
c©Spring-Verlag.

Choosing Among Alternative Futures

Steve MacDonald1, Jun Chen1, and Diego Novillo2

1 School of Computer Science, University of Waterloo, Waterloo, Ontario, CANADA
{stevem,j2chen}@uwaterloo.ca

http://plg.uwaterloo.ca/∼stevem, http://www.cs.uwaterloo.ca/∼j2chen
2 Red Hat Inc.

dnovillo@acm.org, http://people.redhat.com/dnovillo

Abstract. Non-determinism is a serious impediment to testing and debugging
concurrent programs. Such programs do not execute the same way each time
they are run, which can hide the presence of errors. Existing techniques use a va-
riety of mechanisms that attempt to increase the probability of uncovering error
conditions by altering the execution sequence of a concurrent program, but do not
test for specific errors. This paper presents some preliminary work in determinis-
tically executing a multithreaded program using a combination of an intermediate
compiler form that identifies the set of writes of a shared variable by other threads
are visible at a given read of that variable and aspect-oriented programming to
control program execution. Specifically, the aspects allow a read of a shared vari-
able to return any of the reaching definitions, where the desired definition can be
selected before the program is run. As a result, we can deterministically run test
cases. This work is preliminary and many issues have yet to be resolved, but we
believe this idea shows some promise.

1 Introduction

Testing concurrent programs is difficult because of non-determinism; each execution
of the program is different because of changes in thread interleavings. Of the large
possible number of interleavings, only a few may cause errors. In particular, we are
concerned aboutrace conditions, when the interleaving violates assumptions about the
order of certain events in the program. For this paper, we define a race condition as
two operations that must execute in a specific order for correctness but where there
is insufficient synchronization to guarantee this order. An important characteristic of
this definition is that mutual exclusion is not necessarily a solution; two updates of a
variable in different threads, even if protected by locks, can still cause a race under this
definition. This is a more general definition that considers timing-dependent errors.

This paper presents preliminary work on deterministically executing a concurrent
program using a combination of two technologies. The first technology is CSSAME
[19,20,21,22], an intermediate compiler form for explicitly-parallel shared-memory
programs that identifies the set of writes to a shared variable by other threads are visible
at a given read of that variable. These writes are calledconcurrent reaching definitions
for that particular use of the shared variable. The second is aspect-oriented program-
ming, which allows us to intercept field accesses and method calls in object-oriented



programs and inject code at these points [14,13]. Using these technologies, we have cre-
ated a technique for deterministic execution with three desirable characteristics. First,
for a given race condition we can deterministically execute each order, allowing all
paths to be tested. In contrast, many other tools are dependent on the timing charac-
teristics of a specific execution of the program which means some orders may not be
properly tested. Other tools introduce code into the program and can subtly change its
timing, preventing the race condition from appearing during execution. Our determin-
istic approach does not rely on such timing, and does not suffer from this problem.
Second, our method requires no existing execution trace of the program since we are
deterministically executing the program, not replaying it. Third, the method works even
if accesses to shared variables are not protected by locks.

This deterministic execution can be used in several ways. First, not all race condi-
tions represent errors; in some cases, each order may be acceptable. However, in testing
it is important that each order be enumerated to verify correctness. This technique can
be used for this enumeration, ensuring each case is handled. Second, other testing meth-
ods enumerate over a large number of test cases by generating different interleavings,
but cannot guarantee that specific, vital tests are run. This work could be used as an
initial sanity test, to explicitly check basic functionality. Third, deterministic execution
could be used to support incremental debugging. A user can construct schedules where
the order differs in a small number of ways. If one schedule is faulty and another correct,
then the difference may be used to locate the error.

This paper is organized as follows. Section 2 presents related research. Section 3
describes the CSSAME form and the compiler that produces it. A brief description
of aspect-oriented programming is given in Section 4. In Section 5 we describe how
we combine CSSAME and aspects to deterministically execute a concurrent program.
Examples of the use of this technique are given in Section 7. Outstanding issues and
future work are presented in Section 8, and the paper concludes with Section 9.

2 Related Work

One common testing technique is to introduce noise into multithreaded programs to
force different event orders, usually adding conditional sleeps or yields on synchroniza-
tion or shared variable accesses [25,9]. One research effort added noisemaking using
aspect-oriented programming [8]. These techniques rely on properly seeding the pro-
gram, determining which delays to execute and, in the case of sleep, how long to delay.
This technique is not intended to test a specific problem, but rather increases the prob-
ability that race conditions will appear if the program is run many times.

Another interesting technique that has been used is based on ordering the execution
of the atomic blocks in a multithreaded program [4]. This effort assumes that all ac-
cesses to shared data are protected by locking. Under these conditions, the behaviour
of a concurrent program can be captured by enumerating over all possible orders of the
atomic blocks in the program. This captures the more general idea of a race condition
in this work. However, it does not address unsynchronized accesses to data. Also, this
work uses a customized JVM that includes checkpointing and replay facilities.

2



An improvement on these schemes isvalue substitution[1]. Rather than perturb
the thread schedule with noise, value substitution tracks reads and writes to shared
data. When a read operation is executed, the value that is returned can be taken from
any already-executed write operation that is visible to the read operation, simulating
different thread schedules. To ensure that the substituted values are consistent, a visi-
bility graph is produced to maintain event ordering. There are two main weaknesses of
this algorithm. First, the amount of data needed for the visibility graph is prohibitively
large. Second, the substituted values must be from writes that have already executed,
which can limit test coverage. The second weakness was addressed throughfidgeting
[2], where the choice of substituted value is delayed until the value is used in a pro-
gram statement that cannot be re-executed (such as output or conditionals). This delay
increases the possible substitutions for a read and allows more schedules to be tested.

Another common strategy is program replay, in systems like DejaVu [5] among
others. These systems capture the state of a program execution and use it to reproduce
the execution. If the captured execution is an erroneous one, then it can be rerun multiple
times to debug the problem. However, it may take many executions of the program to
produce an erroneous schedule. Further, capturing the state can perturb the execution,
reducing the probability of the error (or even removing it altogether).

A variation of replay calledalternative replayuses a visibility graph to produce
alternate schedules from a saved program execution [2]. This work is similar is style to
reachability testing[11]. Alternative replay takes a partial execution state of a program
and runs it up to some evente. Beforee is run, the replay algorithm can look ahead in
the visibility graph and may reorder events to produce an interleaving that is different
from the recorded one. For example, ife is a read operation, alternative replay may
trace the visibility graph to find a write operationw that executed later in the program
but could have run beforee, makingw a potential reaching definition for the read. In
baseline value substitution, becausew happened later, its value cannot be substituted in
the read. Alternative replay rewrites the visibility graph sow happens first. From this
point, the program is run normally. Reachability testing systematically enumerates over
all possible thread interleavings by tracing every execution and generating alternative
schedules from those as well. Both of these systems rely on being able to establish a
total order of the events in a program (at least for those that are replayed at the start of
the program execution). In contrast, the properties of the CSSAME form permits us to
achieve the same effects without imposing this total order, by having a history of each
write to a variable. The necessary properties are discussed in Section 5. Further, we can
control the execution of the complete program or any portion, not just starting from the
beginning of the execution.

Other systems detect race conditions at runtime, such as Eraser [24]. These tools
check that accesses to shared data are performed while a lock is held. However, these
tools can only detect problems for a specific execution of the program. Since data races
may not happen on each execution, these tools may miss race conditions. Some of these
tools may also produce false alarms. Furthermore, these tools only check that shared
data accesses are protected by locks, and do not address the more general notion of a
race condition that is used in this paper.

3



a = 0
if (condition)

a = 1
print(a)

(a) Original source code.

a1 = 0
if (condition)

a2 = 1
a3 = φ(a1, a2)
print(a3)

(b) SSA form.

Fig. 1.An example ofφ functions in SSA.

The idea of incremental debugging by schedule comparison has been explored us-
ing Delta Debugging[6]. The technique starts with a failing schedule and then tries
to construct a correct execution using a combination of inserting noise and splicing
scheduling information from successful runs. The correct and incorrect schedules are
compared to determine their differences and locate the source of the error. The process
is repeated until the most likely source of the error is located.

Another approach to locating errors in concurrent code is model checking, imple-
mented by tools like Java Pathfinder [] and many others. Most model checkers do not
execute the application, but rather create an internal representation (usually a finite state
machine) and analyze the representation to verify properties of the original program.
This internal representation may be in a modeling language rather than the original
source code, and it generally elides much of the detail in the program to reduce the size
of the representation and make analysis tractable. JPF-2, the second generation of JPF,
implements its own Java virtual machine to run the application to locate errors. JPF-2
uses the Eraser algorithm described above to locate simple data races. Since they imple-
ment their own JVM, they also control the thread scheduler and use this to enumerate
over the different set of thread interleavings, using backtracking to save re-executing
a program from the beginning for each test. The enumeration is similar to that used
in reachability testing. Our aspect-oriented approach cannot implement backtracking.
However, our approach is considerably simpler and does not require a new JVM.

3 CSSAME - Concurrent Single Static Assignment with Mutual
Exclusion

CSSAME (Concurrent Static Single Assignment with Mutual Exclusion, pronounced
sesame) [19,20,21,22] is an intermediate compiler form used to analyze explicitly par-
allel shared-memory programs (programs where parallelism is explicitly expressed by
introducing library calls or language constructs into the application code). CSSAME is
a variant of the Concurrent Static Single Assignment form [17] that includes additional
analysis based on the synchronization structure of the program. Both forms extend the
Static Single Assignment form.

The SSA form has the property that each variable is assigned only once in the pro-
gram, and that every use of a variable is reached by one definition. However, control
flow operators can result in multiple reaching definitions. To resolve this problem, SSA
includesmerge operatorsor φ functions. Figure 1 shows an example of the SSA form.

CSSAME extends SSA to includeπ functions that merge concurrent reaching def-
initions from other threads in an explicitly parallel program. A concurrent reaching

4



cobegin
T1: Lock(L)

a = 1
a = 2
Unlock(L)

T2: Lock(L)
a = 3
Unlock(L)

T3: Lock(L)
print(a)
Unlock(L)

coend

(a) Original Odyssey source code.

cobegin
T1: Lock(L)

a1 = 1
a2 = 2
Unlock(L)

T2: Lock(L)
a3 = 3
Unlock(L)

T3: Lock(L)
a4 = π(a2, a3)
print(a4)
Unlock(L)

coend

(b) CSSAME form.

Fig. 2.An example ofπ functions in CSSAME.

definition is a write to a shared variable by one thread that may be read by a particu-
lar use of that variable. The value that is read will be one of these concurrent reaching
definitions. One important contribution of the CSSAME form is that it prunes the set of
reaching definitions based on the synchronization structure of the program. This prun-
ing is based on two observations regarding the behaviour of shared variable accesses
inside critical sections [22]. First, a definition can only be observed by other threads
if it reaches the exit of a critical section. Second, if a definition and use occur within
the same critical section, then concurrent definitions from other threads cannot be ob-
served. This pruning process reduces the number of dependencies and provides more
opportunities for compiler optimization.

An example of the CSSAME form is shown in Figure 2. InT3, the use of the variable
a can only be reached by one definition, which requires all concurrent reaching defini-
tions be merged using aπ function. When generating the arguments for theπ function,
note that the definitiona1 in T1 cannot reach this use because of synchronization;a1

does not reach the exit of the critical section because of definitiona2.

The set of reaching definitions for unprotected accesses to shared memory are dic-
tated by the underlying memory model. Odyssey, the compiler that implemented the
CSSAME form, assumes a sequentially consistent memory store. However, different
memory models can be accommodated by changing the placement of and arguments to
theπ functions [19].

The Odyssey compiler works with a superset of C that includes explicit parallelism
in the form of cobegin/coend constructs and parallel loops. The cobegin/coend construct
is used in this paper. In this construct, the body of each thread is indicated using a
switch-statement-like syntax, as shown in Figure 2. Each thread must be finished at
the coend statement. In addition, Odyssey supports locks for mutual exclusion. Event
variables and barriers are also available, but Odyssey does not take this synchronization
into account when adding terms toπ functions.

5



aspect LoggingAspect{
Logger logger = new Logger();

pointcut publicMethods(): call(public * *(..));

before() : publicMethods(){
logger.entry(thisJoinPoint.getSignature().toString());

}
after() : publicMethods(){

logger.exit(thisJoinPoint.getSignature().toString());
}

}

Fig. 3.Logging aspect code in AspectJ.

4 Aspect-Oriented Programming

Aspect-oriented programming was created to deal withcross-cutting concernsin source
code [14]. A cross-cutting concern is functionality in a system that cannot be encapsu-
lated in a procedure or method. Instead, this functionality must be distributed across the
code in a system, resulting in tangled code that is difficult to maintain.

A common example of such a concern is method logging, where every public
method logs its entry and exit times. Such code must be placed at the start and end
of every public method; there is no way to write this code once and have it applied to
every method. Worse, every developer of the application must be aware of this require-
ment when adding new methods or changing protection modifiers on existing ones, and
changes to the logging interface may require many changes throughout the code.

Aspect-oriented programming was created to address these cross-cutting concerns.
Such tangled code is encapsulated into anaspect, which describes both the function-
ality of the concern and thejoin points, which indicates where the aspect code should
appear in the original source code. The aspect code and application code are merged in
a process calledaspect weavingat compile time to produce a complete program.

Figure 3 shows the aspect code for the logging example using AspectJ [13], which
supports aspect-oriented programming in Java. Like a class, an aspect can have instance
variables, in this case an instance of the logging class. The pointcut represents a set of
join points. In this example, the pointcut represents any call to any public method with
any return type through the use of wildcards. Following that are two pieces ofadvice,
which is the aspect code to be woven into the application code. The first piece of advice
represents code that should be run before the call is made, which logs the entry. The
argument is a string of the signature of the method, obtained through the join point in
the aspect. The second piece of advice is run after the method returns, logging its exit.

There is a wide variety of point cuts other than method calls that can be intercepted,
including constructor executions, class initialization, and object initialization. For this
paper, the most important of these is the ability to define a pointcut that intercepts
accesses to fields, both reads and writes to instance and static variables.

6



5 Controlling the Future: Controlling the Execution of the
CSSAME Form using Aspects

The key observation is to note that theπ functions in the CSSAME form shows, for a
given use of a variable, all possible concurrent reaching definitions from other threads
contained within the code that the compiler analyzes. Concurrent reaching definitions
hidden from the compiler (i.e., contained in library code) cannot be analyzed and limit
our ability to properly detect race conditions. Assuming that no accesses are hidden, the
CSSAME form identifies all potential race conditions in the program. Further, the terms
in theπ function show all possible values that can reach a given variable use. If one of
these values leads to an error, then it forms a race condition. Thus, a necessary condition
for a race condition is a term in aπ function that, if selected for a particular use, causes
an error. Finding race conditions requires these terms be identified, and removing race
conditions requires these terms be removed. In some cases, simply detecting an extra
term in theπ function may be enough to find a race condition if the race is the error
[19].

However, there are legitimate reasons for multiple definitions to appear in aπ func-
tion that do not represent concurrency errors. If the race is not an error, then the terms
in theπ function show the possible execution interleavings for a given variable use. In
such cases, it is important to be able to test multiple paths through the code, includ-
ing paths caused by concurrent reaching definitions. Unfortunately, theπ functions also
represent the non-deterministic parts of a concurrent program; the exact reaching def-
inition (or, rather, the term whose value is returned in theπ function) is determined at
runtime based on the order of events during the execution of the program.

For testing purposes, it is desirable to be able to deterministically execute a concur-
rent program. For a givenπ function withn terms, we would like to run the program
exactlyn times to check that each reaching definition results in a correct execution.
This determinism has three main benefits. First, it reduces the number of times the pro-
gram must be run to test it. If non-determinism is still present, the program may need
to be run many times to ensure all orderings are covered. Worse, some orderings may
not occur during testing because of the deterministic nature of some thread schedulers,
instead appearing only after the application has been deployed on a system with a dif-
ferent scheduler [1]. Second, determinism provides better support for debugging. Once
a bug is detected, it must usually be replicated several times before the source of the
error can be located and fixed. Once a fix is applied, the program must be retested to
ensure the fix is correct. If the error appears infrequently, this debugging process is dif-
ficult. Third, determinism can eliminate the possibility of hiding the bug when trying to
locate it. Adding code to monitor the execution can alter the order of events and mask
the problem, only for it to reappear once the monitoring code is removed.

The first part of our approach to removing the non-determinism in the execution of
a concurrent program is to execute the code from the CSSAME form. That is, for the
code in Figure 2(a) we generate the code in Figure 2(b), where each variable is assigned
once and has only one reaching definition. Also included in the transformed code are
theπ functions for concurrent reaching definitions andφ functions for control flow.

To generate different test cases for Figure 2(b), we need to control the value returned
by theπ function. Again, the arguments to theπ function are the set of potentially

7



reaching definitions at this point in the execution of the program. The return value must
be one of the arguments,a2 or a3, which is assigned toa4 and printed in the next line.

This leads to the second part of our approach, which is to control theπ functions us-
ing aspects. To produce different test cases, the user selects the desired reaching defini-
tion from the terms in theπ function. Differentπ functions are distinguished by adding
the source line number to the function name. The call to this function is intercepted by
an aspect, which can override the return value to return the desired definition.

The benefit of using an aspect to control the execution of the CSSAME form is
the same benefit as aspects in general: separation of concerns. Using this approach, we
can generate the CSSAME form once, independently of any specific test case. Each test
case is written as a separate aspect. Keeping the test cases separate from the code makes
the development of each simpler.

However, we need to ensure that the reaching definition has been written before
the read can take place. This task is accomplished by having our test aspect intercept
all writes to a field. This is sufficient in Java because only fields can be shared between
threads. Here, we benefit from the single assignment nature of the CSSAME form. Each
instance variable is represented by a set of individual subscripted variables. We can save
the values for all writes to a field since they are now separate variables. Furthermore, we
treat each variable as a latch. This latch is easily implemented as a class that maintains
a boolean variable indicating if the value has been set. A read of the field must block
until the latch has been set. A write sets the latch value and unblocks readers attempting
to obtain the value for theπ function.

As an example, consider the code in Figure 2(b). The print statement inT3 has
two possible outcomes: 2 (froma2) or 3 (froma3). The aspect code for the test case
whereT3 reads the value froma2, with additional support code, is shown in Figure 4.
In addition, the source code includes implementations for theπ functions which are
subsumed by the aspect. To get theπ function to return the value fora3, we need only
change the value of the choice variable in the advice for theπ function to latcha3.

An important characteristic of this approach is that it is not sensitive to any timing
in the program execution. If the desired term in aπ function has not yet been written,
the reading thread blocks. We also exploit the single assignment property of CSSAME.
Each write is to a separate instance of a variable, meaning we have a complete history
of each write. Thus, we can return any already-written term in aπ function, even if the
same variable has been updated many times. Further, the read value is assigned to a
specific instance of a variable, meaning that it cannot be subsequently overwritten by
another thread, which removes race conditions on variables involved in test cases. This
facilitates testing and debugging of concurrent programs.

The CSSAME form also includesφ functions to merge multiple definitions resulting
from control flow operators. Theφ functions cannot be removed as they may be used
as terms in aπ function. Thus, they must also be executed. Again, we use our aspect.
The aspect captures all writes to a variable and includes advice for theφ functions. For
this case, it is important to note that aφ function only includes terms from the current
thread and not concurrent definitions. Thus, the aspect maintains a single thread-local
variable that represents the last update of the variable by the current thread. The advice
for aφ function returns this value.

8



public aspect TestCase1{
// The args() clause lets advice use values of the arguments.
// Pointcut for theπ function.
pointcut piFunc(int a, int b) :

(call private intπ(int, int) && args(a, b));

// Pointcuts for setting the fielda2 anda3.
// Sincea1 is not visible in aπ function, don’t capture it.
pointcut seta2(int n) :

set(protected int Example.a2) && args(n);
pointcut seta3(int n) :

set(protected int Example.a3) && args(n);

// Advice that wraps around execution ofπ function.
// The body of that function is replaced by this code.
// Return the selected argument after it has been written.
int around(inta2, int a3) : piFunc(int, int) && args(a2, a3) {

ItemLatch choice = latcha2;
synchronized(choice){

while(!choice.ready){
choice.wait();

}
}
return(choice.value);

}

// Trip the latch when the field is set.
after(int n) : seta2(n) {

synchronized(latcha2) {
latch a2.ready = true;
latch a2.value = n;
latch a2.notifyAll();

}
}
after(int n) : seta3(n) {

synchronized(latcha3) {
latch a3.ready = true;
latch a3.value = n;
latch a3.notifyAll();

}
}
ItemLatch latcha2 = new ItemLatch();
ItemLatch latcha3 = new ItemLatch();

}

(a) Aspect that selectsa2 for π function.

public class ItemLatch{
public ItemLatch(){

ready = false;
}
public boolean ready;
public int value;

}

(b) ItemLatch helper
class.

Fig. 4.Aspect and helper code for a test case in Figure 2(b).

9



6 Current Prototype

Our goal is to produce a Java version of this technique, including tool support for pro-
ducing and running test cases selected by the user. However, to demonstrate the idea,
we are currently prototyping the idea by manually translating the explicitly-parallel su-
perset of C supported by Odyssey into Java, and using AspectJ to write aspects.

Currently, we start with an Odyssey program using the cobegin/coend parallel con-
struct. The compiler produces the CSSAME form for the program, which looks like the
code in Figure 2(b). Once we have this code, it is translated into its Java equivalent.

Translating Odyssey programs to Java is straightforward. First, we create a class for
the complete Odyssey program. For the cobegin/coend construct, each thread body in
the construct is translated to a different inner class implementing theRunnable in-
terface, making it a valid thread body. Finally, all shared variables in the construct are
converted to instance variables, since local variables are not shared in Java threads. By
using inner classes for the thread bodies, the threads are able to share the instance vari-
ables without the need for accessor methods or public instance variables. Locks become
synchronized blocks. Finally, we add dummy methods for theπ andφ functions.

This translation is currently done by hand. Later, we hope to have an implementation
of the CSSAME form for Java, possibly using the SSA support in Shimple [27], part of
the Soot framework for Java [28].

Once we have translated Odyssey code into Java, we construct the aspect to control
the execution of the program. At this time, this aspect is also written manually. How-
ever, the aspect code is straightforward to write. Individual test cases are selected as
explained in Section 5, by manually changing the aspect. In the future, we expect to
build tool support to generate the aspects for selected test cases.

7 Examples of Alternative Futures

In this section, we examine several of the example programs based on examples from
[1]. The objective is to show how to use theπ functions to highlight errors in concurrent
code. In these cases, these errors can be located by examining the terms in theπ function
and noting race conditions. Using our aspect-oriented approach, we can also execute the
applications to produce the different answers.

7.1 Example 1

Our first example, in Figure 5, is based on Figure 7 from [1]. In the original, a short
thread sets a connection variable to null. A second thread starts by sleeping then pro-
cessing a long method call before setting the connection variable to some non-null
value. A third thread waits for the second to complete and then uses connection, relying
on a non-null value. We simulate this example using integer arithmetic, where the first
thread sets a shared integer to zero, a second does some work before setting the variable
to some non-zero value, and the third performs division using the shared variable. The
waiting is performed with a barrier that only synchronizes the last two threads.

10



int n = 1
cobegin

T1: Lock(L)
n = 0
Unlock(L)

T2: Lock(L)
sleep(10)
n = 1
Unlock(L)
barrier(2)

T3: int result
barrier(2)
Lock(L)
result = 21/n
print(result)
Unlock(L)

coend

(a) Odyssey code.

int n0 = 1
cobegin

T1: Lock(L)
n1 = 0
Unlock(L)

T2: Lock(L)
sleep(10)
n2 = 3
Unlock(L)
barrier(2)

T3: int result
barrier(2)
Lock(L)
n3 = π(n1, n2)
result = 21/n3

print(result)
Unlock(L)

coend

(b) CSSAME form.

Fig. 5.An example based on Figure 7 from [1].

When a Java version of this code is run, the value ofn seen byT3 is the write byT2,
so the output is 7. The barrier, combined with the long execution time ofT2 compared
to T1, hides the race condition at runtime. However, theπ function inT3 exposes this
condition, noting that the value ofn in the division can be the zero value set inT1.

In [1], the race condition is considered to be the error. In that work, the authors
can select eithern1 or n2 in T3 with a 0.50 probability, assuming both writes have run.
In most cases, the error will present itself in two executions. However, this probability
decreases as the number of concurrent writes increases; forw writes in different threads,
the probability decreases to1w . This will likely require more thanw runs. In contrast,
we need exactlyw executions to capture all possible orders for such a race.

Furthermore, the assumption here is thatn1 is not a legitimate reaching definition
for n3 in T3. Another possibility is that this race condition is not an error, but assigning
the value of zero (which causes the division by zero error) is the mistake. In this exam-
ple, the consequences of this mistake are obvious and happen immediately. However,
more subtle mistakes may require the user to rerun this particular error case many times
to locate and correct the problem. Our aspect can deterministically returnn1 in theπ
function, allowing us to rerun this test as many times as needed to fix the error.

However, a small change in this example makes it difficult for value substitution
to produce an incorrect execution. Value substitution allows a read operation to take a
value from any already-executed write operation that is visible [1]. In this example, all
writes ton generally happen before its use inT3. If we instead move the sleep fromT2

to T1, the race condition is still unlikely to occur yet value substitution is also unlikely
to produce a read ofn with a value of zero. Alternative replay is one way to solve this
problem [2]. In our approach, the CSSAME form may be enough to spot the problem,

11



sum =n0 = n1 = n2 = n3 = 0
cobegin

T1: n0 += 1
T2: n1 += 1
T3: n2 += 1
T4: n3 += 1
T5: sleep(10)

sum =n0 + n1 + n2 + n3
print(sum);

coend

(a) Odyssey code.

sum =n01 = n11 = n21 = n31 = 0
cobegin

T1: n02 += 1
T2: n12 += 1
T3: n22 += 1
T4: n32 += 1
T5: sleep(10)

n03 = π0(n01, n02)
n13 = π1(n11, n12)
n23 = π2(n21, n22)
n33 = π3(n31, n32)
sum =n03 + n13 + n23 + n33

print(sum);
coend

(b) CSSAME form.

Fig. 6.An example based on Figure 9 from [1].

by noting thatn1 is a term in theπ function. If this term is expected, then we can use an
aspect to test the cases for bothn1 andn2 deterministically rather than probabilistically.

It is worth noting that the current version of Odyssey does not correctly handle
barrier synchronization. In this example, it is clear thatT3 should not be able to see the
initial value ofn set before the cobegin statement, as it must execute afterT2. However,
Odyssey addsn0 as another term in theπ function. When we implement the CSSAME
form for Java, we will augment its set of supported synchronization mechanisms to
include barriers and event synchronization.

7.2 Example 2

The second example is shown in Figure 6, which is based on Figure 9 from [1]. In
the original, an integer array of length 100 is created, with all elements initialized to
0. The main thread launches 100 other threads, where threadi increments the value
at indexi. After launching the threads, the main thread sleeps for some time and then
sums up the elements in the array, without joining with the threads. Our example sim-
plifies this example by using four separate variables and uses a fifth thread to perform
the summation. We cannot use the main thread here because of the semantics of the
cobegin/coend construct; when the coend statement is reached, all of the threads have
completed execution, which removes the concurrency error that we wish to introduce.

The intended result of this code is a sum of 4. With a large enough sleep value, this
is the obtained result because threadsT1 throughT4 finish beforeT5 reads the values. In
fact, any non-zero sleep suffices. If we remove the sleep, then the order in which threads
are launched plays the largest role in determining the outcome. Because the threads are
so short, they generally run to completion once launched. Without the sleep,T5 usually
sees the updates from all threads launched before it. If launched in program order,T5

almost always sees the updates from all earlier threads. In a simple test running the
program 1000 times, the program reported a sum of 3 only 5 times.

12



However, from theπ functions in Figure 6(b), the race condition in the code be-
comes clear. Each read of the four summed variables inT5 may obtain either the incre-
mented value from one of the other threads or the initial value of 0. From this, we can
see that the sum may be any value between 0 and 4. That the sum returns 4 is a function
of the thread scheduler and not because the program has correct synchronization.

Note that this race condition is not solved by adding mutual exclusion to the pro-
gram to protect the accesses to the four variables. The race condition results because
T5 can run at any time with respect to the other threads; the solution is to add an event
variable or a barrier to controlT5 and ensure it runs afterT1 throughT4.

The above argument assumes that the intended result is 4, in which case static anal-
ysis and user observation is sufficient to detect the problem. However, it may be the
case that the intent of the code is that the sum must be between 0 and 4, where any
value is acceptable. In this case, one potential mistake is that a variable is decremented
in one of threadsT1 throughT4. This error can be detected by controlled execution
of the program. We can create an aspect that returns the initial value for each of the
summed variables except one, where we use the value set by the updating thread. If any
thread mistakenly decrements the variable, the sum will be negative. We can test this by
running the program only four times, once for each of the setting threads, by returning
the appropriate value for eachπ function in our aspects.

In the most general case, we may need to know what the set of possible values for
sum to verify that the program works correctly regardless of the computed value. In
this case, there are 16 possible combinations of the four summed values, which we can
enumerate over with 16 executions by again controlling the returned values for eachπ
function.

8 Issues and Future Research

Inconsistent FuturesOur approach does have a significant drawback in that it is possi-
ble to select an inconsistent execution of a program. Figure 7 shows an example of this
problem. In the second mutex region in threadT2, a andb must have the same value,
either 1 or 2. As a result, the print statement can only produce the output “11” or “20”,
based on the control flow statements in the program.

The problem is that theπ functions do not capture the dependency betweena and
b. Instead, theπ functions make it appear that the choice betweena1 anda2 in πa is
independent of the choice betweenb1 andb2 in πb. A user who is trying to control the
execution of this program could selecta1 in the former case andb2 in the latter. In this
particular example,b2 is always assigned, so it is possible to construct an aspect that
results in the output “12” which is invalid for this program.

Making this case more difficult is that this particular execution is invalid because of
the synchronization code. Different synchronization code (say, where the threads obtain
different locks to updatea andb) or a lack of synchronization code with a sequentially
consistent memory could legitimately produce this result.

This case is difficult to detect because bothb1 andb2 are assigned in this case. The
problem is easier to detect when the user-selected return value for aπ function is not
assigned because of other control flow statements. For example, ifb2 was not assigned

13



cobegin
T1: Lock(L)

a = 1
b = 1
Unlock(L)

T2: int z = 0
Lock(L)
a = 2
b = 2
Unlock(L)
Lock(L)
if (a == 1)

z = b
print(a, z)
Unlock(L)

coend

(a) Original code.

cobegin
T1: Lock(L)

a1 = 1
b1 = 1
Unlock(L)

T2: int z0 = 0
Lock(L)
a2 = 2
b2 = 2
Unlock(L)
Lock(L)
a3 = πa(a1, a2)
if (a3 == 1)

b3 = πb(b1, b2)
z1 = b3

z2 = φ(z0, z1)
print(a3, z2)
Unlock(L)

coend

(b) CSSAME form.

Fig. 7.A program where a user can select an inconsistent history.

in T2, the latch for it would never open andT2 would block in the aspect, trying to
return that value inπb. Eventually all running threads would be blocked, which would
indicate that an invalid execution had been selected.

One possible solution is to construct the visibility graph from [1] as the program
executes to verify the integrity of the selected test case at run-time. A second option
may be to use aprogram slice[26], which can be extended to concurrent programs
[18]. A program slice shows the subset of statements in a program that may affect the
final value of a particular variable at some specific point in a program. We may be able
to use the slice to help detect inconsistent test cases during test case construction.

Other SSA/CSSAME LimitationsIn addition to the inconsistent futures problem, the
SSA form has other limitations (which are inherited by CSSAME and other derivatives
of SSA). Some of these have been considered by other research, and others are still
open questions. The three problems we will consider are issues with arrays, handling
loops, and synchronization analysis.

The SSA form was created to analyze programs with scalars. A simple approach for
dealing with arrays is to consider the array as one object. However, the resulting anal-
yses are too coarse-grained to be useful for many programs. Instead, the Array SSA
form allows a more precise element-by-element analysis of arrays, where theφ func-
tions perform an element-level merge of its arguments [15]. This merge is based on a
timestamp associated with each element. A concurrent version of Array SSA that in-
cludesπ terms for merging writes by different threads is proposed in [7]. These analyses
could be added to our compiler to handle arrays.

Another problem with SSA is loops. Thestatic part of static single assignment
means that each statement that is an assignment uses a separate variable, but it is pos-

14



a = 1
b = 1
cobegin

T1: Lock(L)
while(condition){

b = a + b
a = a * 2

}
Unlock(L)

T2: Lock(L)
print(a)
print(b)
Unlock(L)

coend

(a) Original code.

a1 = 1
b1 = 1
cobegin

T1: Lock(L)
while(condition){

a2 = φ(a1, a3)
b2 = φ(b1, b3)
b3 = a2 + b2

a3 = a2 * 2
}
Unlock(L)

T2: Lock(L)
a4 = π(a1, a2)
print(a4)
b4 = π(b1, b2)
print(b4)
Unlock(L)

coend

(b) CSSAME form.

Fig. 8.An CSSAME example with a loop, based on an example from [3].

sible for that statement to be executed several times in a loop. An example is shown in
Figure 8. At the end of the loop inT1 in the CSSAME form (Figure 8(b)), the values
in a2 andb2 represent the current values fora andb that should be used after the loop
terminates. (For simplicity, we assume the loop executes at least once in this example.)

If the same lock protects both the loop inT1 and all other accesses toa andb, as
is the case in this example, then this analysis is sufficient even though the loop body
may be executed many times. Only the last write ofa2 andb2 will reach the exit of the
critical section. Any earlier writes cannot reach the uses of the two variables inT2.

However, if the synchronization inT1 is removed (or if the two writes toa andb are
protected individually rather than the complete loop), the CSSAME form is insufficient.
The scheduler may interruptT1 at any time while it is executing in the loop and runT2,
which will see values fora2 andb2 from the current iteration. It is now possible for the
values written by any iteration of the loop to be visible inT2, not just the final ones.
We must instead capture each such value (orwrite instance) to enumerate over the set
of values that could be printed inT2. These instances could be captured in an array
rather than a single variable, a technique used indynamic single assignment(DSA)
[29]. However, the DSA form is applicable to only a small subset of programs, such as
multimedia applications [29], suggesting DSA will be inappropriate for this work.

One added difficulty is that there may be dependencies between the write instances
that are visible to a thread because of the memory consistency model. For example, in
Figure 8(b), if the value fora2 is taken from iterationi in the loop inT1, then the value
for b2 must be taken from iterationi− 1 or later (since we have assumed a sequentially
consistent memory - other consistency models may differ). Event variables or barrier
synchronization may introduce similar dependencies.

15



The final issue we want to address is limitations in analyzing synchronization. This
analysis is used to remove terms inπ functions where it can be proven that a definition
cannot reach a particular use of a shared variable. Where Odyssey cannot prove that a
statement is synchronized, it must assume the access is unprotected. This assumption
can lead to extraneous terms inpi functions. Since the aspects use these terms to deter-
mine the set of interleavings to be tested, it can result in extra test cases being run and
may lead to more cases of inconsistent futures.

With thesynchronized block in Java, such analysis is relatively straightforward.
However, with the introduction ofjava.util.concurrent in Java 1.5 (or the use
of Lea’sutil.concurrent library [16], on which this new package is built), other
synchronization primitives like locks and semaphores have been introduced. With these
primitives, it is possible to construct irregular synchronization code that are used in
real concurrent program but that can be difficult to analyze. Odyssey includes some
novel techniques for identifying these locking patterns based on adding and analyzing
reaching definitions for the locks used in the code [21].

Of course, if additional synchronization primitives are added, Odyssey must be ex-
tended to recognize the primitives and apply their semantics in its analysis.

Tool SupportThe goal of this project is to provide tool support for creating and running
test cases for concurrent programs. There are several features that a tool should have.

First, we would like to work with the original source code. Although the CSSAME
form is useful for a compiler, the transformation may not be as clear to programmers.
As a result, we will need to map the statements in the CSSAME form into original
source code statements. This is already done by the Odyssey compiler.

Second, tool support should help the user construct test cases, particularly in the
presence of control flow statements. Given a write to a shared variable, it may be useful
for the user to view the path that must be taken through the code to execute that state-
ment. This will allow the user to specify input to the program that causes the program to
run as desired. This problem may be addressed by the program slices discussed earlier.
Furthermore, we could automatically generate the aspect code corresponding to each
concurrent test. The idea would be to allow users to select the appropriate concurrent
reaching definition for a subset of the reads in the program to create the conditions in
which they are interested. Ideally, the user can specify these conditions and the program
input, and a complete test case can be constructed from this information.

Third, an important consideration is that we clearly cannot require the user to spec-
ify the complete program execution by determining the return value for everyπ func-
tion. It is important that the user be able to specify only those terms needed to produce
the desired test case. A typical program may well have thousands of these functions, far
more than a user can reasonably manage. As well, only data needed to produce the test
case should be maintained by the aspect executing the code, to reduce the memory foot-
print. The CSSAME form introduces multiple copies of a variable, which may require
substantial memory. Clearly, we will need a way to reduce the volume of information
that must be maintained. This is the topic of ongoing research.

One option is to construct this project as a plugin in the Eclipse IDE for Java [23],
and model it after the JUnit framework [12] for constructing unit tests. This would allow
a user to construct a complete test suite and run it easily.

16



BenchmarksAnother direction for future work is to use this technique on a variety of
concurrent programs. One source of such programs is a concurrent benchmark effort
currently underway [10]. This effort also includes the creation of a concurrent testing
framework in which different static and dynamic techniques are combined into more
complete and powerful tools. This research may find a place within this framework.

Correcting Concurrent BugsSince a race condition appears as an undesired term in
a π function, the CSSAME form can be useful in helping a user determine when the
problem has been corrected. After the program has been changed, the terms of the
relevantπ function can be examined once again to ensure the problematic reaching
definition is no longer visible.

9 Conclusions

This paper presented some preliminary work in deterministically executing a concurrent
program. The method is based on using aspect-oriented programming to control the
execution of the CSSAME intermediate compiler form. The main advantages of this
approach are that we can deterministically execute the program covering all potential
orders for a given race condition, that we require no execution trace, and that we can
execute the program even if accesses to shared variables are not synchronized.

Although this work is preliminary and there are still many issues to be resolved, we
believe it holds some promise in the field of testing and debugging concurrent programs.

Acknowledgements

This research was supported by the Natural Science and Engineering Research Council
of Canada and the University of Waterloo. We would also like to thank the anonymous
referees for their comments and suggestions.

References

1. M. Biberstein, E. Farchi, and S. Ur. Choosing among alternative pasts. InProc. 2003 Work-
shop on Parallel and Distributed Systems: Testing and Debugging, 2003.

2. M. Biberstein, E. Farchi, and S. Ur. Fidgeting to the point of no return. InProc. 2004
Workshop on Parallel and Distributed Systems: Testing and Debugging, 2004.

3. M. Brandis and H. M̈ossenb̈ock. Single-pass generation of static single-assignment form
for structured languages.ACM Transactions on Programming Languages and Systems,
16(6):1684-1698, 1994.

4. D. Bruening. Systematic testing of multithreaded java programs. Master’s thesis, Dept. of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1999.

5. J.-D. Choi and H. Srinivasan. Deterministic replay of java multithreaded applications. In
Proc. SIGMETRICS Symposium on Parallel and Distributed Tools, pages 48–59, 1998.

6. J.-D. Choi and A. Zeller. Isolating failure-inducing thread schedules. InProc. 2002 Interna-
tional Symposium on Software Testing and Analysis, pages 210-220, 20023

7. J.-F. Collard. Array SSA for explicitly parallel programs. InProc. 5th International Euro-Par
Conference, LNCSvol. 1685, pages 383-390. Spring-Verlag, 2005.

17



8. S. Copty and S. Ur. Multi-threaded testing with AOP is easy, and it finds bugs! InProc. 11th
International Euro-Par Conference, LNCSvol. 3648, pages 740-749. Springer-Verlag, 2005.

9. O. Edelstein, E. Farchi, Y. Nir, G. Ratsaby, and S. Ur. Multithreaded java program test
generation.IBM Systems Journal, 41(1):111–125, 2002.

10. Y. Eytani, K. Havelund, S. Stoller, and S. Ur. Toward a benchmark for multi-threaded testing
tools. Concurrency and Computation: Practice and Experience, 2005. To appear.

11. G.-H. Hwang, K.-C. Tai, and T.-L. Huang. Reachability testing: An approach to testing
concurrent software.International Journal of Software Engineering and Knowledge Engi-
neering, 5(4):493-510, 1995.

12. JUnit.JUnit: Testing Resources for Extreme Programming. http://www.junit.org.
13. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An overview of

AspectJ. InProc. Fifteenth European Conference on Object–Oriented Programming, LNCS
vol. 2072, pages 327–353. Springer–Verlag, 2001.

14. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. InProc. 11th European Conference on Object–
Oriented Programming, LNCSvol. 1241, pages 220–242. Springer-Verlag, 1997.

15. K. Knobe and V. Sarkar. Array SSA form and its use in parallelization. InProc. 25th ACM
SIGPLAN Symposium on Principles of Programming Languages, pages 107-120, 1998.

16. D. Lea. Overview of packageutil.concurrent Release 1.3.4, 2004. Available at
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html.

17. J. Lee, S. Midkiff, and D. Padua. Concurrent static single assignment form and constant
propagation for explicitly parallel programs. InProc. 10th Workshop on Languages and
Compilers for Parallel Computing, 1997.

18. M. G. Nanda and S. Ramesh. Slicing concurrent programs. InProc. 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 180–190, 2000.

19. D. Novillo. Analysis and Optimization of Explicitly Parallel Programs. PhD thesis, Depart-
ment of Computing Science, University of Alberta, 2000.

20. D. Novillo, R. Unrau, and J. Schaeffer. Concurrent ssa form in the presence of mutual ex-
clusion. InProc. 1998 International Conf. on Parallel Programming, pages 356-364, 1998.

21. D. Novillo, R. Unrau, and J. Schaeffer. Identifying and validating irregular mutual exclu-
sion synchronization in explicitly parallel programs. InProc. 6th International Euro-Par
Conference, LNCSvol. 1900, pages 389-394. Springer-Verlag, 2000.

22. D. Novillo, R. Unrau, and J. Schaeffer. Optimizing mutual exclusion synchronization in
explicitly parallel programs. InProc. Fifth Workshop on Languages, Compilers, and Run-
time Systems for Scalable Computers, pages 128–142, 2000.

23. Object Technology International, Inc.Eclipse Platform Technical Overview, 2003. Available
at: http://www.eclipse.org/whitepapers/eclipse-overview.pdf.

24. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic
data race detector for multithreaded programs.ACM Transactions on Computer Systems,
15(4):391-411, 1997.

25. S. Stoller. Testing concurrent java programs using randomized scheduling.Electronic Notes
in Theoretical Computer Science, 70(4), 2002.

26. F. Tip. A survey of program slicing techniques.Journal of Programming Languages,
3(3):121-189, 1995.

27. N. Umanee.A Brief Overview of Shimple, 2003. http://www.sable.mcgill.ca/soot/tutorial.
28. R. Valĺee-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan. Optimizing

java bytecode using the soot framework: Is it feasible? InProc. 9th International Conference
on Compiler Construction, pages 18–34, 2000.

29. P. Vanbroekhoven, G. Janssens, M. Bruynooghe, H. Corporaal, and F. Catthoor. Advanced
copy propagation for arrays. InProc. 2003 ACM Conference on Languages, Compilers, and
Tools for Embedded Systems, pages 24-33, 2003.

18


