
Parallel Programming and
Optimization with GCC

Diego Novillo
dnovillo@google.com

2

Outline

• Parallelism models

• Architectural overview

• Parallelism features in GCC

• Optimizing large programs
– Whole program mode
– Profile guided optimizations

3

Parallel Computing

Use hardware concurrency for increased
– Performance
– Problem size

Two main models
– Shared memory
– Distributed memory

Nature of problem dictates
– Computation/communication ratio
– Hardware requirements

4

Shared Memory

Memory

Interconnect

CPU CPUCPUCPUCPUCPU

● Processors share common memory
● Implicit communication
● Explicit synchronization
● Simple to program but hidden side-effects

5

Distributed Memory

● Each processor has its own private memory
● Explicit communication
● Explicit synchronization
● Difficult to program but no/few hidden side-effects

Interconnect

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

6

Parallelism in GCC

GCC supports four concurrency models

HardHardEasyEasy

MPIMPIOpenMPOpenMPVectorizationVectorizationILPILP

Ease of use not necessarily related to speedups!Ease of use not necessarily related to speedups!

✔ automaticautomatic
✔ no user controlno user control
✔ not intrusivenot intrusive

✔ automaticautomatic
✔ compiler optioncompiler option
✔ not intrusivenot intrusive

✔ manualmanual
✔ compiler directivescompiler directives
✔ somewhat intrusivesomewhat intrusive

✔ manualmanual
✔ special librariesspecial libraries
✔ very intrusivevery intrusive

7

GCC Architecture

GENERIC GIMPLE RTL Assembly

Front End Middle End Back End

SSA
Optimizer

Inter
Procedural
Optimizer

C

Fortran

Java

C++

RTL
Optimizer

Final Code
Generation

Call Graph
Manager

Pass
Manager

8

Vectorization

Perform multiple array computations at once
Two distinct phases

–Analysis → high-level
–Transformation → low-level

Successful analysis depends on
–Data dependency analysis
–Alias analysis
–Pattern matching

Suitable only on loop intensive code

9

Vectorization

int a[256], b[256], c[256];

foo ()
{
 for (i = 0; i < 256; i++)
 a[i] = b[i] + c[i];
}

.L2:
 movdqa c(%eax), %xmm0
 paddd b(%eax), %xmm0
 movdqa %xmm0, a(%eax)
 addl $16, %eax
 cmpl $1024, %eax
 jne .L2

.L2:
 movl c(,%edx,4), %eax
 addl b(,%edx,4), %eax
 movl %eax, a(,%edx,4)
 addl $1, %edx
 cmpl $256, %edx
 jne .L2

Vectorized

Scalar

(~2x on P4)

10

OpenMP – Programming Model

Based on fork/join semantics
– Master thread spawns teams of children threads
– All threads share common memory

Allows sequential and parallel execution

fork join

Parallel region

Master
thread

11

OpenMP - Hello World

#include <omp.h>

main()

{

 #pragma omp parallel
 printf (“[%d] Hello\n”, omp_get_thread_num());

}

$ gcc -fopenmp -o hello hello.c
$./hello
[2] Hello
[3] Hello
[0] Hello ← Master thread
[1] Hello

$ gcc -o hello hello.c
$./hello
[0] Hello

12

Optimization Options

It may be faster than -O2 due to smaller footprint

Level Transformations Speed Debuggability

-O0 None (default) Slow Very good

-O1 Few Not so fast Good

-O2 Many Fast Poor

-Os Same as -O2 + size N/A Poor

-O3 Most Faster Very poor

-O4 Nothing beyond -O3 N/A N/A

13

Optimization Options

Optimizations done at two levels
– Target independent, controlled with -f
– Target dependent, controlled with -m

There are more than 100 passes

Not all can be controlled with -f/-m

-Ox is not equivalent to a bunch of -f/-m
Use -fverbose-asm -save-temps to determine what flags were
enabled by -Ox

Use -fno-... to disable a specific pass

14

Enabling additional optimizations

Not every available optimization is enabled by -Ox
-ftree-vectorize
-ftree-loop-linear
-ftree-loop-im
-funswitch-loops (-O3)
-funroll-loops
-finline-functions (-O3)
-ffast-math

Hundreds of -f and -m flags in the documentation

Optimizing Very Large Programs

f1.C

foo()
{
 for (;;) {
 ...
 x += g (f (i, j), f (j, i));
 ...
 }
}

f2.C

float f(float i, float j)
{
 return i * (i - j);
}

float g(float x, float y)
{
 return x - y;
}

Optimizations are limited by the amount of code that the
compiler can see at once
Current technology only works across one file at a time
Compiler must be able to work across file boundaries

Optimizing Very Large Programs

Problem
Thousands of files, millions of functions, tens of gigabytes
Massive memory/computation complexity for a single machine

WHOPR Architecture - 1

Apply global
decisions locally

(parallel)
Generate GIMPLE

(parallel)

Make global
optimization decisions

(sequential)

Front End Middle End Back End

WHOPR Architecture - 2

Compilation proceeds in 3 main phases:

• LGEN (Local GENeration)
 Writes out GIMPLE
 Produces summary information

• WPA (Whole Program Analysis)
 Reads summary information
 Aggregates local callgraphs into global callgraph
 Produces global optimization plan

• LTRANS (Local TRANSformation)
 Applies global optimization plan to individual files
 Performs intra-procedural optimizations
 Generates final code

WHOPR Architecture - 3

• Phases 1 (LGEN) and 3 (LTRANS) are massively
parallel

• Phase 2 (WPA) is fan-in/fan-out serialization point
o Only operates with call graph and symbols
o Transitive closure analysis not computationally

expensive

• Scalability provided by splitting analysis and final code
generation
o Restricts types of applicable optimizations
o For smaller applications, LTRANS provides full IPA

functionality (whole program in memory)

20

Profile Guided Optimization

• Three phases
– Profile code generation: Compile with -fprofile-generate
– Training run: Run code as usual
– Feedback optimization: Recompile with -fprofile-use

• Allows very aggressive optimizations based on accurate
cost models

– Provided that training run is representative!

• Compilation process significantly more expensive
• May not be applicable in all cases

21

GProf

Probes inserted automatically by compiler

Compile and link application with -pg
Run application as usual

Use gprof to analyze output file gmon.out
$ gcc -pg -O2 -o matmul matmul.c

$./matmul

$ gprof ./matmul

22

OProfile

• System-wide profiler.
• No modifications to source code
• Samples hardware counters to collect profiling
information

• User specifies which hardware counter to sample
• Needs super-user access to start
• Start Oprofiler daemon

• Run application

• Use reporting program to read collected profile

23

Profile Guided Optimization Advances

• Instrument → Run → Recompile cycle too demanding
• New feature being developed to use hardware counters
1.Program compiled as usual

2.Runs in production environment with hardware counters enabled

3.Subsequent recompilations use profile information from hardware
counters

This allows for always-on, transparent profile feedback

24

• There is no “right” choice
• Granularity of work main indicator

• Evaluate complexity ↔ speedup trade-offs

• Combined approach for complex applications
• Algorithms matter!
• Good sequential algorithms may make bad
parallel ones

Conclusions

HardHardEasyEasy

MPIMPIOpenMPOpenMPVectorizationVectorizationILPILP

25

Conclusions

• Performance tuning goes beyond random compiler flags
• Profiling tools are important to study behaviour
• Each tool is best suited for a specific usage

– Try different flags and use /usr/bin/time to measure
– Oprofile → system wide
– Gprof → intrusive but useful to isolate profiling scope
– Compiler dumps to determine source of problem

• New advances in instrumentation and whole program
compilation will simplify things

