Alias Analysis in GCC

redhat Diego Novillo

dnovillo@Rredhat.com
Red Hat Canada

Introduction

* Two levels of alias analysis

* GIMPLE

- Points-to analysis (field/flow sensitive)
- Type-based analysis used as fallback
— Explicitly represented in IL using memory tags

* RTL

— Query based built on type aliases
— Pairwise disambiguation system

Aug 8, 2006 ‘ redhat

Memory expressions in GIMPLE

 Memory variables — li s _gi npl e _reg(Vv)
- Aggregate types — AGGREGATE TYPE P
-needs to live I n nenory
* Globals —1s_gl obal var

« Addressables — TREE ADDRESSABLE

* Return values of an aggregate type
- Volatiles, hard registers, non-promoted conpl ex.

* GIMPLE memory may end up in registers
lis _ginple reg needs to live I n _nmenory

Aug 8, 2006 ‘ redhat

Memory expressions in GIMPLE

* At most one memory load and one memory
store per statement

- Loads only allowed on RHS of assignments
— Stores only allowed on LHS of assignments

* Gimp
e Dataf

ifier will enforce this property
ow on memory represented explictly

- Factored Use-Def (FUD) chains or “Virtual SSA”
- Requires a symbolic representation of memory

Aug 8, 2006

‘. redhat

Symbolic Representation of
Memory

* Since we want an SSA-like representation,
we need symbols to represent memory

* Unaliased memory

- Globals — base symbo
- Addressables — base symbo
- Aggregates — base symbol or

field tags (SFT)
* Alilased memory
- Dereferences = — memory tags (SMI/NMT)

Aug 8, 2006 ‘ redhat

Symbolic Representation of
Memory

* Aliased memory referenced via pointers

* GIMPLE only allows single-level pointers

Invalid
**p

*(a[3].ptr)

Aug 8, 2006 ‘ redhat

Symbolic Representation of
Memory

* Pointer P is associated with memory tag Ml

— M represents the set of variables pointed-to by P
e SO0 *Pis areference to MI

1t (...) p points-to {a, b}

P = & p has memory tag Ml
el se

p = &b
P =95 » Interpreted as MT = 5

Aug 8, 2006 ‘ redhat

Associating Memory with Symbols

* Alias analysis

— Builds points-to sets and memory tags
* Structural analysis

- Builds field tags (aka sub-variables)
* Operand scanner

— Scans memory expressions to extract tags
— Prunes alias sets based on expression structure

Aug 8, 2006 ‘ redhat

Alias Analysis

* Points-to alias analysis (PTAA)

- Based on constraint graphs
- Field and flow sensitive, context insensitive
— Intra-procedural (inter-procedural in 4.2)
- Fairly precise
* Type-based analysis (TBAA)

— Based on input language rules
- Field sensitive, flow insensitive

- Very imprecise
Aug 8, 2006 ‘ redhat

Alias Analysis

* Two kinds of pointers are considered

- Given pointer dereference *ptr

Aug 8, 2006

- Symbols: Points-to is flow-insensitive

* Associated to Symbol Memory Tags (SMT)
- SSA names: Points-to is flow-sensitive
* Associated to Name Memory Tags (NMT)

fptr,

2

f not, fa

2
nas NMT, use it

| back to SMT associated with pt r
‘. redhat

10

Alias Analysis

* After alias analysis

- Every dereferenced symbol pointer will have an
associated SMT

- Most dereferenced SSA pointers will have an
associated NMT

— Variables whose address escapes local function
are considered call-clobbered — important when
processing CALL EXPRs

Aug 8, 2006 @ rednat 1

Structural Analysis

* Separate structure fields are assigned
distinct symbols

struct A
{ int x: Variable a will have 3 sub-variables
i nt y;}— { SFT.1, SFT.2, SFT.3}
| Nt z; > .
1 e References to each field are
’ mapped to the corresponding sub-
variable

struct A a;

Aug 8, 2006 @ rednat 12

|lL Representation

* Memory tags need to be represented but
original expressions cannot be rewritten

* GCC's approach: virtual operators
-V = V_NAY DEF <V>
« Symbol V is partially or potentially stored by stmt
- VUSE <V>
« Symbol V is partially or potentially loaded by stmt
-V = V._MIJST DEF <V> <« deprecated
« Symbol V is totally and definitely clobbered by stmt

Aug 8, 2006 ‘ redhat

13

|lL Representation

foo (i, a, b, *p)

{

foo (i, a, b, *p)

{
p =(1 >10) ? & . &b
*p:3

return a + b

}

}

(i >10) ? & : &b

©
[

V_MAY_ DEF <a>
V_NAY_ DEF

VUSE <a>
tl = a

VUSE
t2 = b

t3 =t1 +t2
return t3

Aug 8, 2006 ‘ redhat

14

Operand Scanner

* Parses statements and expressions

- Real operands
= Virtual operands

* For aliased loads, pruning based on
base+offset analysis of memory expression
(access_can_touch_vari abl e)

* Function calls receive V_NMAY DEF and/or
VUSE for symbols in call-clobbered list

Aug 8, 2006 @ rednat 15

Aug 8, 2006

Virtual SSA Form

V_MAY_DEF operand % (' & P 7P

needed to maintain p2=(i_1>10) ? & : &
DEF-DEF links

They also prevent code
movement that would ,
cross stores after loads = V_MAY DEF <b 6>

V_NMAY DEF <a 11>

When alias sets grow
too big, static grouping

heuristic reduces t1 8 = a;
number of_wrtgal {310 = t1 8 + 5
operators in aliased return t3 10

references }

‘. redhat

16

Virtual SSA — Problems

* Big alias sets — Many virtual operators

— Unnecessarily detailed tracking
- Memory
- Compile time
- SSA name explosion
* Static alias grouping helps
- Reverse role of alias tags and alias sets
— Approach convoluted and too broad

Aug 8, 2006 ‘ redhat

17

Memory SSA

* Attempts to reduce the number of virtual
operators in the presence of big alias sets
* Main idea
— Stores to many locations create a single name

- Factored name becomes reaching definition for
all symbols involved in store

e Reduces
- number of SSA names
— number of virtual operators

Aug 8, 2006 @ rednat 18

.MEM 10
*P.3 = ...

. MEM 11
*q 4 = ...

#'b_12"= VDEF <. NEM 10>

b = ...

¢NMEM 13 = VDEF <. MEM 10,

* p_3

VUSE </MEM 13>
t 14 = b

VUSE <. MEM 11>
t 15 =0

Aug 8, 2006

Memory SSA

VDEF <. MEM 0>

VDEF <. MEM 0>

p 3 points-to{a, b, c }
g_4 points-to{ n, o, p }

At most one VDEF and
one VUSE per statement

b 12>

Virtual operators may refer to
more than one operand

Factored stores create
“sinks” that group muiltiple
Incoming names

Q redhat 19

Alias analysis in RTL

* Pure query system

* Pairwise disambiguation of memory
references

- Does store to A affect load from B?

- Mostly type-based (same predicates used in
GIMPLE's TBAA)

* Very little information passed on from
GIMPLE

Aug 8, 2006 ‘ redhat

20

Alias analysis in RTL

* Some symbolic information preserved in RTL
memory expressions

- Base + offset associated to aggregate refs
- Memory symbols

* Tracking of memory addresses by
propagating values through registers

* Each pass is responsible for querying the
alias system with pairs of addresses

Aug 8, 2006 @ rednat o1

Alias analysis in RTL — Problems

* Big impedance between GIMPLE and RTL

- No/little information transfer
- Producers and consumers use different models
- GIMPLE — explicit representation in IL
- RTL — query-based disambiguation
* Work underway to resolve this mismatch

- Results of alias analysis exported from GIMPLE
— Adapt explicit representation to query system

Aug 8, 2006 ‘ redhat

22

