis common;

// G
template<T> T* check-non_null (T* p) { gcc-assert (p); return p; }
#define ISSSTRUCT_CHECK(T, STRUCT) (check_-non_null(dynamic_cast<Tx>(STRUCT))
#define DECL_.WITH_VIS_.CHECK(T) IS.STRUCT.CHECK (T, tree_decl_with_vis)
#define DECL_.DEFER.OUTPUT (NODE) \

(DECL.WITH_VIS_CHECK (NODE)—>decl_with_vis.defer_output)
class tree_decl_with_vis : public tree_decl_with_rtl

{

unsigned defer_output:1;
+

class tree_var_decl : public tree_decl_with_vis { };

TARGET or Target? e g e

lan Lance Taylor
Google
/x C x/
/* target.h x/
void (* init_builtins) (void);
/* targhooks.h x/
#define TARGET.INIT_BUILTINS hook_void_void
/x i386.c */
#undef TARGET.INIT_BUILTINS
#define TARGET.INIT_BUILTINS ix86._init_builtins
static void
ix86_init_builtins (void)

{
}

TARGET or Target? e g e

lan Lance Taylor
Google
/x C x/
/* target.h x/
void (* init_builtins) (void);
/* targhooks.h x/
#define TARGET.INIT_BUILTINS hook_void_void
/x i386.c */
#undef TARGET.INIT_BUILTINS
#define TARGET.INIT_BUILTINS ix86._init_builtins
static void
ix86_init_builtins (void)

{
}

// G+
// target.h
class Target

{

virtual void init_builtins() { }
+
// i386.c
class Target.i386 : public class Target

void
init_builtins ()

htab or unordered_map?

Write gec in C++

lan Lance Taylor
Google
/% C x/
htab_t exits;

return htab_find_with_hash (exits, e, htab_hash_pointer (e));

slot htab_find_slot_with_hash (exits, e,
htab_hash_pointer (e),
add ? INSERT : NO.INSERT);

if (slot)

if (add)
*slot = add;
else

htab_clear_slot (exits, slot);
}

htab or unordered_map?

/% C x/

htab_t exits;

return htab_find_with_hash (exits, e, htab_hash_pointer (e));

slot = htab_find_slot_with_hash (exits, e,
htab_hash_pointer (e),
add ? INSERT : NO.INSERT);

if (slot)
if (add)
*slot = add;
else
htab_clear_slot (exits, slot);
}
// G+

typedef std::trl::unordered_map<edge, struct loop_exit*x> exit_map;
exit_map exits;

exit_map::iterator p = exits.find(e);
return p != exits.end() ? NULL : p—>second;
if (add)

exits[e] = add;
else

exits.erase(e);

Write gec in C++

lan Lance Taylor
Google

Garbage collection or smart pointers? e gecin G

lan Lance Taylor
Google

» GCC generates temporary garbage which is only freed
by ggc_collect.
» ggc_collect is expensive—scales by total memory
usage.
» C+4+ permits reference counting smart pointers.
» Fast allocation.
Lower total memory usage.
Copying a pointer adds an increment instruction.
Letting a pointer go out of scope adds a decrement and

a test.
» Reference counts are normally in memory cache, unlike
ggc_collect.

v vy

» We may want to use a mixture of reference counting
and garbage collection.

Why not C++7 Write gee in G-+

lan Lance Taylor
Google

» C++ is too slow!

» C++ is too complicated!

» C++ library is a bootstrap problem!

» The FSF doesn't like it!

Why not C++7 Write gee in G-+

lan Lance Taylor
Google

» C++ is too slow!

» C+-+ is only slower when using optional features which
aren't in C.

» Sometimes C++ is faster (e.g., STL functions).

» We would only use features which are worthwhile.

» C++ is too complicated!

» C++ library is a bootstrap problem!

» The FSF doesn't like it!

Why not C++7 Write gee in G-+

lan Lance Taylor
Google

» C++ is too slow!
» C+-+ is only slower when using optional features which
aren't in C.
» Sometimes C++ is faster (e.g., STL functions).
» We would only use features which are worthwhile.
» C++ is too complicated!

» It's just another computer language.
» Maintainers will ensure that gcc continues to be
maintainable.

» C++ library is a bootstrap problem!

» The FSF doesn't like it!

Why not C++7 Write gee in G-+

lan Lance Taylor
Google

» C++ is too slow!
» C+-+ is only slower when using optional features which
aren't in C.
» Sometimes C++ is faster (e.g., STL functions).
» We would only use features which are worthwhile.

» C++ is too complicated!
» It's just another computer language.
» Maintainers will ensure that gcc continues to be
maintainable.

» C++ library is a bootstrap problem!
» C++ compilers are widely available, including older
versions of gcc.
» We would have to ensure that gcc version N - 1 could
always build gcc version N.
» We will link statically against 1ibstdc++.

» The FSF doesn't like it!

Why not C++7 Write gee in G-+

lan Lance Taylor
Google

» C++ is too slow!
» C+-+ is only slower when using optional features which
aren't in C.
» Sometimes C++ is faster (e.g., STL functions).
» We would only use features which are worthwhile.

» C++ is too complicated!

» It's just another computer language.
» Maintainers will ensure that gcc continues to be
maintainable.
» C++ library is a bootstrap problem!
» C++ compilers are widely available, including older
versions of gcc.
» We would have to ensure that gcc version N - 1 could
always build gcc version N.
» We will link statically against 1ibstdc++.
» The FSF doesn't like it!
» The FSF is not writing the code.

Proposal

» Permitting C++ in gcc will require steering committee
approval.
» | plan to create a gcc-in-c++ branch for people to
experiment with building gcc in C4++.
» The interaction of garbage collection and STL
constructs will need to be resolved.

Write gcc in C++

lan Lance Taylor
Google

