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Introduction

● Two levels of alias analysis
● GIMPLE

– Points-to analysis (field/flow sensitive)
– Type-based analysis used as fallback
– Explicitly represented in IL using memory tags

● RTL
– Query based built on type aliases
– Pairwise disambiguation system
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Memory expressions in GIMPLE

● Memory variables → !is_gimple_reg(v)
– Aggregate types → AGGREGATE_TYPE_P
– needs_to_live_in_memory

● Globals → is_global_var
● Addressables → TREE_ADDRESSABLE
● Return values of an aggregate type

– Volatiles, hard registers, non-promoted complex.

● GIMPLE memory may end up in registers

!is_gimple_reg  needs_to_live_in_memory
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Memory expressions in GIMPLE

● At most one memory load and one memory 
store per statement
– Loads only allowed on RHS of assignments
– Stores only allowed on LHS of assignments

● Gimplifier will enforce this property
● Dataflow on memory represented explictly

– Factored Use-Def (FUD) chains or “Virtual SSA”
– Requires a symbolic representation of memory
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Symbolic Representation of 
Memory

● Since we want an SSA-like representation, 
we need symbols to represent memory

● Unaliased memory
– Globals → base symbol
– Addressables → base symbol
– Aggregates → base symbol or

field tags (SFT)

● Aliased memory
– Dereferences → memory tags (SMT/NMT)
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Symbolic Representation of 
Memory

● Aliased memory referenced via pointers
● GIMPLE only allows single-level pointers

 Invalid Valid

 **p t.1 = *p

 *t.1

 *(a[3].ptr) t.1 = a[3].ptr

 *t.1
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Symbolic Representation of 
Memory

● Pointer P is associated with memory tag MT
– MT represents the set of variables pointed-to by P

● So *P is a reference to MT

if (...)
  p = &a
else
  p = &b
*p = 5

 p points-to {a, b}
 p has memory tag MT

 Interpreted as MT = 5
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Associating Memory with Symbols

● Alias analysis
– Builds points-to sets and memory tags

● Structural analysis
– Builds field tags (aka sub-variables)

● Operand scanner
– Scans memory expressions to extract tags
– Prunes alias sets based on expression structure
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Alias Analysis

● Points-to alias analysis (PTAA)
– Based on constraint graphs
– Field and flow sensitive, context insensitive
– Intra-procedural (inter-procedural in 4.2)
– Fairly precise

● Type-based analysis (TBAA)
– Based on input language rules
– Field sensitive, flow insensitive
– Very imprecise
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Alias Analysis

● Two kinds of pointers are considered
– Symbols: Points-to is flow-insensitive

● Associated to Symbol Memory Tags (SMT)
– SSA names: Points-to is flow-sensitive

● Associated to Name Memory Tags (NMT)

● Given pointer dereference *ptr
42

– If ptr
42

 has NMT, use it

– If not, fall back to SMT associated with ptr
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Alias Analysis

● After alias analysis
– Every dereferenced symbol pointer will have an 

associated SMT
– Most dereferenced SSA pointers will have an 

associated NMT
– Variables whose address escapes local function 

are considered call-clobbered → important when 
processing CALL_EXPRs
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Structural Analysis

● Separate structure fields are assigned 
distinct symbols
struct A
{
  int x;
  int y;
  int z;
};

struct A a;

● Variable a will have 3 sub-variables
{ SFT.1, SFT.2, SFT.3 }

● References to each field are 
mapped to the corresponding sub-
variable
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IL Representation

● Memory tags need to be represented but 
original expressions cannot be rewritten

● GCC's approach: virtual operators
– V = V_MAY_DEF <V>

● Symbol V is partially or potentially stored by stmt

– VUSE <V>
● Symbol V is partially or potentially loaded by stmt

– V = V_MUST_DEF <V> ← deprecated
● Symbol V is totally and definitely clobbered by stmt
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IL Representation

foo (i, a, b, *p)
{
  p =(i > 10) ? &a : &b
  *p = 3
  return a + b
}

foo (i, a, b, *p)
{
  p = (i > 10) ? &a : &b

  # a = V_MAY_DEF <a>
  # b = V_MAY_DEF <b>
  *p = 3

  # VUSE <a>
  t1 = a

  # VUSE <b>
  t2 = b

  t3 = t1 + t2
  return t3
}
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Operand Scanner

● Parses statements and expressions
– Real operands
– Virtual operands

● For aliased loads, pruning based on 
base+offset analysis of memory expression 
(access_can_touch_variable)

● Function calls receive V_MAY_DEF and/or 
VUSE for symbols in call-clobbered list
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Virtual SSA Form
● V_MAY_DEF operand 

needed to maintain 
DEF-DEF links

● They also prevent code 
movement that would 
cross stores after loads

● When alias sets grow 
too big, static grouping 
heuristic reduces 
number of virtual 
operators in aliased 
references

foo (i, a, b, *p)
{
  p_2 = (i_1 > 10) ? &a : &b

  # a_4 = V_MAY_DEF <a_11>
  a = 9;

  # a_5 = V_MAY_DEF <a_4>
  # b_7 = V_MAY_DEF <b_6>
  *p = 3;

  # VUSE <a_5>
  t1_8 = a;

  t3_10 = t1_8 + 5;
  return t3_10;
}
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Virtual SSA – Problems

● Big alias sets → Many virtual operators
– Unnecessarily detailed tracking
– Memory
– Compile time
– SSA name explosion

● Static alias grouping helps
– Reverse role of alias tags and alias sets
– Approach convoluted and too broad
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Memory SSA

● Attempts to reduce the number of virtual 
operators in the presence of big alias sets

● Main idea
– Stores to many locations create a single name
– Factored name becomes reaching definition for 

all symbols involved in store
● Reduces

– number of SSA names
– number of virtual operators
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Memory SSA

# .MEM_10 = VDEF <.MEM_0>
*p_3 = ...

# .MEM_11 = VDEF <.MEM_0>
*q_4 = ...

# b_12 = VDEF <.MEM_10>
b = ...

# .MEM_13 = VDEF <.MEM_10, b_12>
*p_3 = ...

# VUSE <.MEM_13>
t_14 = b

# VUSE <.MEM_11>
t_15 = o

p_3 points-to { a, b, c }

q_4 points-to { n, o, p }

At most one VDEF and 
one VUSE per statement

Virtual operators may refer to 
more than one operand

Factored stores create 
“sinks” that group multiple 
incoming names
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Alias analysis in RTL

● Pure query system
● Pairwise disambiguation of memory 

references
– Does store to A affect load from B?
– Mostly type-based (same predicates used in 

GIMPLE's TBAA)
● Very little information passed on from 

GIMPLE
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Alias analysis in RTL

● Some symbolic information preserved in RTL 
memory expressions
– Base + offset associated to aggregate refs
– Memory symbols

● Tracking of memory addresses by 
propagating values through registers

● Each pass is responsible for querying the 
alias system with pairs of addresses
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Alias analysis in RTL – Problems

● Big impedance between GIMPLE and RTL
– No/little information transfer
– Producers and consumers use different models
– GIMPLE → explicit representation in IL
– RTL → query-based disambiguation

● Work underway to resolve this mismatch
– Results of alias analysis exported from GIMPLE
– Adapt explicit representation to query system


