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ABSTRACT

In this paperwe describehow a template-basedpproachto writing distributed/parallel
applicationscanbe usedto eliminateparallel programmingerrors. We take a two phase
approach. First, the programmingmodel can be designedto prevent many common
parallel errorsfrom occurring. Second,we show how an integratedset of tools that
support the common model provided by the templates can béaugeitkly detectand fix
errorsthat cannotbe prevented. In effect, a high-levelview of a parallelprogramcanbe
usedto improvethe softwareengineeringoropertiesof a distributedprogram,andreduce
the time required to produce a correct, functional program.
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1-INTRODUCTION

Many of thepaperson distributeddebuggingbeginwith the messageexplicit or implicit,

that while debugging sequentialprograms might be characterizedas a difficult art,

debugging parallel programs is a decidgaftinful chore. The causeof this drudgeryis a
combinationof the specialproblemsencounteredn distributedcomputingandthe lack of
tools and methodologiesfor coping with these inherent difficulties. The searchfor

solutionsto this predicamenican proceedfrom two distinctly different directions. One
approachs to developdebuggingtools to supportexisting parallel programmingmodels,
addressing the typical set of errors encountereaisieysof the systems. This approachs
analogoudo building a better mousetrapto trap thosetroublesomemice after they have
entereda house. The other approachis to developa programmingmodel and parallel
programmingsystem(PPS)which precludethe introductionof errors. This approachis
analogous to building a better house so that fewer or no mice can even enter.

In this paper,we discussthe advantageshat template-base®PSsoffer for the
prevention and removal of parallel programming errdise use oftemplatessignificantly
reducesthe possibility of programmingerrors bystrictly managingthe parallelism. In
effect, templates provide a paralituctureframeworkwithin which the usersuppliesthe
missingapplication-dependemiode. A major criticism of this approachis that by using
generic structures,users lose the flexibility to tune their programsto achieve high
performance. Although performances the most often used (and abused)metric in the
parallel/distributeccomputingliterature, it is inadequatdor the assessmentf tools. In
effect, template-basetbols offer rapid prototypingandimprovedsoftwareengineeringn
return for (possibly) reduced performance.

There are three major sources for parallel programming errors:

1) Semantic errors: These err@® causedoy a programmer'snisconceptiongboutthe
parallel computing model being usadd how to apply it to the problemat hand. For
example,errors often arise from misunderstandinghe semanticsof memory shared

between processes and the semantics of the parallel programming language used.



2) Implementation errors: These errors occurs becautbe aldedcomplexity of parallel
programs such as process launch, communicatiorsynchronization. Typical errors
include incorrectly packing/unpacking a message or creating a deadlock scenario.

3) Performanceerrors: Theseerrors are causedby a lack of intuition or experience
concerning the costs of parallelism and concurrerieyt example this classof errors
includesexecutingfine grainedprogramsegmentsn parallel or poor synchronization
choices that restrict concurrency.

The first two types of errors usualfgsultin programsthat executeincorrectly. The third
sourceoften leadgo programsthat run correctly but have poor performancegains when
compared to sequential solutions.

This paper uses thenterprisePPS[Schaefferet al., 1993] to arguethat template-
basedmodelscan be usedto significantly reducethe time to producea correctly working
parallel program. The Enterprise programming model is built on top of gregtamming
language providing a familiar basefor writing programs(reducingsemanticerrors). A
pre-compilerinsertsall the communicationand synchronizatiorcode, and the run-time
systemtakescare of process-processaonappingand processinterconnectiongreducing
implementationerrors). The Enterprisemeta-programmingmodel allows the user to
experimentwith different parallel structures,often without changingthe code (reducing
semantic and implementation errors, enhancing performance and increasing user
productivity). The environmentoffers a tool suite (animation, replay, debuggingand
performancamonitoring) thatis consistenwith the programmingmodel (helping address
correctness and performance issues).

By placingmuch of the onus on the pre-compilerand runtime system,usersare
relievedof burdensomeprogrammingdetails, allowing them to concentratemore on the
program design. By providing a seamless integration of thewotiighe templatemodel,
programmers can recognize their errors at a high level and fix them within the context of the
model.

Although template-based models are currently in vogue and mangnodelshave
recently appeared (for example, HeNCE [Beguetlial., 1993], PUL [Clarkest al., 1994]
and P3L [Bacchi et al., 1994]) most concentrateon the programmingmodel without
consideratiorfor supporttools. We arguethattools such aslebuggersand performance



monitors should be integral to the desajrthe parallelprogrammingsystem,and not just
add-ons. Individually, manyof the issuesdiscussedn this paperarenot new. Whatis
importantis how the designof the model pervadesthe entire system. This createsa
uniform environmentthat is easyto use, reducegprogrammingerrors, and simplifies the
detection of errors.

In this paper we refer to pre-packagedparallel behaviors as templates for
compatibility with the literature. Recenthowever,object-orientedesearcthasled to the
development of a more general class of commonly occurring beldassesalled design
patterns [Gammaet al., 1994]. Eachtemplatementionedn this papercanalsobe viewed
as a design pattern.

In section2 we discusshow template-baseanodels can preventmany of the
commonly-occurringparallel/distributedorogrammingerrors. In section3 we describe
how an integratedenvironmentasedon a commontemplate-basecthodel can be usedto
detect and correct those errors that cannot be prevented. Section 4 states our conclusions

2-PREVENTING ERRORS USING A TEMPLATE-BASED MODEL

Many typesof commonly occurring parallel programmingerrors can be preventedby
providing a model which allows the compiler to handle most of the implementation detalils.

2.1-REDUCING SEMANTIC ERRORS

Most template-based models build on top okaisting programminglanguage. In effect,
the programmerusessequentiatode(C in our case)to fill in the blanksof the template.
By using a familiar sequential programming language, mariyeafemantiassuesof new
parallel programming languages (such as OrcadBall, 1992]),or extensiongo existing
languages (PAMS [Beltrameti al., 1989] for example) are eliminated.

2.2-PREVENTING COMMUNICATION ERRORS

Messagepassing iscurrently the preferred method for processcommunicationin a
distributed environment ( the alternative, distributed shared memsatj] in its infancy).
The traditional programmer'sview of messagepassinginvolves four steps: 1) pack
(marshal) the data, 2) sendhe message,3) receive the message,and 4) unpack



(unmarshal) the data. In some systesugh aPVM [Geistand Sunderam1992], these
steps must be explicitlgrogrammedn the user'scode.Alternative systems such asSun
RPC [Sun, 1986], only require the user to provide packing and unpackingroutines.
However, both of theselow-level approachesequirethe userto write additional lines of
code that only increase the probability of introducing an efroicontrast,Linda [Carriero
et al., 1994] handlesthe datatransparentlybut expectsthe programmerto explicitly call
routinesto do the communication. HeNCE [Beguelin et al., 1993] allows the user to
expresghis information graphically,but parameteinformation mustbe specifiedboth in
the interfaceandthe code(causinga redundancyproblem). Concert/C[Goldberg, 1993]
eliminatesthe packing/unpackingoutines by having the user provide additional type
information describingthe data. A betterapproachs providedby ABC++ [Arjomandi et
al., 1995] and Mentat [Grimshagt al., 1993] (for example) wherethe compilerdoesall
of the work. In allthesecases higher-leveltools not only reducethe programmingeffort
but can also prevent programming errors.

Template-basedPPSs provide templatesthat allow compilersto insert code to
handle all four message-passing tasks transparently to the user. The Enterprise &pproach
messageassing isto make RPCslook like standardC function calls, but without the
programmingeffort and synchronoussemanticsof RPC. An Enterprisemeta-program
template alone determines that these callscabe executedn parallel. ParallelEnterprise
code looks like ordinary sequentialcode. For example, let's assumethe procedure
Cal | ee() is to be executedin parallel with the procedureCal | er () thatis shown in
Figure 1.

Caller()
{

char a;

USER TYPE b;
doubl e d[ 100];

i nt dnunb;

int result[100];

result[5] = Callee( a, b, &[10], IN(dnumb) ):

Figure 1. Communication in Enterprise

By letting the compiler generatethe code to do data packing and unpacking,
programmingerrorsrelatedto messaggacking are entirely avoided. Any heterogeneity



concernssuch asbyte-orderingschemesof the communicatingprocessorsare handled
automatically. Off-by-one errors in passing arrays are also avoided.

Notice that an additional parameter specifies the number of elements to pass (dnumt
in the example). This approachs analogoudo Fortrancodewhich hasthe advantageof
allowing the user to passpmrtion of anarrayto reducecommunicatiorcosts. Much like
Concert/C, this size parameter is usually passed as the argument of one of threethadcros
indicate the direction in which array dasato be copied:from the caller to the callee(IN),
from the callee back to the caller (OUT)inrboth directions(INOUT). Thesemacrosare
provided strictly as an efficiency mechanismto limit unnecessarydata in messages.
INOUT(), the default,will achievethe samesemanticsaasC, allowing the array valuesin
Cal | er () to be used and modified I&al | ee().

There is one important restriction on data passing in Enterphiieough a pointer
to anarray or structurecanbe used asa parametealongwith the numberof bytesto be
passed),mbeddedpointersare not allowed. To solve the imbeddedpointer problem,
extensiveuserannotationsare requiredindicating the size and "shape"of the data(asin
Concert/C). This restrictiomodifiesthe sequentiasemanticof C and createsa possible
scenariofor introducinglogic errors. However, in our view, the benefit of not dealing
with complicated and error-prone annotations significantly outweighs the disadvantages.

2.3-PREVENTING SYNCHRONIZATION ERRORS

In most parallel programmingmodels, the user must specify the synchronization. For
example, barriers and blocking message receives are copnmutives that are explicit in
the user's code. Since template-basednodels use standardsequentialcode, neither
languageextensionsnor library calls are used for synchronization. That is, automatic
synchronization techniques are provided that prevent synchronization errors from
occurring.

Enterpriseusesfutures [Halstead, 197510 synchronizeconcurrencyso that the
user can write sequentialcode with no explicit synchronization. Futuresare becoming
increasingly popular (see, for example, ABC++ [Arjomandi & al., 1995] and Mentat
[Grimshawet al., 1993]).

In Figure 1, Cal | er () continuesexecutingwithout waiting for Cal | ee() to
return. Rather, it maintainsall the return values, including OUT() and INOUT()



parametersas linked structurescalled futures. Cal | er () continues executing until
resul t[ 5] is referencedn the subsequentode, at which time Cal | er () blocks if
Cal | ee() has not yet returned. As soon as the return messagefrom Cal | ee() is
received,Cal | er () usesthe return value as resul t[5] and resumesexecution.
Futuresprovide an error-free synchronizatiormechanismwhile routines without return
values, and hence no futures, are totally asynchronous.

The richness of the template-basedmodel determinesthe extentto which
synchronization can be specified by the user, without resorting to the error-prone activity of
inserting synchronizatioprimitives manually. In Enterprise parallel proceduregemplates
are called assets. A replicated asset is a parallel procedure that can be concurrently execut
on multiple processes. If a replicated asset is declanaubedered, meaning that therder
of return valuesis irrelevant, it has fewer synchronizationpoints, so concurrencyis
increased.

A trivial butinstructiveprogram,CubeSquar e (Figure 2), illustrateshow this
automaticsynchronizationcan be controlled by the user. This parallel equivalentof a
"Hello world" programperformsthe trivial task of summingall the cubesandsquares of
numbersfrom 0 to SI ZE-1. Assumethatthe Squar e and Cube routinesare replicated
assets so that several different processes can execute their code on sualessilethis
example, a series of calls are made to the same parallel functions and the order of the resul
is not critical, sincethe resultsare simply summed. Thereforethe user can declarethe
replicated assets as having the unordered attribute. This attelbutell asthe replication
factor, is part of the meta-program (template specificationjsaimtiependenbf the user's
code.

Unordered semantics denotes tthatfirst referenceto a particularreturnvalue for
an asset will receive the first corresponding parameter value returned, regardless of whethe
the variable name matches or not. Whssnsummationis executedn CubeSquar e, the
programmay haveto block and wait for a[ 0] andb[ 0] . However,if Squar e and
Cube are unordered, other return values already available, pesth&ps andb[ 3] , may
be usedin their places. It is importantto realize that the unorderedattribute violates the
semanticsof sequentialC, but can allow significantly more concurrencyin certain
computations less trivial than théxample. Sincethis option, when usednappropriately,
can lead to errors, it must be used with great care. Nevertheless, the user is guhainteed
synchronizatiorerrorswill not result. The bottomline is that template-basedhodelscan



provide the user with different levels of synchronizationcontrol while preventing
synchronization errors.

#define SIZE 10
CubeSquare( argc, argv )
int argc;
char ** argyv;
{
int i, sq, cu, a[ SIZE], b[ SIZE ];
for( i =0; i < SIZE i++)
{
a[ i ] = Square( i );
b[ i ] = Cube( i );
}
sq = cu =0;
for( i =0; i < SIZE, i++)
{
sq +=a[ i ];
printf("The square of % is %@\n", i, a[ i ]);
cu +=b[ i ];
printf("The cube of % is %@\n", i, b[ i ]);

printf( "sum of squares %\ n", sq );
printf( "sum of cubes %\ n", cu);

}

int Square( i )

int i;

{ . .
SLEEP_RANDOM TI ME; / * Appropriately defined macro */
return( i * i );

}

int Cube( i )

int i;

SLEEP_RANDOM TI MVE; / * Appropriately defined nmacro */
return( i * i * i );

}

Figure 2. The code for CubeSquare.

24-PREVENTING PARALLEL STRUCTURE ERRORS

Most coarse-grained parallel programs conféora small numberof commonlyoccurring
structures [Mehrotra and Pratt, 1982]. leaample pipelined,master-slaveindrecursive
divide-and-conqueforms of parallelismare frequentlyseen. Sometemplate-basedbols



provide thesestructuresas building blocks for more complicatedparallel programs(for
example, PIE [Segall and Rudolph, 1985]).

With template-basedPPSs, the parallelism is defined by using one or more
templates from a fixed set. Tleedethat createghe processesind establisheshe parallel
communication structure between them is created automatically by theABBRBningthat
the PPS is implementedcorrectly, this guaranteeshat the parallel structure will be
generateccorrectly. Furthermore sincethere are no explicit referencesto the parallel
structurein the code, the user cannotintroduce structureerrors whenthe code is later
modified during debugging, performance tuning or maintenance.

For example, in Enterprise, the templatestifieCubeSquar e programof Figure
2 are expressed graphically in the Design View of the grapiseainterface asshownin
Figure3. Theuser is assurethatany programgraphthat canbe drawnin Enterpriseis
syntactically correct, although it might not be an appropriate choice for the problem.

=[O Enterprise: CubeSquare
A
]
CubeSguare =
|
4
~J | -

Figure 3. A meta-program for CubeSquare.

For the CubeSquare program, the templates consist of a departmenitastete
components:CubeSquar e, Square and Cube. Each of these three assets is
implemented by one or more processes éiatutethe appropriatelynamedprocedureof
Figure2. All of the codethat spawnsthe processesand connectshemtogetherinto this
parallel "department” structurs automaticallygeneratedy Enterprisewith no possibility



of structure errors. In effect, the sequential code of Figure 2 and the asset {ayediel
annotations) in Figure 3 are all that are needed to create a distributed Enterprise program.
Dependingon the richnessof templatesavailablein the PPS, and the way they
generate code, it may also be possible to change templates without matliéusgrcode
in any way. Forexample,in Enterprisejt is possibleto changethe numberof processes
(calledthe replicationfactor) that can independentlyexecutea parallel procedurewithout
changingthe usercodein any way. In Figure 3, the superscripton the Squar e and
Cube assets indicate that two copies of each asset should be créatepgrogrammeircan
changeeitheror both of thesevaluesand, without changingthe user code, use the new
templateto re-executehe program. In a non-template-baseBPS, such changeswould
needto be madedirectly in the user'ssourcecodeanderrorscould arise. In a template-
based PPS such changes can be done without the possibility of introducing any errors.

Changinga replication factor is a fairly straightforwardchangeto the parallel
structureof a program. However, it should also be possibleto make more dramatic
changes in the parallel structure of a programguatanteahat no structureerrorswill be
introduced. Oneof the importantfeaturesof Enterpriseis that one can experimentwith
parallelizationtechniqueswithout necessarilyhaving to modify the code. Enterprise
supports combining assets in a hierarchical structure. For exatriplppssibleto havea
department opipelines(pipelinesare calledLine assetsn Enterpriseterminology). Each
line asset could contain recursive divide-and-conquer assets (Divisions).

Having an orthogonalrelationship betweena program'’s code and its parallel
specificationdramaticallyreduceshe possibilitiesfor errors. Enterprisedoesnot achieve
complete orthogonality since changing between some parallel structuresmay involve
moving code between various files. However, changedeamadein replicationfactors,
ordered/unorderedattributes, machine preferences(including different architectures),
parameter and event logging specifications, and output windows without achaglgeto
the program code. Once again, the result is fewer errors.

2.5-PREVENTING DEADLOCK

Deadlock isa commonproblemin message-passirograms. Oneof the conditionsfor
deadlockis to havea cyclic dependency. In Enterprise,the communicationgraph is



implicit in the user'stemplateselection. Exceptfor division assets (discussddter), the
templatesprovidedin the systemprecludethe creationof a cyclical communicationgraph
amongprocesses. This eliminatesthe possibility of a communicationdeadlockdue to
parallel structure. Of course, the user can still create deadlock by creating otheswgfcles
as having a process waiting for an I/O event to occur.

It is possibleto precludedeadlockwithout completelyeliminating cyclic graphs.
For example,in Enterprisethereis only one templatethat includescyclic calls. 1t is a
recursive template, called a Division, that is used to implement parallel recurstivider
and-conquealgorithms. However,all recursiveprocessesire createdand controlled by
Enterpriseand communicatiordeadlock cannabccur. Eachtime a procedurecalls itself,
the call eithergenerates new process or ia sequentiatall (in a paralleltree leafnode).
Since a processneedonly wait for its children and not any of its siblings or parents,
deadlock cannot occur.

2.6-PREVENTING HETEROGENEITY ERRORS

Enterprise includes its own interrmabkefile to automatically handle the issues of compiling
and running processes oa collectionof heterogeneousachines. The systemmaintains
directories for each potential target architectuféis removesa troublesomebookkeeping
burden from the user and eliminates another source of errors.

Enterprisealso maintainsa resourcemanagerwhich knows aboutthe capabilities
of each machine that can potentially be used in a computatlomsystemmapsprocesses
to processorsbasedon any constraintsspecified by the user. The defaultis to put
processes oitdle machines. Usersare not responsiblefor doing any process-processor
mapping, unless they explicitly want to.

3-DETECTING ERRORS USING A TEMPLATE-BASED TOOL SET

A programmingmodel, nomatter how sophisticatedcannotpreventall types of errors.
Although the Enterprise programming model can eliminate many of the errors that
commonly occur when parallelism is introduced into an application, tools areestiledo
identify and correcterrors. Many parallel systemsprovide littte support fordebugging.
The most common techniquesof inserting print statementsor attachinga sequential
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debugger to each concurrent process, are of little valdetactingerrorsthat occurdueto
the interaction of two or more processes.

We divide the non-preventable errors into two classes, logic errors and performance
errors. A logic error results in a program whose results are incorrgoerfésmanceerror
results in a program that produces correct redoliisexecutegoo slowly. Different tools
are requiredto detectand correct thesedifferent types of errors. In practice, logic
debuggingand performancedebuggingare not independentctivities since performance
tuning may introducenew logic errorsinto the code. Thereforethe PPSmustprovidea
simple methodf switching betweenlogic debuggersand performancedebuggers. The
advantage of using a template-based PPS is that a high-level model existb.kihds of
debuggersare basedon the samemodel, then context switchesbetweenthe two can be
made more easily.

A uniform, fully integratedPPS such asEnterprise,allows the user to develop
distributed programswith the advantageof built-in error reduction and debugging
mechanisms. In Enterprise,a Design View provides the facilities for creating the
program's parallel design (the meta-program), codings$isets compiling the assetsand
executingthe programon selectedvorkstations. An Animation View allows the userto
animate the message-passing behavior of a program based upon a captured event file from
previous execution. In the Animation view, a program does not actually re-execute.
However, logged messagesan be examinedand performanceanalysis tools can be
invoked to graphically view performansgatistics. A ReplayView, similar in appearance
to the Animation View, couples animation with facilities for deterministicahgxecutinga
program undethe control of a high-level event-basedreakpointingtool. During replay,
sequentiabdebuggersanalso be attachedo selectedorocesses.The Performance/iews
allow usersto study the run-time performanceof their programs. They simultaneously
provide amacroscopic perspective the programtogetherwith microscopicviews ofthe
state of individual processes.

3.1-SEQUENTIAL EXECUTION AND STANDARD DEBUGGING

Compiled programs can be run either sequentially or in parallel at the flip of a stéch.
asset(process)in Enterprisehasthe capability of beinginvoked by a messageor by a
sequentiaprocedurecall. Sequential modsimply disablesthe sendingand receiving of
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messages. This allows the user to debug a program sequentially, before trying the prograr
with parallelism enabled.

3.2-THE ANIMATION VIEW AND PERFORMANCE DEBUGGING

To take advantage of the facilities in the Animation and Replay Views, an event logemust
recorded for a program execution. This tmmtainsan abbreviatedecordof all the inter-
processcommunicationstogetherwith state changes,such as whera processblocks
waiting for a reply or whena procesgerminates. The approximatetotal order of events
capturedin the log providesa basis forthe performanceanalysistools. A guaranteed
partial orderensuresa deterministicdescriptionof the programwithout tachyons(events

out of their logical temporal sequence), sasla messagdeingreceivedbeforeit is sent.
This model forms the basis for execution repag animation. The user hasontrol over

the amountof informationloggedat run-time and eventlogging caneven bedisabledfor
production runs.

Once an eventfile hasbeencreated,the Animation View can be used forboth
performancedebuggingand correctnessiebugging[Lobe et al., 1993]. The captured
eventsareanimatedas a sort of time-lapsemovie. Messagesre createdby the calling
assetsmoveto messageueuesandarrive at the called assets. In addition, the assets
changestateas executionproceeds. In the Animation View, the user can, in effect,
simulate a particular execution, without actually re-runningptiegram. The post-mortem
analysis of a program in this view can reveal important performance characteristics and helg
to detect various programming errors. By viewing the animatiorygbecandynamically
observe the degree of parallelism, the relastedesof processesthe buildup of messages
in message queues, and the values of logged paranmeteesmessages.Figure4 shows
a snapshot of the animation for Bebe Squar e program.
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Figure 4. A snapshot of the animation for the CubeSquare program.

The Animation View candisplaythe program'sassetsn fully expandediorm, or
with assetsselectivelycollapsedto hide uninterestingdetail. Eachassetis labeledby its
state:IDLE, BUSY, WAIT or DEAD. Eachassethas twomessag&ueuesan input queueat
the left of its top edge for call messages and a reply queue at the middiegbit iesigefor
return messages. If the queuesare empty, nothing is displayed. During animation,
messagemove along pathson the screenbetweenassetsand enter the messagejueues,
which are then visiblgisplayedby a messagecon anda numberdesignatinghe number
of messages the queue. At anytime, the animationcan be stoppedand the messages
viewed. Since we have access to the compiler, each parameter in a nedsgdeyedin
a high level form including its name.

3.3-THE REPLAY VIEW AND CORRECTNESS DEBUGGING

Any tool that is usedto detectand correct parallel logic errors must deal with two
fundamentalssues,non-determinisnandthe probeeffect. In sequentialprograms,logic
errorsare almostalwaysdeterministic. In parallel programs,logic errors are often non-
deterministic. The executionpath may dependon race conditionsbetweenconcurrently
executingprocessesindthe resultsof theseracesoften dependon many factorssuch as
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processor load, network traffic and disk usage. If an error occuosexf thesepaths,it
may be necessaryto executethe programmany times (evenhundreds or thousands of
times) to exercise this error path once. In addition, it may be necessary to exercise the errc
path manytimesto isolateand fix the error. A good PPSmustallow the programmeito
reproduceany non-deterministiexecutionpathas manytimesas necessaryo isolateand
fix the error.

The probe effect occurs when a programmer inserts debuggingnto@eprogram
that altersthe resultof a raceand changeghe executionpathso that an error is masked.
Whenthe debuggingcodeis removedthe error re-appears. A good PPS must provide
facilities to reduce the probe effect so that the debugging tools can isolate the errors.

Although logic errorsin a programcan sometimesbe debuggedby post-mortem
examination in the Animation Viewiherearetimeswhenit becomesecessaryo actually
re-executehe programdeterministicallyalongthe path capturedn the eventlog. This is
possible assumintihat thereare no non-deterministiconstructsan the sequentialcode of
the assetsthemselves. To facilitate a prescribedforced execution that allows the
programmer to examine the internal statendividual processesind messageontentsnot
captured in the log, a Replay View wiagplementedor Enterprise[lglinski, 1994]. This
replay facility, a message-levebreakpoint facility, and selective accessto standard
sequential debuggers all together constitute the Enterprise debugger.

Breakpointsare set at a high level, in terms of message-passingvents. These
breakpointscan be either unconditionalfor a particular eventtype at a particular asset
grouping,or conditionaluponthe valuesof any parametersvhich have been captured
the evenfiile. Whena setbreakpointis triggered,the guidedreplay stopsjust before the
event is executed. i$ thena simple operationfor the programmeito single stepthrough
the event, examine the contents of a logged message, or attach a sequential ttebngger
process for lower-level debugging. Unlike other parallel debugging systecthsas Node
Prism [Sistare 94], the Enterprisedebuggerdoesnot attachdebuggingprocessedo all
nodes orto nodeswith scheduledbreakpoints,since the breakpointsare basedupon
capturedinformationin the eventfile, not uponthe internal statesof processes. When a
breakpointis triggeredanda suspicious process igdentified, a sequentialdebuggercan
thenbe selectivelyinvoked. Enterpriseis scalablein that breakpointscan be associated
with either completesets ofreplicas or with particular nodes. Although the present
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implementation of Enterprise is not intended for the massive paralliglegiNode Prism is
designedto accommodatethe validity of the Enterprisemodel is not precludedin a
massively parallel environment.

The specification and managementof breakpointsis accomplishedwith a
BreakpointBrowser (Figure 5) which is fully integratedinto and coordinatedwith the
display in the Replay View. Breakpoints g@phicallydepictedin the view by meansof
icons and highlighting. The text-basedBreakpoint Browser is coordinatedwith the
graphicalReplayView while the breakpointsare being defined,and while the programis
replaying and triggering breakpoints. Alternately certain structural components of
breakpoints can be defined directly by selecting icons in the Replay View. Sdlestons
are reflectedimmediately in the BreakpointBrowser. This techniqueof coordinating
textual information with graphical visualizatiamin accordwith a core goal of Enterprise:
to provide anintuitively comprehensiblénterfaceto an inherentlycomplexand potentially
confusing parallel architecture.

Although the Enterprise debugger lacks muo€lhe power ofa paralleldebugging
system like Node Prism, its virtue liesits uniformity with the underlyingmodelandthe
systeminto which it is integrated. It is easyto learn, simple to manage,and effective.
Context switches betweenthe Design, Animation and Replay Views are completely
seamless. This uniformity increases the productivity of pamitgrammergSzafronand
Schaeffer, 1996].
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Figure 5. Breakpoint Browser and Replay View.

3.4-THE PERFORMANCE VIEWS

Performancedebuggingis quite different from logic debuggingand there are different
issuesthat must be addressedWoloschuk et al., 1995]. Performancetuning can be
divided into three operations. The first operationis to acquire (captureor record) the
interestingeventswhile the programis running. The secondoperationis to analyze the
eventsto produceinformation about the run. The third operationis to present this
informationto the user. Therearetwo methodsto acquireand analyzeevents.Real-time
analysisis carried out at run-time as events are generdtegost-mortem analysis, events
are recorded at run-time, but are analyzed in a post-execution process.

The two primary problemsassociatedvith real-time analysisare the number of
events that can be generated by many concurrently executing processesddhcutbe of
analyzinglong-termpatternsandtrendsin theseevents. The difficulty with post-mortem
analysisis that an entire event trace must be capturedand stored before analysisand
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presentatiorcan begin, evenif the interestingevents happeat the start of a very long
execution. However, both real time and post-mortemanalysis are handicappedby
fundamentalimitations to the amountof information that can be displayedand by the
amountof information that can be absorbedby human observers. Good PPSs must
combine efficient event logging mechanisms,powerful analysis engines and good
abstraction techniques for presenting information concisely.

The available Performance Views include AssetUTtilization view, showinghow
busy each assetis; the TransactionTime-line View, showing messagetransmission
patterns;the TransactionSummary View, showing the details of each messagein a
transaction (sequence of messages); and the Annotation View, where the system attempts
comment on the parallel program’s performanéeyure 6 showsa TransactionrSummary
View which can be used to trace a sequence of messages (a transaction) fronaassét to
It alsoallows a programmetto discoverhow muchtime eachmessagespendsin transit,
waiting in queuesand being executed. Finally, it describeshe dynamicdistribution of
messages by reporting the minimum, maximum and average times of messages.

E Transaction Summary ==
~Message Summary
Tag List Tag I 11 Message Processing History
1 A Originl pvs
Z Send and Consume
3 J Start | 1454 End | 1893 279
g Detailed History Processing
F 1454  pvs #senthMsg 30
T 1683 nsc #rcvdhsg
8 1702 nsc #senthMsg Reply and Consume
9 1746  nsc2 #rcvdMsg lm—
10 1761  nsc2 #sentReply
7] 1770  nsc2 #done
= 15l = {

Global Summary

Min Avy Max Total
Send and Consume T 237912 | 1167 8089
Processing 16 1735.71 | 24074 | 59014
Reply and Consume i} 78.3624 | 267 2665

Figure 6. The Transaction Summary View
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Figure 7 shows an example of the Annotation Vi€elie view indicateswherethe
first speedup occurred. The user can select perfornegresof interest,andthe system
will annotate the time-line to indicate where the events occurigachof theseeventscan
be annotated with a comment indicating the probable cause of the eventiaaidadion of
where in the user's code the performance prololecarred. Thushe userknows exactly
where potential problems lie. The situation choices are obt&imeda menuthatincludes
such utilization statistics asgister on first speed-up, register on all speed-ups, register on
first slow-down, bottle-necks, granularity problems, network flooding, etc. It also
includessuchaggregateperationsas asset under-utilized, asset over-utilized, overloaded
message queue andexcessive message processing time.

[ Performance Amnotation |||

Annotation Display
Y

~ ] =
 Peer Group Editor
~ Global Events ———— 7 Aggregate Events

J¥ First Speed Up T

JT Al Speed Up Occurences | U 2:

T Slow Down ¥ Underworked | _1 |

Choices Peer Group Members

AlphaBeta A | |management A |nscl A

pvs J nsc3

nsc nsce

nscl L

/

Figure 7. The Performance Annotation View

The natureof the modelandthe accessibilityof compiler information allow us to
provide meaningful annotations to the user’s code. Inahig the tool canoffer the user
some insight as to where the performance error is occurring.
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4-CONCLUSIONS

Debuggingdistributedprogramsshouldnot be treatedin isolationfrom the model
and systemin which the programmingtakesplace. If a utopiansystemand model could
guarantee that no errors could occur in a program, the best debugger wouldehegger
at all. Unfortunately, in the real world thisnst the case. The bestwe cando is prevent
or minimize certain types of errors and then provide debugglg uniquely suitedto the
programming environment and the types of errors that are most liketctw. This paper
has shown that template-basedlistributed computing systemsare able to eliminate or
minimize a significant number of programmer errors directly associatedheithstributed
domain. Inparticular,muchof the tediouserror-pronecodinginvolved with establishing
communication links, packing and unpacking messages, managing inter-process
communicationand handling synchronizationcan be automated. The result is error-
reducedcode and greaterprogrammerproductivity. Enterpriseimplementsa template-
based model of distributed computing within a graphical programming interface,
augmented by a collection of integrated tools. Consequentlyrat&tionfrom sequential
programmingto distributed computing becomesfar less intimidating. The super-
computing power of networksf under-utilizedworkstationsis placedwithin the reachof
programmerauntutoredin the highly specializedskills normally requiredin distributed
computing.

The Enterpriseexperiencealso showsthat the tools for performanceanalysisand
correctnessdebugging can be seamlesslyand uniformly melded into a user-friendly
programmingenvironment. The overheadof learning such a systemis greatly reduced
through a sort of skill amortizationin which an operationor techniquelearnedin one
context can be used in another context or generalized to a related operatioain@yning
the samegraphicalperspectiveof the programwhen debuggingin the Replay View as
when analyzing performance in the Animation Viemwhendesigningthe programin the
DesignView, the usercanmore easily graspthe complexitiesof the program'sbehavior
and process concurrency. Within such an environment, programmers are less likely to err.

By virtue of its template-basquhradigm Enterpriseis ableto launcha preemptive
attack on errors within the distributed programming domainsaireld the userfrom many
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of the inherent hazardsShesepreventivemeasuresombinedwith customizedequipment
for debuggingin Enterprisewill hopefully make the arduouschore of writing and
debugging a little less daunting.

Enterprise is publicly available: http://www.cs.ualberta.ca/~enter.
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