
GCC Internals
Passes

Diego Novillo
dnovillo@google.com

November 2007

mailto:dnovillo@google.com

November 27, 2007 GCC Internals - Passes - 2

Passes

Scheduled in passes.c:init_optimization_passes

Three levels of processing: IPA, GIMPLE, RTL

Three kinds of passes

– Initializers: pass_referenced_vars, pass_build_cfg

– Analysis: pass_build_ssa

– Optimizations: pass_vrp

TODO items determine cleanup actions to perform
before/after a pass: TODO_update_ssa, TODO_dump_func

November 27, 2007 GCC Internals - Passes - 3

Passes

Passes hierarchically grouped in families

all_lowering_passes

all_ipa_passes

– pass_early_local_passes

all_passes

– pass_all_optimizations

• pass_tree_loop

– pass_rest_of_compilation

• pass_loop2

• pass_post_reload

November 27, 2007 GCC Internals - Passes - 4

all_lowering_passes

Process the IL to be ready for optimization

pass_remove_useless_stmts

– Simplistic dead code eliminator that needs no data flow

pass_lower_{omp,cf,eh}

– Put IL in low GIMPLE form

pass_build_cfg

pass_build_cgraph_edges

November 27, 2007 GCC Internals - Passes - 5

all_ipa_passes

pass_ipa_early_inline

– Simplistic inlining using local info

– Used with profiling to reduce instrumentation cost

pass_ipa_cp

pass_ipa_inline

– Analyze cgraph and decide inlining plan

– Greedy algorithm favouring small functions and functions
called once

pass_ipa_pta

pass_ipa_struct_reorg

November 27, 2007 GCC Internals - Passes - 6

pass_early_local_passes

Put function in SSA form and clean it up

pass_tree_profile

pass_cleanup_cfg

pass_referenced_vars

pass_build_ssa

Several scalar cleanups: pass_ccp, pass_forwprop,
pass_simple_dse, pass_dce, ...

November 27, 2007 GCC Internals - Passes - 7

all_passes

GIMPLE scalar optimizations
pass_apply_inline pass_ccp pass_fre pass_dce
pass_copy_prop pass_vrp pass_dominator pass_ch
pass_sra pass_reassoc pass_dse pass_pre
...

GIMPLE loop optimizations
pass_tree_loop_init pass_lim
pass_predcom pass_tree_unswitch
pass_empty_loop pass_linear_transform
pass_iv_canon pass_if_conversion
pass_vectorize pass_parallelize_loops
pass_iv_optimize ...

RTL optimizations
pass_expand pass_into_cfg_layout_mode pass_cse
pass_gcse pass_loop2 pass_inc_dec
pass_combine pass_sms pass_sched
pass_local_alloc pass_global_alloc pass_post_reload
...

November 27, 2007 GCC Internals - Passes - 8

Adding a new pass

To implement a new pass

– Add a new file to trunk/gcc or edit an existing pass

– Add a new target rule in Makefile.in

– If a flag is required to trigger the pass, add it to
common.opt

– Create an instance of struct tree_opt_pass

– Declare it in tree-pass.h

– Sequence it in init_optimization_passes

– Add a gate function to read the new flag

– Document pass in trunk/gcc/doc/invoke.texi

November 27, 2007 GCC Internals - Passes - 9

Describing a pass

struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Extension for dump file
is .<static_pass_number>[itr].<name>

e.g., prog.c.158r.greg

i for IPA passes
t for GIMPLE (tree) passes
r for RTL passes

static_pass_number is automatically
assigned by pass manager

Letter used by the -d switch to enable a specific
RTL dump (backward compatibility)

November 27, 2007 GCC Internals - Passes - 10

Describing a pass

struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

If function gate()returns true, then
the pass entry point function

execute() is called

November 27, 2007 GCC Internals - Passes - 11

Describing a pass

struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Passes may be organized hierarchically
sub points to first child pass
next points to sibling class
Passes are chained together with
NEXT_PASS in
init_optimization_passes

November 27, 2007 GCC Internals - Passes - 12

Describing a pass

struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Each pass can define its own
separate timer

Timers are started/stopped
automatically by pass manager

Timer handles (timevars) are
defined in timevar.def

November 27, 2007 GCC Internals - Passes - 13

Describing a pass

struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Properties required, provided and
destroyed are defined in tree-pass.h

Common properties
PROP_cfg
PROP_ssa
PROP_alias
PROP_gimple_lcf

November 27, 2007 GCC Internals - Passes - 14

Describing a pass

struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Cleanup or bookkeeping actions that
the pass manager should do
before/after the pass

Defined in tree-pass.h

Common actions
TODO_dump_func
TODO_verify_ssa
TODO_cleanup_cfg
TODO_update_ssa

November 27, 2007 GCC Internals - Passes - 15

Available features

APIs available for

– CFG: block/edge insertion, removal, dominance
information, block iterators, dominance tree walker.

– Statements: insertion in block and edge, removal, iterators,
replacement.

– Operands: iterators, replacement.

– Loop discovery and manipulation.

– Data dependency information (scalar evolutions
framework).

November 27, 2007 GCC Internals - Passes - 16

Available features

Other available infrastructure
– Debugging dumps (-fdump-tree-...)

– Timers for profiling passes (-ftime-report)

– CFG/GIMPLE/SSA verification (--enable-checking)

– Generic value propagation engine with callbacks for
statement and node visits.Φ

– Generic use-def chain walker.

– Support in test harness for scanning dump files looking for
specific transformations.

– Pass manager for scheduling passes and describing
interdependencies, attributes required and attributes
provided.

November 27, 2007 GCC Internals - Passes - 17

Debugging

November 27, 2007 GCC Internals - Passes - 18

Debugging dumps

Most passes understand the -fdump switches

-fdump-<ir>-<pass>[-<flag1>[-<flag2>]...]

ipa
tree
rtl

● inline, dce, alias, combine ...
● all to enable all dumps
● Possible values taken from name

field in struct tree_opt_pass

● details, stats, blocks, ...
● all enables all flags
● Possible values taken from

array dump_options

November 27, 2007 GCC Internals - Passes - 19

Debugging dumps

Adding dumps to your pass

– Specify a name for the dump in struct tree_opt_pass

– To request a dump at the end of the pass add
TODO_dump_func in todo_flags_finish field

To emit debugging information during the pass

– Variable dump_file is set if dumps are enabled

– Variable dump_flags is a bitmask that specifies
what flags were selected

– Some common useful flags: TDF_DETAILS,
TDF_STATS

November 27, 2007 GCC Internals - Passes - 20

Using gdb

Never debug the gcc binary, that is only the driver

The real compiler is one of cc1, jc1, f951, ...

$ <bld>/bin/gcc -O2 -v -save-temps -c a.c
Using built-in specs.
Target: x86_64-unknown-linux-gnu
Configured with: [...]
[...]
End of search list.
<path>/cc1 -fpreprocessed a.i -quiet -dumpbase a.c
-mtune=generic -auxbase a -O2 -version -o a.s

$ gdb --args <path>/cc1 -fpreprocessed a.i -quiet -dumpbase
a.c -mtune=generic -auxbase a -O2 -version -o a.s

November 27, 2007 GCC Internals - Passes - 21

Using gdb

The build directory contains a .gdbinit file with
many useful wrappers around debugging functions

When debugging a bootstrapped compiler, try to use
the stage 1 compiler

The stage 2 and stage 3 compilers are built with
optimizations enabled (may confuse debugging)

To recreate testsuite failures, cut and paste
command line from
<bld>/gcc/testsuite/{gcc,gfortran,g++,java}/*.log

November 27, 2007 GCC Internals - Passes - 22

Timing passes

Timers defined in timevar.def

Start timer with timevar_push

Stop timer with timevar_pop

Timings are reported if compiling with ­ftime­
report

Timers use the best standard mechanism they can
find

times » getrusage » clock

November 27, 2007 GCC Internals - Passes - 23

Memory usage statistics

Enabled with -fmem-report

To gather extremely detailed memory usage,
configure with

­­enable­gather­detailed­mem­stats

November 27, 2007 GCC Internals - Passes - 24

Debug counters

Mechanism for tracing and counting events

dbg_cnt increments counter

– Returns false when threshold is crossed

– Returns true otherwise

Allows to control when to apply a transformation

Counters are defined in dbgcnt.def

Thresholds are set with

­fdbg­cnt=name1:N1,name2:N2, ...

November 27, 2007 GCC Internals - Passes - 25

Case study - VRP

November 27, 2007 GCC Internals - Passes - 26

Value Range Propagation

Based on Patterson’s range propagation for jump
prediction [PLDI’95]

– No branch probabilities (only taken/not-taken)

– Only a single range per SSA name.

for (int i = 0; i < a->len; i++)

 {

 if (i < 0 || i >= a->len)

 throw 5;

 call (a->data[i]);

 }

Conditional inside the loop is unnecessary.

November 27, 2007 GCC Internals - Passes - 27

Value Range Propagation

Two main phases

Range assertions

Conditional jumps provide info on value ranges
if (a_3 > 10)

 a_4 = ASSERT_EXPR <a_3, a_3 > 10>

 ...

else

 a_5 = ASSERT_EXPR <a_4, a_4 <= 10>

Now we can associate a range value to a_4 and a_5.

Range propagation

Generic propagation engine used to propagate value
ranges from ASSERT_EXPR

November 27, 2007 GCC Internals - Passes - 28

Value Range Propagation

Two range representations

– Range [MIN, MAX] MIN <= N <= MAX→

– Anti-range ~[MIN, MAX] N < MIN or N > MAX→

Lattice has 4 states

No upward transitions

UNDEFINED

RANGE ANTI-RANGE

VARYING

November 27, 2007 GCC Internals - Passes - 29

Propagation engine

Generalization of propagation code in SSA-CCP

Simulates execution of statements that produce
“interesting” values

Flow of control and data are simulated with work
lists.

– CFG work list → control flow edges.

– SSA work list def-use edges.→

Engine calls-back into VRP at every statement and
PHI node

November 27, 2007 GCC Internals - Passes - 30

Propagation engine

Usage

ssa_propagate (visit_stmt, visit_phi)

Returns 3 possible values for statement S
•SSA_PROP_INTERESTING

S produces an interesting value
If S is not a jump, visit_stmt returns name N

i
 holding the value

Def-use edges out of N
i
 are added to SSA work list

If S is jump, visit_stmt returns edge that will always be taken
•SSA_PROP_NOT_INTERESTING

No edges added, S may be visited again
•SSA_PROP_VARYING

Edges added, S will not be visited again

November 27, 2007 GCC Internals - Passes - 31

Propagation engine

visit_phi has similar semantics to visit_stmt

– PHI nodes are merging points, so they need to “intersect” all
the incoming arguments

Simulation terminates when both SSA and CFG work
lists are drained

Values should be kept in an array indexed by SSA
version number

After propagation, call substitute_and_fold to
do final replacement in IL

November 27, 2007 GCC Internals - Passes - 32

Pass declaration in gcc/tree-vrp.c

struct tree_opt_pass pass_vrp =
{
 "vrp",
 gate_vrp,
 execute_vrp,
 NULL,
 NULL,
 0,
 TV_TREE_VRP,
 PROP_ssa | PROP_alias,
 0,
 0,
 0,
 TODO_cleanup_cfg | TODO_ggc_collect
 | TODO_verify_ssa | TODO_dump_func
 | TODO_update_ssa,
 0
};

Implementing VRP

Extension for dump file

Gating function

Pass entry point

Timevar handle for timings

Properties required by the pass

Things to do after VRP and
before calling the next pass

November 27, 2007 GCC Internals - Passes - 33

Add -ftree-vrp to common.opt

ftree-vrp
Common Report Var(flag_tree_vrp) Init(0) Optimization
Perform Value Range Propagation on trees

Implementing VRP

Common This flag is available for all languages
Report -fverbose-asm should print the value of this flag
Var Global variable holding the value of this flag
Init Initial (default) value for this flag
Optimization This flag belongs to the optimization family of flags

November 27, 2007 GCC Internals - Passes - 34

Implementing VRP

Add gating function

static bool
gate_vrp (void)
{
 return flag_tree_vrp != 0;
}

Add new entry in Makefile.in

– Add tree-vrp.o to OBJS-common variable

– Add rule for tree-vrp.o listing all dependencies

Automatic dependency generation soon

November 27, 2007 GCC Internals - Passes - 35

Add entry point function

static unsigned int
execute_vrp (void)
{
 insert_range_assertions ();
 ...
 ssa_propagate (vrp_visit_stmt,vrp_visit_phi_node);
 ...
 remove_range_assertions ();

 return 0;
}

Implementing VRP

If the pass needs to add TODO items,
it should return them here

November 27, 2007 GCC Internals - Passes - 36

Schedule VRP in init_optimization_passes

init_optimization_passes (void)
{

...
NEXT_PASS (pass_merge_phi);
NEXT_PASS (pass_vrp);
...
NEXT_PASS (pass_reassoc);
NEXT_PASS (pass_vrp);
...

}

Implementing VRP

Why here?
(good question)

