
Alias Analysis in GCC
Diego Novillo

dnovillo@redhat.com

Red Hat Canada

GCC Moscow Meeting
Moscow, Russia, August 2006



Aug 8, 2006 2

Introduction

● Two levels of alias analysis
● GIMPLE

– Points-to analysis (field/flow sensitive)
– Type-based analysis used as fallback
– Explicitly represented in IL using memory tags

● RTL
– Query based built on type aliases
– Pairwise disambiguation system



Aug 8, 2006 3

Memory expressions in GIMPLE

● Memory variables → !is_gimple_reg(v)
– Aggregate types → AGGREGATE_TYPE_P
– needs_to_live_in_memory

● Globals → is_global_var
● Addressables → TREE_ADDRESSABLE
● Return values of an aggregate type

– Volatiles, hard registers, non-promoted complex.

● GIMPLE memory may end up in registers

!is_gimple_reg  needs_to_live_in_memory



Aug 8, 2006 4

Memory expressions in GIMPLE

● At most one memory load and one memory 
store per statement
– Loads only allowed on RHS of assignments
– Stores only allowed on LHS of assignments

● Gimplifier will enforce this property
● Dataflow on memory represented explictly

– Factored Use-Def (FUD) chains or “Virtual SSA”
– Requires a symbolic representation of memory



Aug 8, 2006 5

Symbolic Representation of 
Memory

● Since we want an SSA-like representation, 
we need symbols to represent memory

● Unaliased memory
– Globals → base symbol
– Addressables → base symbol
– Aggregates → base symbol or

field tags (SFT)

● Aliased memory
– Dereferences → memory tags (SMT/NMT)



Aug 8, 2006 6

Symbolic Representation of 
Memory

● Aliased memory referenced via pointers
● GIMPLE only allows single-level pointers

 Invalid Valid

 **p t.1 = *p

 *t.1

 *(a[3].ptr) t.1 = a[3].ptr

 *t.1



Aug 8, 2006 7

Symbolic Representation of 
Memory

● Pointer P is associated with memory tag MT
– MT represents the set of variables pointed-to by P

● So *P is a reference to MT

if (...)
  p = &a
else
  p = &b
*p = 5

 p points-to {a, b}
 p has memory tag MT

 Interpreted as MT = 5



Aug 8, 2006 8

Associating Memory with Symbols

● Alias analysis
– Builds points-to sets and memory tags

● Structural analysis
– Builds field tags (aka sub-variables)

● Operand scanner
– Scans memory expressions to extract tags
– Prunes alias sets based on expression structure



Aug 8, 2006 9

Alias Analysis

● Points-to alias analysis (PTAA)
– Based on constraint graphs
– Field and flow sensitive, context insensitive
– Intra-procedural (inter-procedural in 4.2)
– Fairly precise

● Type-based analysis (TBAA)
– Based on input language rules
– Field sensitive, flow insensitive
– Very imprecise



Aug 8, 2006 10

Alias Analysis

● Two kinds of pointers are considered
– Symbols: Points-to is flow-insensitive

● Associated to Symbol Memory Tags (SMT)
– SSA names: Points-to is flow-sensitive

● Associated to Name Memory Tags (NMT)

● Given pointer dereference *ptr
42

– If ptr
42

 has NMT, use it

– If not, fall back to SMT associated with ptr



Aug 8, 2006 11

Alias Analysis

● After alias analysis
– Every dereferenced symbol pointer will have an 

associated SMT
– Most dereferenced SSA pointers will have an 

associated NMT
– Variables whose address escapes local function 

are considered call-clobbered → important when 
processing CALL_EXPRs



Aug 8, 2006 12

Structural Analysis

● Separate structure fields are assigned 
distinct symbols
struct A
{
  int x;
  int y;
  int z;
};

struct A a;

● Variable a will have 3 sub-variables
{ SFT.1, SFT.2, SFT.3 }

● References to each field are 
mapped to the corresponding sub-
variable



Aug 8, 2006 13

IL Representation

● Memory tags need to be represented but 
original expressions cannot be rewritten

● GCC's approach: virtual operators
– V = V_MAY_DEF <V>

● Symbol V is partially or potentially stored by stmt

– VUSE <V>
● Symbol V is partially or potentially loaded by stmt

– V = V_MUST_DEF <V> ← deprecated
● Symbol V is totally and definitely clobbered by stmt



Aug 8, 2006 14

IL Representation

foo (i, a, b, *p)
{
  p =(i > 10) ? &a : &b
  *p = 3
  return a + b
}

foo (i, a, b, *p)
{
  p = (i > 10) ? &a : &b

  # a = V_MAY_DEF <a>
  # b = V_MAY_DEF <b>
  *p = 3

  # VUSE <a>
  t1 = a

  # VUSE <b>
  t2 = b

  t3 = t1 + t2
  return t3
}



Aug 8, 2006 15

Operand Scanner

● Parses statements and expressions
– Real operands
– Virtual operands

● For aliased loads, pruning based on 
base+offset analysis of memory expression 
(access_can_touch_variable)

● Function calls receive V_MAY_DEF and/or 
VUSE for symbols in call-clobbered list



Aug 8, 2006 16

Virtual SSA Form
● V_MAY_DEF operand 

needed to maintain 
DEF-DEF links

● They also prevent code 
movement that would 
cross stores after loads

● When alias sets grow 
too big, static grouping 
heuristic reduces 
number of virtual 
operators in aliased 
references

foo (i, a, b, *p)
{
  p_2 = (i_1 > 10) ? &a : &b

  # a_4 = V_MAY_DEF <a_11>
  a = 9;

  # a_5 = V_MAY_DEF <a_4>
  # b_7 = V_MAY_DEF <b_6>
  *p = 3;

  # VUSE <a_5>
  t1_8 = a;

  t3_10 = t1_8 + 5;
  return t3_10;
}



Aug 8, 2006 17

Virtual SSA – Problems

● Big alias sets → Many virtual operators
– Unnecessarily detailed tracking
– Memory
– Compile time
– SSA name explosion

● Static alias grouping helps
– Reverse role of alias tags and alias sets
– Approach convoluted and too broad



Aug 8, 2006 18

Memory SSA

● Attempts to reduce the number of virtual 
operators in the presence of big alias sets

● Main idea
– Stores to many locations create a single name
– Factored name becomes reaching definition for 

all symbols involved in store
● Reduces

– number of SSA names
– number of virtual operators



Aug 8, 2006 19

Memory SSA

# .MEM_10 = VDEF <.MEM_0>
*p_3 = ...

# .MEM_11 = VDEF <.MEM_0>
*q_4 = ...

# b_12 = VDEF <.MEM_10>
b = ...

# .MEM_13 = VDEF <.MEM_10, b_12>
*p_3 = ...

# VUSE <.MEM_13>
t_14 = b

# VUSE <.MEM_11>
t_15 = o

p_3 points-to { a, b, c }

q_4 points-to { n, o, p }

At most one VDEF and 
one VUSE per statement

Virtual operators may refer to 
more than one operand

Factored stores create 
“sinks” that group multiple 
incoming names



Aug 8, 2006 20

Alias analysis in RTL

● Pure query system
● Pairwise disambiguation of memory 

references
– Does store to A affect load from B?
– Mostly type-based (same predicates used in 

GIMPLE's TBAA)
● Very little information passed on from 

GIMPLE



Aug 8, 2006 21

Alias analysis in RTL

● Some symbolic information preserved in RTL 
memory expressions
– Base + offset associated to aggregate refs
– Memory symbols

● Tracking of memory addresses by 
propagating values through registers

● Each pass is responsible for querying the 
alias system with pairs of addresses



Aug 8, 2006 22

Alias analysis in RTL – Problems

● Big impedance between GIMPLE and RTL
– No/little information transfer
– Producers and consumers use different models
– GIMPLE → explicit representation in IL
– RTL → query-based disambiguation

● Work underway to resolve this mismatch
– Results of alias analysis exported from GIMPLE
– Adapt explicit representation to query system


