
GCC Internals

Diego Novillo
dnovillo@redhat.com

Red Hat Canada

CGO 2007
San Jose, California

March 2007

11 March 2007 GCC Internals - 2

Outline

1. Overview

2. Source code organization

3. Internal architecture

4. Passes
NOTE: Internal information valid for GCC mainline as of 2007-03-02

11 March 2007 GCC Internals - 3

1. Overview
➢ Major features

➢ Brief history

➢ Development model

11 March 2007 GCC Internals - 4

Major Features

Availability

– Free software (GPL)
– Open and distributed development process
– System compiler for popular UNIX variants
– Large number of platforms (deeply embedded to

big iron)
– Supports all major languages: C, C++, Java,

Fortran 95, Ada, Objective-C, Objective-C++, etc

11 March 2007 GCC Internals - 5

Major Features

Code quality
– Bootstraps on native platforms
– Warning-free
– Extensive regression testsuite
– Widely deployed in industrial and research projects
– Merit-based maintainership appointed by steering

committee
– Peer review by maintainers
– Strict coding standards and patch reversion policy

11 March 2007 GCC Internals - 6

Major Features

Analysis/Optimization
– SSA-based high-level global optimizer
– Constraint-based points-to alias analysis
– Data dependency analysis based on chains of recurrences
– Feedback directed optimization
– Interprocedural optimization
– Automatic pointer checking instrumentation
– Automatic loop vectorization
– OpenMP support

11 March 2007 GCC Internals - 7

1. Overview
➢ Major features

➢ Brief history

➢ Development model

11 March 2007 GCC Internals - 8

Brief History

GCC 1 (1987)
– Inspired on Pastel compiler (Lawrence Livermore Labs)
– Only C
– Translation done one statement at a time

GCC 2 (1992)
– Added C++
– Added RISC architecture support
– Closed development model challenged
– New features difficult to add

11 March 2007 GCC Internals - 9

Brief History

EGCS (1997)
– Fork from GCC 2.x
– Many new features: Java, Chill, numerous embedded

ports, new scheduler, new optimizations, integrated
libstdc++

GCC 2.95 (1999)
– EGCS and GCC2 merge into GCC
– Type based alias analysis
– Chill front end
– ISO C99 support

11 March 2007 GCC Internals - 10

Brief History

GCC 3 (2001)
– Integrated libjava
– Experimental SSA form on RTL
– Functions as trees

GCC 4 (2005)
– Internal architecture overhaul (Tree SSA)
– Fortran 95
– Automatic vectorization

11 March 2007 GCC Internals - 11

GCC Growth1

1.21
1988

1.38
1990

 2.0
1992

2.8.1
1998

EGCS
1998

2.95
1999

 3.0
2001

 3.1
2002

 4.0
2005

 4.1
2006

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

Total

Runtime

Front Ends

Compiler

Ports

Releases

LO
C

libstdc++
Java

libjava

Ada

C++

Tree SSA
Fortran 95

Objective C++

1 generated using David A. Wheeler's 'SLOCCount'.

11 March 2007 GCC Internals - 12

1.21
1988

1.38
1990

 2.0
1992

2.8.1
1998

EGCS
1998

2.95
1999

 3.0
2001

 3.1
2002

 4.0
2005

 4.1
2006

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Compiler

Ports

Releases

LO
C

Core Compiler Growth1

Tree SSA

1 generated using David A. Wheeler's 'SLOCCount'.

11 March 2007 GCC Internals - 13

1. Overview
➢ Major features

➢ Brief history

➢ Development model

11 March 2007 GCC Internals - 14

Development Model

● Project organization
– Steering Committee → Administrative, political
– Release Manager → Release coordination
– Maintainers → Design, implementation

● Three main stages (~2 months each)
– Stage 1 → Big disruptive changes.
– Stage 2 → Stabilization, minor features.
– Stage 3 → Bug fixes only (driven by bugzilla, mostly).

11 March 2007 GCC Internals - 15

Development Model

● Major development is done in branches
– Design/implementation discussion on public lists
– Frequent merges from mainline
– Final contribution into mainline only at stage 1 and

approved by maintainers

● Anyone with SVN write-access may create a
development branch

● Vendors create own branches from FSF release
branches

11 March 2007 GCC Internals - 16

Development Model

● All contributors must sign FSF copyright release
– Even when working on branches

● Three levels of access
– Snapshots (weekly)
– Anonymous SVN
– Read/write SVN

● Two main discussion lists
– gcc@gcc.gnu.org
– gcc-patches@gcc.gnu.org

mailto:gcc@gcc.gnu.org
mailto:gcc-patches@gcc.gnu.org

11 March 2007 GCC Internals - 17

Development Model

● Home page
– http://gcc.gnu.org/

● Real time collaboration
– IRC irc://irc.oftc.net/#gcc
– Wiki http://gcc.gnu.org/wiki/

● Bug tracking
– http://gcc.gnu.org/bugzilla/

● Patch tracking
– http://gcc.gnu.org/wiki/GCC_Patch_Tracking/

http://gcc.gnu.org/
irc://irc.oftc.net/#gcc
http://gcc.gnu.org/wiki/
http://gcc.gnu.org/bugzilla/
http://gcc.gnu.org/wiki/GCC_Patch_Tracking/

11 March 2007 GCC Internals - 18

2. Source code
➢ Source tree organization

➢ Configure, build, test

➢ Patch submission

11 March 2007 GCC Internals - 19

Source code

● Getting the code for mainline (or trunk)
$ svn co svn://gcc.gnu.org/svn/gcc/trunk

● Build requirements (http://gcc.gnu.org/install)
– ISO C90 compiler
– GMP library
– MPFR library
– GNAT (only if building Ada)

● Source code includes runtimes for all languages
and extensive regression testsuite.

Multiple precision floating point libraries

http://gcc.gnu.org/install

11 March 2007 GCC Internals - 20

Source code

<src>

 gcc Front/middle/back ends

 libada Ada runtime
 libcpp Pre-processor

 libdecnumber Decimal arithmetic library

 libgfortran Fortran runtime

 libgomp OpenMP runtime
 libiberty Utility functions and generic data structures

 libmudflap Pointer/memory check runtime

 libobjc Objective-C runtime

 libssp Stack Smash Protection runtime

 libstdc++-v3 C++ runtime

 boehm-gc
 libffi Java runtime
 libjava
 zlib

 libgcc Internal library for missing target features

11 March 2007 GCC Internals - 21

Source code

<src>

Core compiler and C front end

 cp C++ front end

 ginclude System headers (mainly freestanding support)

 ada Ada front end

 config Architecture-specific codegen (ports)

 fortran Fortran front end

 objcp Objective C++ front end

 testsuite Regression tests

 po Portable object files for I18N

 objc Objective C front end

 java Java front end

 doc User manual and internal documentation

 treelang Toy language front end

 gcc

11 March 2007 GCC Internals - 22

Core compiler files (<src>/gcc)

● Alias analysis
● Build support
● C front end
● CFG and callgraph
● Code generation
● Diagnostics
● Driver
● Profiling

● Internal data structures
● Mudflap
● OpenMP
● Option handling
● RTL optimizations
● Tree SSA optimizations

11 March 2007 GCC Internals - 23

2. Source code
➢ Source tree organization

➢ Configure, build, test

➢ Patch submission

11 March 2007 GCC Internals - 24

Configuring and Building

$ svn co svn://gcc.gnu.org/svn/gcc/trunk

$ mkdir bld && cd bld

$../trunk/configure --prefix=`pwd`

$ make all install

● Bootstrap is a 3 stage process

– Stage 0 (host) compiler builds Stage 1 compiler
– Stage 1 compiler builds Stage 2 compiler
– Stage 2 compiler builds Stage 3 compiler
– Stage 2 and Stage 3 compilers must be binary identical

11 March 2007 GCC Internals - 25

Common configuration options

--prefix

– Installation root directory

--enable-languages

– Comma-separated list of language front ends to build
– Possible values

ada,c,c++,fortran,java,objc,obj-c++,treelang

– Default values

c,c++,fortran,java,objc

11 March 2007 GCC Internals - 26

Common configuration options

--disable-bootstrap

– Build stage 1 compiler only

--target

– Specify target architecture for building a cross-compiler
– Target specification form is (roughly)

cpu-manufacturer-os
cpu-manufacturer-kernel-os

e.g. x86_64-unknown-linux-gnu
arm-unknown-elf

– All possible values in <src>/config.sub

11 March 2007 GCC Internals - 27

Common configuration options

--enable-checking=list

– Perform compile-time consistency checks

– List of checks: assert fold gc gcac misc rtl
rtlflag runtime tree valgrind

– Global values:

yes → assert,misc,tree,gc,rtlflag,runtime

no → Same as --disable-checking

release → Cheap checks assert,runtime

all → Everything except valgrind

SLOW!

11 March 2007 GCC Internals - 28

Common build options

-j N

– Usually scales up to 1.5x to 2x number of processors

all

– Default make target. Knows whether to bootstrap or not

install

– Not necessary but useful to test installed compiler

– Set LD_LIBRARY_PATH afterward

check

– Use with -k to prevent stopping when some tests fail

11 March 2007 GCC Internals - 29

Build results

● Staged compiler binaries
<bld>/stage1-{gcc,intl,libcpp,libdecnumber,libiberty}

<bld>/prev-{gcc,intl,libcpp,libdecnumber,libiberty}

<bld>/{gcc,intl,libcpp,libdecnumber,libiberty}

● Runtime libraries are not staged, except libgcc

<bld>/<target-triplet>/lib*

● Testsuite results
<bld>/gcc/testsuite/*.{log,sum}

<bld>/<target-triplet>/lib*/testsuite/*.{log,sum}







11 March 2007 GCC Internals - 30

Build results

● Compiler is split in several binaries

<bld>/gcc/xgcc Main driver

<bld>/gcc/cc1 C compiler

<bld>/gcc/cc1plus C++ compiler

<bld>/gcc/jc1 Java compiler

<bld>/gcc/f951 Fortran compiler

<bld>/gcc/gnat1 Ada compiler

● Main driver forks one of the *1 binaries

● <bld>/gcc/xgcc -v shows what compiler is used

11 March 2007 GCC Internals - 31

Analyzing test results

● The best way is to have two trees built
– pristine
– pristine + patch

● Pristine tree can be recreated with

$ cp -a trunk trunk.pristine

$ cd trunk.pristine

$ svn revert -R .

● Configure and build both compilers with the exact
same flags

11 March 2007 GCC Internals - 32

Analyzing test results

● Use <src>/trunk/contrib/compare_tests to compare
individual .sum files

$ cd <bld>/gcc/testsuite/gcc

$ compare_tests <bld.pristine>/gcc/testsuite/gcc/gcc.sum gcc.sum

Tests that now fail, but worked before:
gcc.c-torture/compile/20000403-2.c -Os (test for excess errors)

Tests that now work, but didn't before:
gcc.c-torture/compile/20000120-2.c -O0 (test for excess errors)
gcc.c-torture/compile/20000405-2.c -Os (test for excess errors)

11 March 2007 GCC Internals - 33

2. Source code
➢ Source tree organization

➢ Configure, build, test

➢ Patch submission

11 March 2007 GCC Internals - 34

Patch submission

● Non-trivial contributions require copyright assignment
● Code should follow the GNU coding conventions

– http://www.gnu.org/prep/standards_toc.html
– http://gcc.gnu.org/codingconventions.html

● Submission should include
– ChangeLog describing what changed (not how nor why)

– Test case (if applicable)

– Patch itself generated with svn diff (context or unified)

http://www.gnu.org/prep/standards_toc.html
http://gcc.gnu.org/codingconventions.html

11 March 2007 GCC Internals - 35

Patch submission

● When testing a patch

1.Disable bootstrap

2.Build C front end only

3.Run regression testsuite

4.Once all failures have been fixed
• Enable all languages
• Run regression testsuite again

5.Enable bootstrap

6.Run regression testsuite

● Patches are only accepted after #5 and #6 work

Not strictly
necessary, but
recommended

11 March 2007 GCC Internals - 36

3. Internal architecture
➢ Compiler pipeline
➢ Intermediate representations
➢ CFG, statements, operands
➢ Alias analysis
➢ SSA forms
➢ Code generation

11 March 2007 GCC Internals - 37

Compiler pipeline

GENERIC GIMPLE RTL Assembly

Front End Middle End Back End

SSA
Optimizer

Inter
Procedural
Optimizer

C

Fortran

Java

C++

RTL
Optimizer

Final Code
Generation

Call Graph
Manager

Pass
Manager

11 March 2007 GCC Internals - 38

SSA Optimizers

● Operate on GIMPLE
● Around 100 passes

– Vectorization
– Various loop optimizations
– Traditional scalar optimizations: CCP, DCE, DSE, FRE,

PRE, VRP, SRA, jump threading, forward propagation
– Field-sensitive, points-to alias analysis
– Pointer checking instrumentation for C/C++
– Interprocedural analysis and optimizations: CCP, inlining,

points-to analysis, pure/const and type escape analysis

11 March 2007 GCC Internals - 39

RTL Optimizers

● Around 70 passes
● Operate closer to the target

– Register allocation
– Scheduling
– Software pipelining
– Common subexpression elimination
– Instruction recombination
– Mode switching reduction
– Peephole optimizations
– Machine specific reorganization

11 March 2007 GCC Internals - 40

Simplified compilation flow (O0)

file.c toplev_mainmain do_compile

process_options

compile_file

lang_hooks.parse_file

*_genericize

cgraph_finalize_function

Sets global state
based on flags

Parsers and conversion to
GENERIC are FE callbacks

Entry point into
the middle end

11 March 2007 GCC Internals - 41

Simplified compilation flow (O0)
cgraph_finalize_function

cgraph_analyze_function cgraph_lower_function

cgraph_assemble_pending_functions

cgraph_expand_function

tree_rest_of_compilation

All GIMPLE
lowering passes

All analysis and
codegen passes

11 March 2007 GCC Internals - 42

Simplified compilation flow (O1+)
compile_file

lang_hooks.parse_file

lang_hooks.final_write_globals

cgraph_optimize

cgraph_analyze_functions

ipa_passes

cgraph_expand_all_functions

Conversion to GENERIC

Lowering to GIMPLE
and SSA form

Inter-procedural
optimizations

Intra-procedural
optimizations and

codegen

11 March 2007 GCC Internals - 43

3. Internal architecture
➢ Compiler pipeline
➢ Intermediate representations
➢ CFG, statements, operands
➢ Alias analysis
➢ SSA forms
➢ Code generation

11 March 2007 GCC Internals - 44

GENERIC and GIMPLE

● GENERIC is a common representation shared by
all front ends
– Parsers may build their own representation for

convenience
– Once parsing is complete, they emit GENERIC

● GIMPLE is a simplified version of GENERIC
– 3-address representation
– Restricted grammar to facilitate the job of optimizers

11 March 2007 GCC Internals - 45

GENERIC and GIMPLE
GENERIC

if (foo (a + b,c))

 c = b++ / a

endif

return c

High GIMPLE

t1 = a + b

t2 = foo (t1, c)

if (t2 != 0)

 t3 = b

 b = b + 1

 c = t3 / a

endif

return c

Low GIMPLE

t1 = a + b

t2 = foo (t1, c)

if (t2 != 0) <L1,L2>

L1:

t3 = b

b = b + 1

c = t3 / a

goto L3

L2:

L3:

return c

11 March 2007 GCC Internals - 46

GIMPLE

● No hidden/implicit side-effects
● Simplified control flow

– Loops represented with if/goto

– Lexical scopes removed (low-GIMPLE)

● Locals of scalar types are treated as “registers”
(real operands)

● Globals, aliased variables and non-scalar types
treated as “memory” (virtual operands)

11 March 2007 GCC Internals - 47

GIMPLE

● At most one memory load/store operation per
statement
– Memory loads only on RHS of assignments
– Stores only on LHS of assignments

● Can be incrementally lowered (2 levels currently)
– High GIMPLE → lexical scopes and inline parallel regions
– Low GIMPLE → no scopes and out-of-line parallel regions

● It contains extensions to represent explicit
parallelism (OpenMP)

11 March 2007 GCC Internals - 48

RTL

● Register Transfer Language ≈ assembler for an
abstract machine with infinite registers

● It represents low level features
– Register classes
– Memory addressing modes
– Word sizes and types
– Compare-and-branch instructions
– Calling conventions
– Bitfield operations
– Type and sign conversions

11 March 2007 GCC Internals - 49

RTL

● It is commonly represented in LISP-like form
● Operands do not have types, but type modes

● In this case they are all SImode (4-byte integers)

b = a - 1

(set (reg/v:SI 59 [b])
 (plus:SI (reg/v:SI 60 [a]
 (const_int -1 [0xffffffff]))))

11 March 2007 GCC Internals - 50

3. Internal architecture
➢ Compiler pipeline
➢ Intermediate representations
➢ Control/data structures
➢ Alias analysis
➢ SSA forms
➢ Code generation

11 March 2007 GCC Internals - 51

Callgraph

● Every internal/external function is a node of type
struct cgraph_node

● Call sites represented with edges of type struct
cgraph_edge

● Every cgraph node contains
– Pointer to function declaration
– List of callers
– List of callees
– Nested functions (if any)

● Indirect calls are not represented

11 March 2007 GCC Internals - 52

Callgraph

● Callgraph manager drives intraprocedural
optimization passes

● For every node in the callgraph, it sets cfun and
current_function_decl

● IPA passes must traverse callgraph on their own
● Given a cgraph node

DECL_STRUCT_FUNCTION (node->decl)

points to the struct function instance that
contains all the necessary control and data flow
information for the function

11 March 2007 GCC Internals - 53

Control Flow Graph

● Built early during lowering
● Survives until late in RTL

– Right before machine dependent transformations
(pass_machine_reorg)

● In GIMPLE, instruction stream is physically split into
blocks
– All jump instructions replaced with edges

● In RTL, the CFG is laid out over the double-linked
instruction stream
– Jump instructions preserved

11 March 2007 GCC Internals - 54

Using the CFG

● Every CFG accessor requires a struct function

argument
● In intraprocedural mode, accessors have shorthand

aliases that use cfun by default

● CFG is an array of double-linked blocks
● The same data structures are used for GIMPLE

and RTL
● Manipulation functions are callbacks that point to

the appropriate RTL or GIMPLE versions

11 March 2007 GCC Internals - 55

Using the CFG - Callbacks

● Declared in struct cfg_hooks
create_basic_block

redirect_edge_and_branch

delete_basic_block

can_merge_blocks_p

merge_blocks

can_duplicate_block_p

duplicate_block

split_edge

...
● Mostly used by generic CFG cleanup code
● Passes working with one IL may make direct calls

11 March 2007 GCC Internals - 56

Using the CFG - Accessors

basic_block_info_for_function(fn) Sparse array of basic blocks
basic_block_info

BASIC_BLOCK_FOR_FUNCTION(fn, n) Get basic block N
BASIC_BLOCK (n)

n_basic_blocks_for_function(fn) Number of blocks
n_basic_blocks

n_edges_for_function(fn) Number of edges
n_edges

last_basic_block_for_function(fn) First free slot in array of
last_basic_block blocks (≠ n_basic_blocks)

ENTRY_BLOCK_PTR_FOR_FUNCTION(fn) Entry point
ENTRY_BLOCK_PTR

EXIT_BLOCK_PTR_FOR_FUNCTION(fn) Exit point
EXIT_BLOCK_PTR

11 March 2007 GCC Internals - 57

Using the CFG - Traversals

● The block array is sparse, never iterate with
for (i = 0; i < n_basic_blocks; i++)

● Basic blocks are of type basic_block

● Edges are of type edge

● Linear traversals
FOR_EACH_BB_FN (bb, fn)
FOR_EACH_BB (bb)

FOR_EACH_BB_REVERSE_FN (bb, fn)
FOR_EACH_BB_REVERSE (bb)

FOR_BB_BETWEEN (bb, from, to, {next_bb|prev_bb})

11 March 2007 GCC Internals - 58

Using the CFG - Traversals

● Traversing successors/predecessors of block bb

edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->{succs|preds})

do_something (e);

● Linear CFG traversals are essentially random
● Ordered walks possible with dominator traversals

– Direct dominator traversals
– Indirect dominator traversals via walker w/ callbacks

11 March 2007 GCC Internals - 59

Using the CFG - Traversals

● Direct dominator traversals
– Walking all blocks dominated by bb

for (son = first_dom_son (CDI_DOMINATORS, bb);
son;
son = next_dom_son (CDI_DOMINATORS, son))

– Walking all blocks post-dominated by bb
for (son = first_dom_son (CDI_POST_DOMINATORS, bb);

son;
son = next_dom_son (CDI_POST_DOMINATORS, son)

– To start at the top of the CFG
FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
dom_traversal (e->dest);

11 March 2007 GCC Internals - 60

Using the CFG - Traversals

● walk_dominator_tree()

● Dominator tree walker with callbacks
● Walks blocks and statements in either direction
● Up to six walker callbacks supported

Before and after dominator children

1. Before walking statements

2. Called for every GIMPLE statement in the block

3. After walking statements

● Walker can also provide block-local data to keep
pass-specific information during traversal

x2

11 March 2007 GCC Internals - 61

GIMPLE statements

● GIMPLE statements are instances of type tree

● Every block contains a double-linked list of
statements

● Manipulation done through iterators
block_statement_iterator si;
basic_block bb;
FOR_EACH_BB(bb)
 for (si = bsi_start(bb); !bsi_end_p(si); bsi_next(&si))

print_generic_stmt (stderr, bsi_stmt(si), 0);

● Statements can be inserted and removed inside the
block or on edges

11 March 2007 GCC Internals - 62

GIMPLE statement operands

● Real operands (DEF, USE)

– Non-aliased, scalar, local variables
– Atomic references to the whole object
– GIMPLE “registers” (may not fit in a physical register)

● Virtual or memory operands (VDEF, VUSE)

– Globals, aliased, structures, arrays, pointer dereferences
– Potential and/or partial references to the object
– Distinction becomes important when building SSA form

11 March 2007 GCC Internals - 63

GIMPLE statement operands

● Real operands are part of the statement

int a, b, c
c = a + b

● Virtual operands are represented by two operators
VDEF and VUSE

int c[100]
int *p = (i > 10) ? &a : &b
a = VDEF <a>
b = VDEF
VUSE <c>
*p = c[i]

a or b may be defined

c[i] is a partial load from c

11 March 2007 GCC Internals - 64

Accessing GIMPLE operands

use_operand_p use;
ssa_op_iter i;
FOR_EACH_SSA_USE_OPERAND (use, stmt, i, SSA_OP_ALL_USES)

{
tree op = USE_FROM_PTR (use);
print_generic_expr (stderr, op, 0);

}

● Prints all USE and VUSE operands from stmt

● SSA_OP_ALL_USES filters which operands are of
interest during iteration

● For DEF and VDEF operands, replace “use” with
“def” above

11 March 2007 GCC Internals - 65

RTL statements

● RTL statements (insns) are instances of type rtx

● Unlike GIMPLE statements, RTL insns contain
embedded links

● Six types of RTL insns

INSN Regular, non-jumping instruction
JUMP_INSN Conditional and unconditional jumps
CALL_INSN Function calls
CODE_LABEL Target label for JUMP_INSN
BARRIER Control flow stops here
NOTE Debugging information

11 March 2007 GCC Internals - 66

RTL statements

● Some elements of an RTL insn

PREV_INSN Previous statement

NEXT_INSN Next statement

PATTERN Body of the statement

INSN_CODE Number for the matching machine
description pattern (-1 if not yet recog'd)

LOG_LINKS Links dependent insns in the same block
Used for instruction combination

REG_NOTES Annotations regarding register usage

11 March 2007 GCC Internals - 67

RTL statements

● Traversing all RTL statements

basic_block bb;
FOR_EACH_BB (bb)

{
rtx insn = BB_HEAD (bb);
while (insn != BB_END (bb))

{
print_rtl_single (stderr, insn);
insn = NEXT_INSN (insn);

}
}

11 March 2007 GCC Internals - 68

RTL operands

● No operand iterators, but RTL expressions are very
regular

● Number of operands and their types are defined in
rtl.def

GET_RTX_LENGTH Number of operands

GET_RTX_FORMAT Format string describing operand
types

XEXP/XINT/XSTR/... Operand accessors

GET_RTX_CLASS Similar expressions are
categorized in classes

11 March 2007 GCC Internals - 69

RTL operands

● Operands and expressions have modes, not types
● Supported modes will depend on target capabilities
● Some common modes

QImode Quarter Integer (single byte)

HImode Half Integer (two bytes)

SImode Single Integer (four bytes)

DImode Double Integer (eight bytes)

...

● Modes are defined in machmode.def

11 March 2007 GCC Internals - 70

3. Internal architecture
➢ Compiler pipeline
➢ Intermediate representations
➢ Control/data structures
➢ Alias analysis
➢ SSA forms
➢ Code generation

11 March 2007 GCC Internals - 71

Overview

● GIMPLE represents alias information explicitly
● Alias analysis is just another pass

– Artificial symbols represent memory expressions (virtual
operands)

– FUD-chains computed on virtual operands → Virtual SSA

● Transformations may prove a symbol non-
addressable
– Promoted to GIMPLE register
– Requires another aliasing pass

11 March 2007 GCC Internals - 72

Memory expressions in GIMPLE

● At most one memory load and one memory store
per statement
– Loads only allowed on RHS of assignments
– Stores only allowed on LHS of assignments

● Gimplifier will enforce this property
● Dataflow on memory represented explictly

– Factored Use-Def (FUD) chains or “Virtual SSA”
– Requires a symbolic representation of memory

11 March 2007 GCC Internals - 73

Symbolic Representation of
Memory

● Aliased memory referenced via pointers
● GIMPLE only allows single-level pointers

 Invalid Valid

 **p t.1 = *p

 *t.1

 *(a[3].ptr) t.1 = a[3].ptr

 *t.1

11 March 2007 GCC Internals - 74

Symbolic Representation of
Memory

● Pointer P is associated with memory tag MT

– MT represents the set of variables pointed-to by P

● So *P is a reference to MT

if (...)
 p = &a
else
 p = &b
*p = 5

 p points-to {a, b}
 p has memory tag MT

 Interpreted as MT = 5

11 March 2007 GCC Internals - 75

Associating Memory with Symbols

● Alias analysis
– Builds points-to sets and memory tags

● Structural analysis
– Builds field tags (sub-variables)

● Operand scanner
– Scans memory expressions to extract tags
– Prunes alias sets based on expression structure

11 March 2007 GCC Internals - 76

Alias Analysis

● GIMPLE only has single level pointers.
● Pointer dereferences represented by artificial

symbols ⇒ memory tags (MT).
● If p points-to x ⇒ p's tag is aliased with x.

MT = VDEF <MT>

*p = ...

● Since MT is aliased with x:
x = VDEF <x>

*p = ...

11 March 2007 GCC Internals - 77

Alias Analysis

● Symbol Memory Tags (SMT)
– Used in type-based and flow-insensitive points-to

analyses
– Tags are associated with symbols

● Name Memory Tags (NMT)
– Used in flow-sensitive points-to analysis
– Tags are associated with SSA names

● Compiler tries to use name tags first

11 March 2007 GCC Internals - 78

Alias analysis in RTL

● Pure query system
● Pairwise disambiguation of memory references

– Does store to A affect load from B?
– Mostly type-based (same predicates used in GIMPLE's

TBAA)

● Very little information passed on from GIMPLE

11 March 2007 GCC Internals - 79

Alias analysis in RTL

● Some symbolic information preserved in RTL
memory expressions
– Base + offset associated to aggregate refs
– Memory symbols

● Tracking of memory addresses by propagating
values through registers

● Each pass is responsible for querying the alias
system with pairs of addresses

11 March 2007 GCC Internals - 80

Alias analysis in RTL – Problems

● Big impedance between GIMPLE and RTL
– No/little information transfer
– Producers and consumers use different models
– GIMPLE → explicit representation in IL
– RTL → query-based disambiguation

● Work underway to resolve this mismatch
– Results of alias analysis exported from GIMPLE
– Adapt explicit representation to query system

11 March 2007 GCC Internals - 81

Alias Analysis

● Points-to alias analysis (PTAA)
– Based on constraint graphs
– Field and flow sensitive, context insensitive
– Intra-procedural (inter-procedural in 4.2)
– Fairly precise

● Type-based analysis (TBAA)
– Based on input language rules
– Field sensitive, flow insensitive
– Very imprecise

11 March 2007 GCC Internals - 82

Alias Analysis

● Two kinds of pointers are considered
– Symbols: Points-to is flow-insensitive

● Associated to Symbol Memory Tags (SMT)
– SSA names: Points-to is flow-sensitive

● Associated to Name Memory Tags (NMT)

● Given pointer dereference *ptr
42

– If ptr
42

 has NMT, use it

– If not, fall back to SMT associated with ptr

11 March 2007 GCC Internals - 83

Structural Analysis

● Separate structure fields are assigned distinct
symbols

struct A
{
 int x;
 int y;
 int z;
};

struct A a;

● Variable a will have 3 sub-variables
{ SFT.1, SFT.2, SFT.3 }

● References to each field are
mapped to the corresponding sub-
variable

11 March 2007 GCC Internals - 84

IL Representation

foo (i, a, b, *p)
{
 p =(i > 10) ? &a : &b
 *p = 3
 return a + b
}

foo (i, a, b, *p)
{
 p = (i > 10) ? &a : &b

 # a = VDEF <a>
 # b = VDEF
 *p = 3

 # VUSE <a>
 t1 = a

 # VUSE
 t2 = b

 t3 = t1 + t2
 return t3
}

11 March 2007 GCC Internals - 85

3. Internal architecture
➢ Compiler pipeline
➢ Intermediate representations
➢ Control/data structures
➢ Alias analysis
➢ SSA forms
➢ Code generation

11 March 2007 GCC Internals - 86

SSA Form

Static Single Assignment (SSA)

● Versioning representation to
expose data flow explicitly

● Assignments generate new
versions of symbols

● Convergence of multiple
versions generates new one (Φ
functions)

a
1
 = 3

b
2
 = 9

if (i
3
 > 20)

a
3
 = a

1
 – 2

b
4
 = b

2
 + a

3

a
5
 = a

1
 + 1

a
6
 = Φ(a

3
, a

5
)

b
7
 = Φ(b

4
, b

2
)

c
8
 = a

6
 + b

7

11 March 2007 GCC Internals - 87

SSA Form

● Rewriting (or standard) SSA form
– Used for real operands
– Different names for the same symbol are distinct objects
– overlapping live ranges (OLR) are allowed

if (x
2
 > 4)

 z
5
 = x

3
 – 1

– Program is taken out of SSA form for RTL generation
(new symbols are created to fix OLR)

11 March 2007 GCC Internals - 88

SSA Form

● Factored Use-Def Chains (FUD Chains)
– Also known as Virtual SSA Form
– Used for virtual operands
– All names refer to the same object
– Optimizers may not produce OLR for virtual operands

● Both SSA forms can be updated incrementally
– Name→name mappings
– Individual symbols marked for renaming

11 March 2007 GCC Internals - 89

Virtual SSA Form
● VDEF operand needed

to maintain DEF-DEF
links

● They also prevent code
movement that would
cross stores after loads

● When alias sets grow
too big, static grouping
heuristic reduces
number of virtual
operators in aliased
references

foo (i, a, b, *p)
{
 p_2 = (i_1 > 10) ? &a : &b

 # a_4 = VDEF <a_11>
 a = 9;

 # a_5 = VDEF <a_4>
 # b_7 = VDEF <b_6>
 *p_2 = 3;

 # VUSE <a_5>
 t1_8 = a;

 t3_10 = t1_8 + 5;
 return t3_10;
}

11 March 2007 GCC Internals - 90

Incremental SSA form

SSA forms are kept up-to-date incrementally

Manually
– As long as SSA property is maintained, passes may introduce

new SSA names and PHI nodes on their own

– Often this is the quickest way

Automatically using update_ssa
– marking individual symbols (mark_sym_for_renaming)

– name→name mappings (register_new_name_mapping)

– Passes that invalidate SSA form must set TODO_update_ssa

11 March 2007 GCC Internals - 91

3. Internal architecture
➢ Compiler pipeline
➢ Intermediate representations
➢ Control/data structures
➢ Alias analysis
➢ SSA forms
➢ Code generation

11 March 2007 GCC Internals - 92

Code generation

● Code is generated using a rewriting system
● Target specific configuration files in

gcc/config/<arch>

● Three main target-specific files
– <arch>.md Code generation patterns for RTL insns

– <arch>.h Definition of target capabilities (register
classes, calling conventions, type sizes, etc)

– <arch>.c Support functions for code generation,
predicates and target variants

11 March 2007 GCC Internals - 93

Code generation

● Two main types of rewriting schemes supported
– Simple mappings from RTL to assembly (define_insn)

– Complex mappings from RTL to RTL (define_expand)

● define_insn patterns have five elements

(define_insn "addsi3"

 [(set (match_operand:SI 0 "integer_register_operand" "=d")
 (plus:SI (match_operand:SI 1 "integer_register_operand" "%d")
 (match_operand:SI 2 "gpr_or_int12_operand" "dNOPQ")))]

 ""

 "add%I2 %1,%2,%0"

 [(set_attr "length" "4")
 (set_attr "type" "int")])

Pattern name (optional)
RTL

template

Additional matching predicate

Assembly output template
Attributes associated

with this pattern (optional)

11 March 2007 GCC Internals - 94

Code generation

define_insn “addsi3”
● Named patterns

– Used to generate RTL
– Some standard names are used by code generator
– Some missing standard names are replaced with library

calls (e.g., divsi3 for targets with no division operation)

– Some pattern names are mandatory (e.g. move
operations)

● Unnamed (anonymous) patterns do not generate
RTL, but can be used in insn combination

11 March 2007 GCC Internals - 95

Code generation

[(set (match_operand:SI 0 "integer_register_operand" "=d,=d")
 (plus:SI (match_operand:SI 1 "integer_register_operand" "%d,m")
 (match_operand:SI 2 "gpr_or_int12_operand" "dNOPQ,m")))]

Constraints provide second level of matching
Select best operand among the set of allowed operands
Letters describe kinds of operands
Multiple alternatives separated by commas

Matching uses
Machine mode (SI, DI, HI, SF, etc)
Predicate (a C function)
Both operands and operators can be matched

11 March 2007 GCC Internals - 96

Code generation

"add%I2 %1,%2,%0"
● Code is generated by emitting strings of target

assembly

● Operands in the insn pattern are replaced in the %n
placeholders

● If constraints list multiple alternatives, multiple
output strings must be used

● Output may be a simple string or a C function that
builds the output string

11 March 2007 GCC Internals - 97

Pattern expansion

● Some standard patterns cannot be used to produce
final target code. Two ways to handle it
– Do nothing. Some patterns can be expanded to libcalls

– Use define_expand to generate matchable RTL

● Four elements
– The name of a standard insn
– Vector of RTL expressions to generate for this insn
– A C expression acting as predicate to express availability

of this instruction
– A C expression used to generate operands or more RTL

11 March 2007 GCC Internals - 98

Pattern expansion

(define_expand "ashlsi3"
 [(set (match_operand:SI 0 "register_operand" "")
 (ashift:SI
 (match_operand:SI 1 "register_operand" "")
 (match_operand:SI 2 "nonmemory_operand" "")))]
 ""
 "{
 if (GET_CODE (operands[2]) != CONST_INT
 || (unsigned) INTVAL (operands[2]) > 3)
 FAIL;
 }")

– Generate a left shift only when the shift count is [0...3]

– FAIL indicates that expansion did not succeed and a
different expansion should be tried (e.g., a library call)

– DONE is used to prevent emitting the RTL pattern. C
fragment responsible for emitting all insns.

11 March 2007 GCC Internals - 99

4. Passes
➢ Adding a new pass

➢ Debugging dumps

➢ Case study: VRP

11 March 2007 GCC Internals - 100

Adding a new pass

● To implement a new pass
– Add a new file to trunk/gcc or edit an existing pass

– Add a new target rule in Makefile.in

– If a flag is required to trigger the pass, add it to
common.opt

– Create an instance of struct tree_opt_pass

– Declare it in tree-pass.h

– Sequence it in init_optimization_passes

– Add a gate function to read the new flag

– Document pass in trunk/gcc/doc/invoke.texi

11 March 2007 GCC Internals - 101

Describing a pass
struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Extension for dump file is
.<static_pass_number>[itr].<name>

e.g., prog.c.158r.greg

i for IPA passes
t for GIMPLE (tree) passes
r for RTL passes

static_pass_number is automatically
assigned by pass manager

Letter used by the -d switch to enable a specific
RTL dump (backward compatibility)

11 March 2007 GCC Internals - 102

Describing a pass
struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

If function gate()returns true, then
the pass entry point function

execute() is called

11 March 2007 GCC Internals - 103

Describing a pass
struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Passes may be organized hierarchically
sub points to first child pass
next points to sibling class
Passes are chained together with
NEXT_PASS in init_optimization_passes

11 March 2007 GCC Internals - 104

Describing a pass
struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Each pass can define its own
separate timer

Timers are started/stopped
automatically by pass manager

Timer handles (timevars) are
defined in timevar.def

11 March 2007 GCC Internals - 105

Describing a pass
struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Properties required, provided and
destroyed are defined in tree-pass.h

Common properties
PROP_cfg
PROP_ssa
PROP_alias
PROP_gimple_lcf

11 March 2007 GCC Internals - 106

Describing a pass
struct tree_opt_pass
{
 const char *name;

 bool (*gate) (void);

 unsigned int (*execute) (void);

 struct tree_opt_pass *sub;
 struct tree_opt_pass *next;

 int static_pass_number;

 unsigned int tv_id;

 unsigned int properties_required;
 unsigned int properties_provided;
 unsigned int properties_destroyed;
 unsigned int todo_flags_start;
 unsigned int todo_flags_finish;
 char letter;
};

Cleanup or bookkeeping actions that
the pass manager should do
before/after the pass

Defined in tree-pass.h

Common actions
TODO_dump_func
TODO_verify_ssa
TODO_cleanup_cfg
TODO_update_ssa

11 March 2007 GCC Internals - 107

Available features

● APIs available for
– CFG: block/edge insertion, removal, dominance

information, block iterators, dominance tree walker.
– Statements: insertion in block and edge, removal,

iterators, replacement.
– Operands: iterators, replacement.
– Loop discovery and manipulation.
– Data dependency information (scalar evolutions

framework).

11 March 2007 GCC Internals - 108

Available features

● Other available infrastructure
– Debugging dumps (-fdump-tree-...)

– Timers for profiling passes (-ftime-report)

– CFG/GIMPLE/SSA verification (--enable-checking)
– Generic value propagation engine with callbacks for

statement and Φ node visits.
– Generic use-def chain walker.
– Support in test harness for scanning dump files looking for

specific transformations.
– Pass manager for scheduling passes and describing

interdependencies, attributes required and attributes
provided.

11 March 2007 GCC Internals - 109

4. Passes
➢ Adding a new pass

➢ Debugging

➢ Case study: VRP

11 March 2007 GCC Internals - 110

Debugging dumps

Most passes understand the -fdump switches

-fdump-<ir>-<pass>[-<flag1>[-<flag2>]...]

ipa
tree
rtl

● inline, dce, alias, combine ...
● all to enable all dumps
● Possible values taken from name

field in struct tree_opt_pass

● details, stats, blocks, ...
● all enables all flags
● Possible values taken from

array dump_options

11 March 2007 GCC Internals - 111

Debugging dumps

● Adding dumps to your pass
– Specify a name for the dump in struct tree_opt_pass

– To request a dump at the end of the pass add
TODO_dump_func in todo_flags_finish field

● To emit debugging information during the pass

– Variable dump_file is set if dumps are enabled

– Variable dump_flags is a bitmask that specifies
what flags were selected

– Some common useful flags: TDF_DETAILS,
TDF_STATS

11 March 2007 GCC Internals - 112

Using gdb

● Never debug the gcc binary, that is only the driver

● The real compiler is one of cc1, jc1, f951, ...
$ <bld>/bin/gcc -O2 -v -save-temps -c a.c

Using built-in specs.
Target: x86_64-unknown-linux-gnu
Configured with: [...]
[...]
End of search list.
<path>/cc1 -fpreprocessed a.i -quiet -dumpbase a.c
-mtune=generic -auxbase a -O2 -version -o a.s

$ gdb --args <path>/cc1 -fpreprocessed a.i -quiet -dumpbase
a.c -mtune=generic -auxbase a -O2 -version -o a.s

11 March 2007 GCC Internals - 113

Using gdb

● The build directory contains a .gdbinit file with
many useful wrappers around debugging functions

● When debugging a bootstrapped compiler, try to
use the stage 1 compiler

● The stage 2 and stage 3 compilers are built with
optimizations enabled (may confuse debugging)

● To recreate testsuite failures, cut and paste
command line from
<bld>/gcc/testsuite/{gcc,gfortran,g++,java}/*.log

11 March 2007 GCC Internals - 114

4. Passes
➢ Adding a new pass

➢ Debugging

➢ Case study: VRP

11 March 2007 GCC Internals - 115

Value Range Propagation
● Based on Patterson’s range propagation for jump

prediction [PLDI’95]
– No branch probabilities (only taken/not-taken)
– Only a single range per SSA name.

for (int i = 0; i < a->len; i++)
 {
 if (i < 0 || i >= a->len)
 throw 5;
 call (a->data[i]);
 }

● Conditional inside the loop is unnecessary.

11 March 2007 GCC Internals - 116

Value Range Propagation
Two main phases

Range assertions

Conditional jumps provide info on value ranges
if (a_3 > 10)

 a_4 = ASSERT_EXPR <a_3, a_3 > 10>

 ...

else

 a_5 = ASSERT_EXPR <a_4, a_4 <= 10>

Now we can associate a range value to a_4 and a_5.

Range propagation

Generic propagation engine used to propagate value ranges
from ASSERT_EXPR

11 March 2007 GCC Internals - 117

Value Range Propagation
● Two range representations

– Range [MIN, MAX] → MIN <= N <= MAX
– Anti-range ~[MIN, MAX] → N < MIN or N > MAX

● Lattice has 4 states

● No upward transitions

UNDEFINED

RANGE ANTI-RANGE

VARYING

11 March 2007 GCC Internals - 118

Propagation engine
● Generalization of propagation code in SSA-CCP
● Simulates execution of statements that produce

“interesting” values
● Flow of control and data are simulated with work

lists.
– CFG work list → control flow edges.
– SSA work list → def-use edges.

● Engine calls-back into VRP at every statement and
PHI node

11 March 2007 GCC Internals - 119

Propagation engine
Usage

ssa_propagate (visit_stmt, visit_phi)

Returns 3 possible values for statement S
•SSA_PROP_INTERESTING

S produces an interesting value
If S is not a jump, visit_stmt returns name N

i
 holding the value

Def-use edges out of N
i
 are added to SSA work list

If S is jump, visit_stmt returns edge that will always be taken
•SSA_PROP_NOT_INTERESTING

No edges added, S may be visited again
•SSA_PROP_VARYING

Edges added, S will not be visited again

11 March 2007 GCC Internals - 120

Propagation engine
● visit_phi has similar semantics as visit_stmt

– PHI nodes are merging points, so they need to
“ intersect” all the incoming arguments

● Simulation terminates when both SSA and CFG
work lists are drained

● Values should be kept in an array indexed by SSA
version number

● After propagation, call substitute_and_fold to
do final replacement in IL

11 March 2007 GCC Internals - 121

Pass declaration in gcc/tree-vrp.c
struct tree_opt_pass pass_vrp =

{
 "vrp",
 gate_vrp,
 execute_vrp,
 NULL,
 NULL,
 0,
 TV_TREE_VRP,
 PROP_ssa | PROP_alias,
 0,
 0,
 0,
 TODO_cleanup_cfg | TODO_ggc_collect
 | TODO_verify_ssa | TODO_dump_func
 | TODO_update_ssa,
 0
};

Implementing VRP

Extension for dump file

Gating function

Pass entry point

Timevar handle for timings

Properties required by the pass

Things to do after VRP and
before calling the next pass

11 March 2007 GCC Internals - 122

Add -ftree-vrp to common.opt
ftree-vrp
Common Report Var(flag_tree_vrp) Init(0) Optimization
Perform Value Range Propagation on trees

Implementing VRP

Common This flag is available for all languages
Report -fverbose-asm should print the value of this flag
Var Global variable holding the value of this flag
Init Initial (default) value for this flag
Optimization This flag belongs to the optimization family of flags

11 March 2007 GCC Internals - 123

Implementing VRP

Add gating function
static bool
gate_vrp (void)
{

return flag_tree_vrp != 0;
}

Add new entry in Makefile.in

– Add tree-vrp.o to OBJS-common variable

– Add rule for tree-vrp.o listing all
dependencies

11 March 2007 GCC Internals - 124

Add entry point function
static unsigned int
execute_vrp (void)
{

insert_range_assertions ();
...

ssa_propagate (vrp_visit_stmt,vrp_visit_phi_node);
...

remove_range_assertions ();

return 0;
}

Implementing VRP

If the pass needs to add TODO items,
it should return them here

11 March 2007 GCC Internals - 125

Schedule VRP in init_optimization_passes

init_optimization_passes (void)
{

...
NEXT_PASS (pass_merge_phi);
NEXT_PASS (pass_vrp);
...
NEXT_PASS (pass_reassoc);
NEXT_PASS (pass_vrp);
...

}

Implementing VRP

Why here?
(good question)

11 March 2007 GCC Internals - 126

Conclusions

● GCC is large and seemingly scary, but
– Active and open development community (eager to help)
– Internal architecture has been recently overhauled
– Modularization effort still continues

● This was just a flavour of all the available functionality
– Extensive documentation at http://gcc.gnu.org/onlinedocs/
– IRC (irc://irc.oftc.net/#gcc) and Wiki (http://gcc.gnu.org/wiki/)

highly recommended

http://gcc.gnu.org/onlinedocs/
irc://irc.oftc.net/#gcc
http://gcc.gnu.org/wiki/

11 March 2007 GCC Internals - 127

Current and Future Projects

11 March 2007 GCC Internals - 128

Plug-in Support

● Extensibility mechanism to allow 3rd party tools
● Wrap some internal APIs for external use
● Allow loading of external shared modules

– Loaded module becomes another pass
– Compiler flag determines location

● Versioning scheme prevents mismatching
● Useful for

– Static analysis
– Experimenting with new transformations

11 March 2007 GCC Internals - 129

Scheduling

● Several concurrent efforts targetting 4.3 and 4.4
– Schedule over larger regions for increased parallelism
– Most target IA64, but benefit all architectures

● Enhanced selective scheduling
● Treegion scheduling
● Superblock scheduling
● Improvements to swing modulo scheduling

11 March 2007 GCC Internals - 130

Register Allocation
● Several efforts over the years
● Complex problem

– Many different targets to handle
– Interactions with reload and scheduling

● YARA (Yet Another Register Allocator)
– Experimented with several algorithms

● IRA (Integrated Register Allocator)
– Priority coloring, Chaitin-Briggs and region based
– Expected in 4.4
– Currently works on x86, x86-64, ppc, IA64, sparc, s390

11 March 2007 GCC Internals - 131

Register pressure reduction

● SSA may cause excessive register pressure
– Pathological cases → ~800 live registers
– RA battle lost before it begins

● Short term project to cope with RA deficiencies
● Implement register pressure reduction in GIMPLE

before going to RTL
– Pre-spilling combined with live range splitting
– Load rematerialization
– Tie RTL generation into out-of-ssa to allow better

instruction selection for spills and rematerialization

11 March 2007 GCC Internals - 132

Dynamic compilation

● Delay compilation until runtime (JIT)
– Emit bytecodes
– Implement virtual machine with optimizing transformations

● Leverage on existing infrastructure (LLVM, LTO)
● Not appropriate for every case
● Challenges

– Still active research
– Different models/costs for static and dynamic compilers

11 March 2007 GCC Internals - 133

Incremental Compilation

● Speed up edit-compile-debug cycle
● Speeds up ordinary compiles by compiling a given

header file “once”
● Incremental changes fed to compiler daemon
● Incremental linking as well
● Side effects

– Refactoring
– Cross-referencing
– Compile-while-you-type (e.g., Eclipse)

11 March 2007 GCC Internals - 134

Dynamic Optimization Pipeline

● Phase ordering not optimal for every case
● Current static ordering difficult to change
● Allow external re-ordering

– Ultimate control
– Allow experimenting with different orderings

– Define -On based on common orderings

● Problems
– Probability of finding bugs increases
– Enormous search space

