Deterministically Executing Concurrent Programs for Testing and Debugging

Steve MacDonald and Jun Chen Diego Novillo
David R. Cheriton School of Computer Science Red Hat Inc.
University of Waterloo, Waterloo, Ontario, Canada dnovillo@acm.org
{stevem, j2chep@uwaterloo.ca

Abstract technologies. The first is the CSSAME form, an inter-
mediate compiler form that analyzes explicitly-parallel
Non-determinism is a serious problem in the testinghared-memory programs [14, 15, 16]. This compiler
and debugging of concurrent programs. Thread interleavform captures definitions and uses of shared variables,
ings may be different on each run, changing the order ofioting which writes are visible at a given variable use. The
events. Testing a concurrent program requires many afecond is aspect-oriented programming [11], specifically
these orders to be run, either to determine that all or-AspectJ [10]. We use aspects to control the value of shared
ders produce correct results or to identify the presenc&ariable reads to execute specific test cases. This paper as-
of timing-dependent errors called race conditions. Thissumes familiarity with aspect-oriented programming.

paper presents preliminary work in deterministically ex- Using these technologies, we have created a technique

gcutlng a concurre.nt program using a comblnatlon of AMor controlling the execution of a concurrent program with

|n'Fermed|ate_z _compller form and aspect-oriented programsy, o gesirable characteristics. First, we can deterministi-
ming. Speuﬁcally, we execute_the code generated for ﬂb‘%{lly test a program for all values of a shared variable at a
intermediate compiler form using aspects to .control th,%iven read, simulating all thread interleavings. Other tech-
value returned for the read of any shared variable. Thig,i a5 are dependent on the timing characteristics of the

allgws us tp detgrministical!y execute specifig te;t CaseBrogram execution, limiting the values they can consider
This work is preliminary, with many outstanding issues,; o given read. We do not rely on application timing but

but we feel the technique shows Promise. _rather use aspects to control the execution. This allows us

Keywords: Cor_1current programs, testing, race Condl'to test any possible interleaving and provide better cover-

tions, aspect-oriented programs, CSSAME compiler formy, oo - second, we do not require an existing execution trace
of the program. We are deterministically executing the
program, not replaying it. Third, this method works even
if shared variable accesses are not protected by locks.

1 Introduction This deterministic execution has several potential uses.

First, we can use this technique to construct specific test

Testing any software is difficult because of the largecases. We can not only produce a specific execution to
number of paths through the code. Testing concurrerbcate the problem, but run it again to verify it has been
software is more difficult because of non-determinismcorrected. Given the large number of interleavings, it may
Testing must account for differences in program executiobe best to use this to produce unit tests or an initial sanity
that result from thread interleavings that change each timest, to verify the basic operation of the system. It could
the program is run. These interleavings can alter the ordetso be used to enumerate over all interleavings for a spe-
of events in a program, specifically the order of reads ancific shared variable. Second, this technique could be used
writes to shared variables, which can leaddoe condi- to improve the operation afoisemaker§7, 8, 18], which
tions For our purposes, a race condition occurs when a salin a program many times using heuristics to generate dif-
of operations must execute in a specific order for correcterent interleavings. However, these heuristics may not
ness but the programmer has failed to supply synchronizée able to generate all interleavings. Our aspect-oriented
tion or mutual exclusion to guarantee that order. This is approach could increase the test coverage of these tools
more general definition that considers timing-dependemntith fewer runs of the program. Third, this approach
errors and not just missing mutual exclusion. could be used for incremental debugging. Users could

This paper presents some preliminary work on coneonstruct schedules with small differences and compare
trolling the execution of a concurrent program using twaesults. Differences between schedules that produce cor-

rect and incorrect results may help identify the error [5]. order, by having a history of each write to a variable. The
necessary properties are discussed in Section 4. Further,
2 Related Work we can _control the execution of the _complete program or
any portion, not just from the beginning of the execution.
A race condition is sometimes defined as concurrent
One technique for detecting race conditionsiidse- gccesses to shared variables without proper synchroniza-
making running a program repeatedly but conditionallytion, a less general definition than the one used in this pa-
executing sleeps or yields to influence the interleavingﬁer_ There are tools that try to verify this property at run-
produced by the scheduler [8, 18]. A recent effort used agime, like Eraser [17]. Eraser verifies not just that locks
pects to insert noise, and employed other heuristics likgre held, but also tries to associate variables with locks to
lowering the arguments to sleep calls [7]. This noisgnsyre that the correct lock is held. The main drawback is
is necessary because many thread schedulers are alm@gf; it can only verify a specific execution of the program.
deterministic, generating many executions that are be- apgther approach to locating errors in concurrent
haviourally equivalent Qnd thus redundant for testing purzgde is model checking, implemented by tools like Java
poses [1]. However, noisemakers depend on proper segslathFinder (JPF) [3] and many others. Most model check-
ing of delays (how often to delay and for how long) and dgss o not execute the application, but rather create an
not have a fine degree of control over program executiofyterna| representation and analyze the representation to
making it difficult to control testing. verify properties of the original program. JPF is a new
An improvement to noisemaking isalue substitution jaya virtual machine that detects race conditions using the
[1]. In addition to inserting noise, value substitution tracks=raser algorithm [17]. It also implements thread schedul-
shared variable writes. On a read, value substitution rafng, which is used to enumerate over different interleav-
domly chooses a value from an already-executed write thtgs. This testing uses backtracking to save re-executing
could be visible, simulating different thread schedules. A; program for each test. Our approach cannot use back-

visibility graph is maintained to ensure a consistent exeClracking, but is considerably simpler as it does not require
tion. However, the visibility graph is prohibitively large. g new JvM.

Further, this technique can only substitute values from
writes that have already executed, so the interleavings that .
can be tested dependsyon the execution timing of thge prg- The CSSAME Compiler Form
gram.Fidgetingwas introduced to solve this problem [2].
The choice of value for substitution is delayed as long as CSSAME (Concurrent Static Single Assignment with
possible to increase the set of possible substitutions, biutual Exclusion, pronouncesesamgis an intermedi-
there is still no guarantee of test coverage. ate compiler form for analyzing explicitly-parallel shared-
Another common debugging techniquepi®gram re- memory programs [14, 15, 16]. It extends the Concurrent
play provided by tools like DejaVu [4] and others. TheseStatic Single Assignment form [12], taking the synchro-
tools capture the execution of a program so it can be redzation structure of the program into account in its anal-
executed. If an erroneous execution is captured, the errgsis. Both are concurrent extensions of the Static Single
can be repeated until the problem is found. However, cagAssignment (SSA) form for single-threaded programs.
turing an error condition can be difficult if it appears infre- A program in SSA form has two key properties. First,
quently. Further, the code that captures the execution maach variable is assigned only once. A single variable in
perturb the program enough to remove the error. Once tteeprogram is replaced with multiple subscripted versions,
problem has been corrected, the execution state likely caone for each assignment. Second, there can only be one
not be used to verify the correction. The complete testingeaching definitiorfor a given use of a variable. A reach-
process will have to be repeated. ing definition for a variable use is a write to that variable
A variation of replay calledlternative replayuses the that may be the value that is reae(there is an execution
visibility graph from value substitution to produce newpath with no intervening writes between the reaching def-
thread interleavings [2]. This is similar in stylet®acha- inition and the use). However, control flow statements can
bility testing[9]. Both replay a program up to a given point yield multiple reaching definitions for a use. To enforce
in its execution, but rather than continuing with the existthe second property, SSA insem®rge operatorinto the
ing trace, they select a new event to execute next. Frogpde, which appear asfunctions. The arguments to the
that point, the program executes normally. Reachability function are the set of reaching definitions for the vari-
testing tracks the set of executed schedules to enumeratiele use. The return value of tigefunction is one of its
over all possible interleavings. Both systems rely on detemrguments, determined by the path through the code. An
ministic replay (for the events at the start of the program)example of the SSA form is shown in Figure 1.
In contrast, the properties of the CSSAME form permits CSSAME extends SSA to includsoncurrent reach-
us to achieve the same effects without imposing this totahg definitionsfrom other threads. A concurrent reaching

a=0 a1 =0 a=0 ap=0

if (condition) if (condition) cobegin cobegin
a=1 a2 =1 T1: Lock(L) T1: Lock(L)
print(a) a3 = ¢(a1,az) a=1 a1 =1
print(as) a=2 ag =2
Unlock(L) Unlock(L)
(a) Original source code. (b) SSA form. T>: Lock(L) Ts: Lock(L)
a=3 a3 =3
Figure 1. Example: ¢ functions in SSA. Unlock(L) Unlock(L)
T3: Lock(L) T3: Lock(L)
. print(a) a4 =m(ao, az,as)
definition for a variable use is a write to that variable by Unlock(L) print(a.)
another thread that may be the value that is read. Like coend Unlock(L)
SSA, a use of a variable can only be reached by exactly coend

one definition, so concurrent definitions are merged using
7 functions inserted into the code. The arguments to a
function are the reaching definition from the local thread Figure 2. Example: = functions in CSSAME.
together with the set of reaching definitions from other
threads. Reaching definitions from within a single threa
are still merged withy functions. CSSAME prunes the
arguments to a function based on the synchronization
structure of the program, since this limits the set of defini-

tions that could be read by another thread. This pruning 4 Using Aspects to run CSSAME Code
based on two observations about the behaviour of shared
variable accesses from within a critical section [16]. First,

a definition can only be read by another thread if it es uires us to control the order of events in the program.

capes_the critical segt_lon. Sec_ond, if a definition and u he events we need to control are those that cause interac-
oceurin Fhe same critical section, then concurrent r(:"ad?l"ons between threads, which are access to shared data and
ing definitions from othe_r _threads_that are protected b)_5,ynchroniz.':1tion. We consider shared data accesses in this
the same lock are not visible. Th|s pruning process r‘%ﬁyer. Controlling these accesses requires the ability to
Fiuces the number .O.f depend('anqes' between threads er the reads and writes to the data. More specifically, if
increases opportunities for opt|m|zat|.on.. o a shared variable is written by different threads, we need
An example of the CSSAME form is given in Figure 2. {4 control which of the written values is returned by a read
The use ofu, in T3 can only have one concurrent reach-gperation. The most common approach to impose a total
ing definition, so ar function is used to merge the writes der on the events in a program by replaying an existing
from 77 andT>. Note thata, is not part of the merge; the 5ce. However, this work is not based on replay.
defini_tion does npt escape the critical secFigﬁFjr&nd the_ Our approach is based on executing the CSSAME in-
code inT; runs with the same lock. Thus, itis not possibleyeymediate form, using aspects to establish an event order-
for T3 to reada, . If the lock in eitherT’ orT; isremoved, jnq However, we do notimpose a total order on the events
thena, would be added as an argument to thainction. i, the system. Instead, we exploit two key properties of
For unsynchronized accesses to shared variables, the&s CSSAME form to create the appearance of determin-
set of concurrent reaching definitions are dictated by thgtic execution:r functions that indicate concurrent reach-
underlying memory model. Different memory models im-ing definitions and single assignment of variables. These
pact the placement and arguments of#ffenctions [14]. properties provide information about thread interactions
The CSSAME form is generated by the Odyssey comand allow us to capture the execution history without a
piler [14]. Odyssey supports a superset of C includingotal event order.
explicitly-parallel programming constructs. Parallelismis The = functions in CSSAME provide information
created using cobegin/coend regions, used in this paper, &iout thread interactions by identifying the concurrent
parallel loops. In the cobegin/coend region, thread bodiagaching definitions at a variable use. For a variable read,
are specified using syntax similar to that in Figure 2(a)we know the writes from other threads that may be re-
Each body runs independently. Execution resumes afurned, presented as terms in th&unction before the use.
ter the coend statement when all threads have completegl functions with multiple terms highlight places in the
Odyssey supports several synchronization constructs. Tede where the thread schedule may alter the outcome, as
best supported are locks, which Odyssey analyzes to rehe value for a variable use depends on the order in which
move unnecessary termsinfunctions. Event variables threads are run. As a result, returning different values for
and barriers are also available but are not analyzed. ar function simulates different schedules. One important
Note that Odyssey only analyzes the code that it sees. fibte is that multiple terms are not necessarily an error. The

(a) Original Odyssey code. (b) CSSAME form.

oncurrent reaching definitions are in code not processed
y Odysseyi(e., library code), then the analysis will be
incomplete. We assume no hidden definitions exist.

Deterministically executing a concurrent program re-

result may depend on the thread schedule, but if no coms is the result fromr(ag, az, as), which must be one of
current reaching definition causes an error then there is ribe three concurrent reaching definitions.

race condition. We control the return value for & function with
Using ther functions, we can identify two potential aspect-oriented programming. We create an aspect that in-
sources of concurrency errors. Firsty function may in- tercepts calls to a function and overrides the return value
clude extra, incorrect terms. In some cases, these terrttsbe one of its arguments, chosen by the user. Different
are false positives; if the compiler cannot recognize théest cases can be constructed by a user or by automated
synchronization structure, it assumes unsynchronized atesting software. The benefit to using aspects for this task
cesses and does not prune the terms. Otherwise, the lis¢he same benefit as using aspects in general: separation
of the variable may read a value that the programmer does concerns. The CSSAME form can be generated once,
not want, but there is insufficient synchronization to enindependently of any test case. Each test case is a separate
sure the value is not visible. Given Figure 2, the programaspect. Without aspects, we would need to insert complex
mer may wish the program to print out the results froncode intor function bodies that would need to be modi-
eitherTy or Ty. However, from Figure 2(b), we can seefied for each test.
that the initial value of 0 may be read T if it executes However, this technique in itself introduces a race on
before the other threads. Note that this error can still occype selected term in the function. That is, before the as-
even if the thread bodies are mutually exclusive; barrier 9hect can return a given term, we must first be sure that the
event synchronization is needed to remove this error. Thigyriaple has been written. This problem is solved using
problem can often be identified by inspection. The presynother aspect that intercepts field writes, noting that only
ence ofay in the function may be enough to spot the fie|ds are shared between Java threads. Here, we exploit
potential problem. The problem can also be noted by rune single assignment property of CSSAME; a variable is
ning the program several times while changing the valugspresented by a set of subscripted versions of that vari-
returned in ther function. able, where a version is assigned once. This has two rami-
The second potential problem is that one of the specififications. First, we have a history of the variable, saved in
values that is written results in an error. The programdifferent subscripted versions. Second, we can treat each
mer may have written the program so that its correctnesgrsion as a latch, knowing that once it is assigned it can
does not depend on order, but specific values may caube safely used without any further races. This latch is eas-
errors. The programmer may wéfi to print a value that ily implemented by maintaining a boolean value indicat-
is greater than 0, so the error is the initial value:ofhis ing if the value for the variable has been set. The advice
problem can be found by enumerating over the terms ifor a 7 function checks this boolean and blocks the call-
ther function. ing thread until it is true. The advice for field writes sets
There are several difficulties in testing concurrent prothe boolean and wakes any waiting threads. This solution
grams that arise here. First, the choice of value far a allows any thread interleaving to be simulated, indepen-
function is made non-deterministically at runtime, so enudently of the timing of events in the program execution.
merating over all terms in a function is difficult. This It may seem that a simpler approach to this problem
problem is exacerbated by the fact that thread scheduler to create aspects to intercept both reads and writes to
implementations may be deterministic and may not proshared fields and control the reads. However, analysis is
duce all possible interleavings with equal probability. Ifstill needed to find the set of concurrent reaching defini-
the error condition occurs on an infrequently-used schedions for the read. We have chosen the CSSAME form as
ule, it can be difficult to produce the problem. Secondpur analysis; other solutions are possible.
once the problem is uncovered, it may be necessary to re- An example aspect, with helper code, is given in Fig-
peat it to locate its source. Third, once an error has begfte 3. Figure 3(a) shows the aspect. The aspect defines
detected, it can be difficult to be certain that changes tgyyr pointcuts: one that captures calls to thdunction
the program have corrected it without restarting the tesfjine 5), and one that captures writes for variablgs
ing process from the beginning. (line 10), a; (line 12), andas (line 14). The advice fol-
Our approach to addressing these difficulties is to detetewing the pointcuts provides code that is inserted into the
ministically execute a concurrent program by running itSCSSAME code. The around advice for the first pointcut,
CSSAME equivalent, including and ¢ functions. (For atline 21, replaces the body of thdunction. This advice
this paper, we will ignores functions and focus on con- returns the value of; for the « function in Figure 2(b).
current reaching definitions.) However, we must still condt does so by blocking the calling thread on the latch for
trol the execution of the program by ordering the events, until it opens. This test case selects the thread inter-
in a program. We do this by controlling the return valuedeaving that hag’; execute immediately aftér,; 7, may
for the = functions, selecting one of the terms before théhave completed or may not have executed. By changing
program runs. For example, in Figure 2(b), the value fothe latch in line 23, we can construct test cases that sim-

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49

No gabhwN R

public aspect TestCasel {

/I The args() clause lets advice access
/I argument values.

/I Pointcut for the « function.
pointcut piFunc(int a, int b, int c) :

(call * int n(int,int,int) && args(a,b,c));

/I Pointcuts for writes to ap, a2, as.
/I a; is not visible in any 7 function.
pointcut set_ ap(int n) :
set(protected int Example.
pointcut set_ ax(int n) :
set(protected int Example.
pointcut set_ as(int n) :
set(protected int Example.

ap) && args(n);
ap) && args(n);
az) && args(n);
/I Advice that wraps around execution of

/I function and replaces method body.

/I Return the selected argument after it has
/I been written.

int around(int ap, iInt ap, int az) :
piFunc(int,int,int) && args(ap, az, az) {
ltemLatch choice = latch_ as;

synchronized(choice) {
while(!choice.ready) {
choice.wait();

}

return(choice.value);

}

/I Trip the latch when the field is set.
after(int n) : set_ ao(n) {
synchronized(latch_ ao) {
latch_ ag.ready = true;
latch_ ap.value = n;
latch_ ag.notifyAll();
}

after(int n) : set_
/I Same as for ao

az(n) {

after(int n) : set_
/I Same as for ag

as(n) {

}

IltemLatch latch_ ap = new ltemLatch();
IltemLatch latch_ a; = new ltemLatch();
IltemLatch latch_ az = new ltemLatch();

(a) Aspect that selects; for 7 function.

public class ItemLatch {

public ItemLatch() {
ready = false;

public boolean ready;
public int value;

(b) ItemLatch helper class.

Figure 3. Aspect and helper code for a test
case in Figure 2(b).

ulate all of the potential thread interleavings. Note that
this can be done with only three executions; we only need
to determine which threads execute beffgewhich does

not require us to enumerate over all possible orderings.
For example, in this test case, it does not mattdhiex-
ecutes beford7 or afterTs; it is only important thatls
runs immediately after; .

The advice forg, as, andag (starting at line 33) runs
after writes to the variables. It updates and opens the latch
for the variable, waking any threads waiting for the value.
The latch code is given in Figure 3(b).

This approach has several benefits. First, it is insen-
sitive to the execution timing of the program. We do not
establish a total order on the events in the program, but use
the execution history provided by the multiple subscripted
versions of shared variables. We can select a value for re-
turn in ar function regardless of when that value is written
when the program executes. Second, we can construct any
valid interleaving for a test case when desired. Specific
scheduler implementations may not generate all possible
schedules, and may generate others infrequently. Our se-
lection of return values forr functions is not restricted
by the scheduler. Third, we separate test cases from the
CSSAME form using aspects. Otherwise, the generated
CSSAME code would have to include all of the necessary
synchronization code. This code would appear inithe
function bodies and at every update of a shared variable,
making for tangled code.

However, this approach has some problems. First, it is
possible to select aninvalid schedule. Thatis, itis possible
to construct a test case specifying return values flumc-
tions that cannot result from a valid thread schedule. This
case sometimes appears as a program that does not termi-
nate, with threads waiting for latches that will not open
because the program did not write the desired variables.
In other cases, the program terminates generating illegal
output. We need a mechanism for preventing such test
cases. Second, SSA (on which CSSAME is based) was
created for analyzing procedural programs with scalars. It
will need to be augmented to deal with arrays [6] and with
the object-oriented constructs in Java. Third, loops pose
problems for static single assignment forms. This problem
may be addressed using techniques from dynamic single
assignment [19]. These issues are discussed in [13].

5 Example

This section describes an example program based on
an example found in [1]. The primary objective is to
show how we can use our aspect-oriented approach to con-
struct different program executions to expose errors, and
to highlight some of the additional characteristics of this
approach. Another example can be found in [13].

We do not yet have an implementation of the CSSAME

intn=1 intno =1 ng equal to 3 (frormm,) andng equal to O (fromng).

CObe%r;] Lock(L) CObeqqllr? Lock(L) Using aspects around thefunction, we can select ei-
n=0 n1=0 ther term as the return value to test the two outcomes.
- glgg’;(‘;%)) - ;’lgg’;(kl%)) With our aspect-oriented approach, we can test this pro-
" Lock(l) " Lock(l) gram by running it .o.nly twice. 'In' contrast, .n0|semak|ng
n=3 ne=3 programs are sensitive to the timing execution of the pro-
Unlock(L) Unlock(L) gram, making it difficult to properly test programs that
- EZ:;:E:% - EZ;;:E:% mistakenly use sleeps or other delays to remove race con-
' Lock(L) ' Lock(L) ditions. In these programs, the inserted noise must out-
print(21/) nz =m(ny,na) weigh that already in the program to force different inter-
Unlock(L) print(21in3) leavings, which may be difficult since noise is probabilis-
coend J Unlock(L) tically executed with random sleep values. If the sleep
coen in Ty is sufficiently large, it may take many executions
(a) Odyssey code. (b) CSSAME form. to force the incorrect interleaving. The aspect version of
.] noisemaking uses advice to reduce the length of program
Figure 4. Example based on Fig. 7 from [1]. delays by overriding and reducing the argument to sleep

form for Java code. For now, we are prototyping such &7]_, but f?\gai_n this is ane probabilistical_ly. The timing re-
compiler by writing explicitly-parallel code for Odyssey, !atlonshlps in the original source co_de influence the abil-
then manually translating the generated CSSAME code t Of these tools to properly test this code. Our aspect-
its Java equivalent and adding the necessary aspects. TREENted approach does not suffer from these timing prob-
translation process is described in [13]. lems. If we selech; as the re;ult for the function, we
The example, in Figure 4, is based on Figure 7 fror.[§1eed only ensure that the write has completed befgre

[1]. In the original, one thread sets an object represenE’ assigned, which is accomplished using latches. Our ap-

ing a network connection to null. A second thread sleepf,mach IS more closely.relateq o value subst|tut|or1 [1’. 2]
xcept that we are again not influenced by execution tim-

executes a long-running method, then initializes the corfXCef o g ;
nection object. A third thread waits for the second to com!'gs I t.he original. Value subsitution supstltutes values
plete and then sends data along the connection, assumifrrlgm_ writes that _have_z already completgd n the program.
a non-null value. We simulate this problem using integefA‘ an, th_e sleep in this program m"?"‘es itdifficult for value
arithmetic. The first thread sets a shared variable to 0. THiPStitution to detect and use .the Incorrect yalue fiigm
second sleeps then sets the variable to 1. The third thres" Iatcheg remove these timing relationships and allows
uses the variable as a divisor, assuming a non-zero vallé&® © substitute any legally visible value fos.
To ensure the third thread runs after the second finishes, To further show how value substitution depends on the
we use a barrier that waits for two threads to arrive. execution timing of the program, consider a version of
For this example, we will assume that all of the concurfigure 4 where the sleep is moved frdf to the start
rent reaching definitions are expected by the programme?f 71. Now, the problematic write ta, is hidden be-
and the error is that some values produce incorrect resul@usel’ executes last. This change has no effect on our
When a Java version of this program is run 1000 timegSpect-oriented solution because our mechanism involves
any non-zero sleep value results in a final value of 7 Selecting values for the functions. Again, the latches
becausd’; executes to completion first. In fact, the resultsfor the variables remove execution timing problems. With
are correct if the sleep iff, is removed as long a8 is value substitution, it is unlikely that the write of the zero
started first. However, the program runs correctly becausélue will be finished whefi’; accesses it, so the value
the scheduler hides the error. If the sleefiris removed is unlikely to be substituted. Fidgeting is also unlikely to
and it is launched first, the program almost always throw§€lP- Adding noise to value substitution may increase the

an exception (only 5 of 1000 runs ran correctly). chances of testing this scenario, but it again relies on good
The function inT; captures the concurrent reachingseeding' Alternative replay is probably the best solution.
definitions forns, which shows that; from T or ny An additional problem for noisemakers and value sub-

from t3 will be the divisor. Testing this code only requiresstitution is that the number of executions needed to thor-
us to consider these two possibilities. Although there areughly test the program increases with the number of con-
a large set of potential thread schedules, these schedutasrent reaching definitions. Takemafunction with w

can only impact the results of this program by changingerms (one local reaching definitiom; — 1 concurrent
which concurrent reaching definition is used for the divi+eaching definitions). Further, assume thataterms are
sor. Or rather, all thread schedules result in one of the twalways assigned when the variable is used. Value substi-
possible outcomes, so we only need to test that these tviation selects a term with probabilitﬁ. This will likely
outcomes are correct. We need only run the program witfequire more tham executions to capture all possible in-

terleavings. Noisemakers, with less control over prograr\cknowledgements
execution, will likely require even more executions. Our

approach takes exactly executions. This research was supported by the Natural Science
Our approach also allows executions to be repeatedind Engineering Research Council of Canada and the Uni-

executed during debugging. Once the division by zero igersity of Waterloo.

uncovered (by selecting, as the return value for the

function), this interleaving can be repeated until the ProReferences

grammer uncovers the problem. In this example, the prob-

!em can be identified qU|c!<Iy. Ir_] more complex prOgrams’[l] M. Biberstein, E. Farchi, and S. Ur. Choosing among alternative
it may take more effort to identify the source of the error. pasts. IrProc. 2003 Workshop on Parallel and Distributed Systems:

Equally important is that our approach can help retest Testing and Debuggin@003.

.. . . [2] M. Biberstein, E. Farchi, and S. Ur. Fidgeting to the point of no re-
the program once a fix is applled to the code. In this ex turn. InProc. 2004 Workshop on Parallel and Distributed Systems:

ample, the error is that, is assigned zero, causing the Testing and Debuggin@004.
divide by zero error. If a non-zero value is assigned in-3] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder -

stead, we need to retest the program to be sure that the Second generation of a Java model checkePrbe. Workshop on
. Advances in Verificatigrpages 130-135, 2000.
results are now correct. Our aspect-oriented approach lef§ j.-p. choi and H. Srinivasan. Deterministic replay of java multi-

us run the two test interleavings for this retesting, quickly threaded applications. IRroc. SIGMETRICS Symposium on Par-
showing the fix removes the error. With noisemakers ang_ allel and Distributed Toolspages 48-59, 1998.

| bstituti . f he beginni 5] J.-D. Choi and A. Zeller. lIsolating failure-inducing thread sched-
value substitution, testing must start from the beginning. ules. InProc. 2002 International Symposium on Software Testing

However, there is no guarantee that either kind of system and Analysispages 210-220, 2002.
will retest the particular error condition. Program replay[6] J--F. Collard. Array SSA for explicitly parallel programs. fioc.

. . 5th Intl. Euro-Par Conf.LNCSvol 1685, pages 383-390, 2005.
is not helpful since the captured trace cannot be used tﬁ] S. Copty and S. Ur. Multi-threaded testing with aop is easy, and it

run the new program. finds bugs! InProc. 11th International Euro-Par ConRfLNCSvol
It should be noted that this example requires the 3648, pages 740-749. Springer-Verlag, 2005.

. . [8] O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, S. Ur. Multithreaded
CSSAME form to recognize and correctly analyze barrier! java program test generationlBM Systems Journak1(1):111—

synchronization. In the program, the barrier ensures that 125 2002.
T3 cannot read the initial valug, because it must execute [9] G. Hwang, K. Tai, T. Huang. Reachability testing: An approach

afterTs and its write. The current version of Odyssey does ~ [© testing concurrent softwardnternational Journal of Software
2 y y Engineering and Knowledge Engineerjrig4):493-510, 1995.

not properly ana_lyze bamelr synchronizat?on, and adds [10] . Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
as another term in thefunction. When we implement the W. Griswold. An overview of AspectJ. IRroc. 15th European
CSSAME form for Java, we will correct this limitation. Conf. on Object-Oriented ProgrammingNCSvol 2072, pages
327-353. Springer—Verlag, 2001.
[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
H J. Loingtier, and J. Irwin. Aspect-oriented programming.Phoc.
6 Conclusions 11th European Conf. on Object-Oriented Programmiiny CSvol
1241, pages 220-242. Springer-Verlag, 1997.

This paper presented preliminary research on a techt?l - Lee; S Midkiff, and D. Padua. Concurrent static single as-
signment form and constant propagation for explicitly parallel pro-

nique to deterministically execute a concurrent program, grams. InProc. 10th Workshop on Languages and Compilers for
based on a combination of compiler analysis and aspect- Parallel Computing1997.

oriented programming. We execute the Java equivalent &1 S. MacDonald, J. Chen, and D. Novillo. Choosing among alter-
the CSSAME form and use aspects to control its execution native futures. IrProc. Haifa Verification Conference NCSvol
P 3875, pages 247—264. Spring-Verlag, 2005.

by overriding the return values of thefunctions to return [14] D. Novillo. Analysis and Optimization of Explicitly Parallel Pro-
specific values. grams PhD thesis, Dept. Comp. Sci., Univ. of Alberta, 2000.

Th . d ¢ f thi h threef |&15] D. Novillo, R. Unrau, and J. Schaeffer. Concurrent ssa form in the
€ main advantages o IS approach are threeiold. presence of mutual exclusion. Rroc. 1998 International Conf. on

First, we can deterministically execute the concurrent pro- parallel Programming pages 356—364, 1998.
gram, examining all interleavings for a given use of d16] D. Novillo, R. Unrau, and J. Schaeffer. Optimizing mutual ex-

shared variable. This allows for both testing of code and clusion synchronization in explicitly parallel programs. Rnoc.
) 5th Workshop on Languages, Compilers, and Run-time Systems for

retesting of code fixes. Most importantly, we can test scajable Computerpages 128-142, 2000.
cases independently of the execution timing of the prof7] S.Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.

gram. Second. we do not require an execution trace of Eraser A dynamic data race detector for multithreaded programs.
h ! d inisticall . . ACM Transactions on Computer Systetf(4):391-411, 1997.
the program since we are deterministically executing It[118] S. Stoller. Testing concurrent Java programs using randomized sch-

not replaying it. Third, this method works even if the eduling. Electr. Notes Theoretical Computer Scieng@(4), 2002.
shared variables are not protected with synchronizatiofi®] P-Vanbroekhoven, G. Janssens, M. Bruynooghe, H. Corporaal, and

. . L f . F. Catthoor. Advanced copy propagation for arraysPioc. 2003
Althoygh this Work. IS prellmlngry, bl be“eve_ it holds ACM Conference on Languages, Compilers, and Tools for Embed-
promise as the basis for a testing and debugging tool for ged systempages 24-33, 2003.

concurrent programs.

