
Using GCC as a Research CompilerUsing GCC as a Research Compiler

Diego Novillo
dnovillo@redhat.com

Computer Engineering Seminar Series
North Carolina State University – October 25, 2004



2

Introduction

 GCC is a popular compiler, freely available and with 
an open development model.

 However
● Code base large (2.1 MLOC) and aging (~15 years).
● Optimization framework based on a single IL (RTL).
● Monolithic middle-end difficult to maintain and extend.

 Recent architectural changes are “dragging GCC 
kicking and screaming into the 90s”.
● New Intermediate Representations (GENERIC and 

GIMPLE).
● New SSA-based global optimization framework.
● New API for implementing new passes.



3

GCC strengths

 One of the most popular compilers.
● Very wide user base  lots of ⇒ test cases.

● Standard compiler for Linux.

● Virtually all open/free source projects use it.
 Supports a wide variety of languages: C, C++, Java, 

Fortran, Ada, ObjC, ObjC++.
 Ported from deeply embedded to mainframes.
 Active and numerous development team.
 Free Software and open development process.

So, what's wrong with it?



4

Problem 1 - Modularity

 New ports: straightforward
● Mostly driven by big embedded demand during 90s.
● Target description language flexible and well documented.

 Low-level optimizations: hard
● Too many target dependencies (some are to be expected).
● Little infrastructure support (no CFG until ~1999).

 New languages: very hard
● Front ends emit RTL almost directly.
● No clear separation between FE and BE.

 High-level optimizations: sigh
● RTL is the only IL available.
● No infrastructure to manipulate/analyse high-level constructs.



5

Problem 2 – Lack of abstraction

 Single IL used for all optimization

● RTL not suited for high-level analyses/transformations.

● Original data type information mostly lost

● Addressing modes replace variable references

C
expander

C++
expander

Java
expander

RTL
OptimizerRTL

C
trees

C++
trees

Java
trees



6

Problem 3 – Too much abstraction

 Parse trees contain complete control/data/type 
information.

 In principle, well suited for transformations closer to 
the source
● Scalar cleanups.
● Instrumentation.
● Loop transformations.

 However
● No common representation across all front ends.
● Side effects are allowed.
● Structurally complex.



7

Tree SSA

 Project started late 2000 as weekend hobby.
 Goal: SSA framework for high-level optimization.
 Approach: Evolution, not revolution → immediate 

integration.
 Features

● Clear separation between FE and BE.
● FEs generate common high-level IL that is both language 

and target independent.
● Gradual lowering of IL.
● Common API for CFG, statements, operands, aliasing.
● Optimization framework: dom-tree walker, generic 

propagator, use-def chain walker, loop discovery, etc.
● 30+ passes implemented so far.



8

GENERIC and GIMPLE - 1

 GENERIC is a common representation shared by 
all front ends
● Parsers may build their own representation for convenience.
● Once parsing is complete, they emit GENERIC.

 GIMPLE is a simplified version of GENERIC.
● 3-address representation.
● Restricted grammar to facilitate the job of optimizers.

RTL

C
genericizer

C++
genericizer

Java
genericizer

C 
trees

C++
trees

Java
trees

GENERIC
tree 

optimizersGIMPLEgimplifier

Often, FEs
just generate

GIMPLE



9

GENERIC and GIMPLE - 2

GENERIC

if (foo (a + b, c))

  c = b++ / a

endif

return c

High GIMPLE

t1 = a + b

t2 = foo (t1, c)

if (t2 != 0)

  t3 = b

  b = b + 1

  c = t3 / a

endif

return c

Low GIMPLE

t1 = a + b

t2 = foo (t1, c)

if (t2 != 0) <L1,L2>

L1:

t3 = b

b = b + 1

c = t3 / a

goto L3

L2:

L3:

return c



10

Properties of GIMPLE form

 No hidden/implicit side-effects.
 Simplified control flow

● Loops represented with if/goto.
● Lexical scopes removed (low-GIMPLE).

 Locals of scalar types are treated as “registers”.
 Globals, aliased variables and non-scalar types 

treated as “memory”.
 At most one memory load/store operation per 

statement.
● Memory loads only on RHS of assignments.
● Stores only on LHS of assignments.

 Can be incrementally lowered (2 levels currently).



11

Statement Operands - 1

 Real operands
● Non-aliased, scalar, local variables.
● Atomic references to the whole object.
● GIMPLE “registers” (may not fit in a physical register).

double x, y, z;
z = x + y;

 Virtual operands
● Globals, aliased, structures, arrays, pointer dereferences.
● Potential and/or partial references to the object.
● Distinction becomes important when building SSA form.

int x[10];
struct A y;
x[3] = y.f;



12

Statement Operands - 2

 Types of virtual operands:
● Partial, potential and/or aliased stores (V_MAY_DEF)

p = (cond) ? &a : &b
# a = V_MAY_DEF <a>

# b = V_MAY_DEF <b>

*p = x + 1

● Partial, total and/or aliased loads (V_USE)
# V_USE <s>

y = s.f

● Killing definitions of aggregates and globals (V_MUST_DEF)
# s = V_MUST_DEF <s>

s = u

# a = V_MAY_DEF <a>
# b = V_MAY_DEF <b>
foo (p)
# s = V_MAY_DEF <s>
s.f = y

# V_USE <a>
# V_USE <b>
x = *p



13

Alias Analysis - 1

 GIMPLE only has single level pointers.

 Pointer dereferences represented by artificial 
symbols ⇒ memory tags (MT).

 If p points-to x ⇒ p's tag is aliased with x.

# MT = V_MAY_DEF <MT>

*p = ...

 Since MT is aliased with x:
# x = V_MAY_DEF <x>

*p = ...



14

Alias Analysis - 2

 Type Memory Tags (TMT)

● Used in type-based and flow-insensitive points-to analyses.

● Tags are associated with symbols.

 Name Memory Tags (NMT)

● Used in flow-sensitive points-to analysis.

● Tags are associated with SSA names.

 Compiler tries to use name tags first.



15

SSA form - 1

Static Single Assignment (SSA)
● Versioning representation to 

expose data flow explicitly.

● Assignments generate new 
versions of symbols.

● Convergence of multiple 
versions generates new one 
(Φ functions).

● Two kinds of SSA forms, one 
for real another for virtual 
operands.

a_1 = 3
b_2 = 9

if (i_3 > 20)

a_3 = a_1 – 2
b_4 = b_2 + a_3

a_5 = a_1 + 1

a_6 = Φ(a_3, a_5)
b_7 = Φ(b_4, b_2)
c_8 = a_6 + b_7



16

SSA Form - 2

 Rewriting (or standard) SSA form
● Used for real operands.
● Different names for the same symbol are distinct objects.
● Optimizations may produce overlapping live ranges (OLR).

x_3 = y_2
if (x_2 > 4)
  z_5 = x_3 – 1

● Currently, program is taken out of SSA form for RTL 
generation (new symbols are created to fix OLR).

 Factored Use-Def Chains (FUD Chains)
● Used for virtual operands.
● All names refer to the same object.
● Optimizers may not produce OLR for virtual operands.



17

Implementing SSA passes - 1

 To implement a new pass
1.Create an instance of struct tree_opt_pass

2.Declare it in treepass.h
3.Sequence it in init_tree_optimization_passes

 APIs available for
 CFG: block/edge insertion, removal, dominance 

information, block iterators, dominance tree walker.
 Statements: insertion in block and edge, removal, 

iterators, replacement.
 Operands: iterators, replacement.
 Loop discovery and manipulation.
 Data dependency information (scalar evolutions 

framework).



18

Implementing SSA passes - 2

 Other available infrastructure
● Debugging dumps (-fdump-tree-...)

● Timers for profiling passes (-ftime-report)

● CFG/GIMPLE/SSA verification (--enable-checking)

● Generic value propagation engine with callbacks for 
statement and Φ node visits.

● Generic use-def chain walker.

● Support in test harness for scanning dump files looking for 
specific transformations.

● Pass manager for scheduling passes and describing 
interdependencies, attributes required and attributes 
provided.



19

Implementation Status

 Infrastructure
● Pass manager.
● CFG, statement and operand iteration/manipulation.
● SSA renaming and verification.
● Alias analysis built in the representation.
● Pointer and array bound checking (mudflap).
● Generic value propagation support.

 Optimizations
● Most traditional scalar passes: DCE, CCP, DSE, SRA, tail 

call, etc.
● Some loop optimizations (loop invariant motion, loop 

unswitching, if-conversion, loop vectorization).



20

Future Work - 1

 Short term
● Remove dominator-based optimizations.
● GVN PRE.
● Value range propagation.
● Conditional copy propagation.
● Copy and constant propagation of loads and stores.

 Medium term
● Stabilization and speedup (Bugzilla).
● Documentation.
● Tie into fledgling IPA framework.
● More loop optimizers (LNO branch).



21

Future Work - 2

 Long term
● OpenMP
● Code factoring/hoisting for size
● Various type-based optimizations

● Devirtualization
● Redundant type checking elimination
● Escape analysis for Java



22

GCC Development Model - 1

 Three main stages
● Stage 1 - Big disruptive changes.
● Stage 2 - Stabilization, minor features.
● Stage 3 - Bug fixes only (driven by bugzilla, mostly).

 At the end of stage 3, release branch is cut and 
stage 1 for next version begins.

 Major development that spans multiple releases is 
done in branches.

 Anyone with CVS access may create a 
development branch.

 Vendors create own branches from FSF release 
branches.



23

GCC Development Model - 2

 All contributors must sign FSF copyright release.
● Even if only working on branches.

 Three levels of access
● Snapshots (weekly).
● Anonymous CVS.
● Read/write CVS.

 Major work on branches encouraged
● Design/implementation discussion on public lists.
● Frequent merges from mainline to avoid code drift.
● Final contribution into mainline only at stage 1 and 

approved by maintainers.



24

Project History - 1

Late 2000

Mar 2001

Jul 2001

Jan 2002

May 2002

Jun 2002

Project starts.

CFG/Factored UD chains on C trees.

Added to ast-optimizer-branch.

Pretty printing and SIMPLE for C.

SSA-PRE.

Move to tree-ssa-20020619-branch.

SIMPLE for C++.



25

Project History - 2

Jul 2002

Aug 2002

Oct 2002

Nov 2002

Jan 2003

SSA-CCP.

Flow insensitive points-to analysis.

Mudflap and SSA-DCE.

GIMPLE and GENERIC.

Tree browser.

Replace FUD chains with rewriting 
SSA form.



26

Project History - 3

Feb 2003

Apr 2003

Jun 2003

Jul 2003

Sep 2003

Nov 2003

Statement iterators.

Out of SSA pass.

Dominator-based optimizations.

GIMPLE for Java.

Fortran 95 front end.

EH lowering.

Memory management for SSA 
names and PHI nodes.



27

Project History - 4

Nov 2003

Dec 2003

Jan 2004

Feb 2004

Scalar Replacement of Aggregates.

Statement operands API.

Pass manager.

Complex numbers lowering.

Flow-sensitive and escape analysis, 
PHI optimization, forward 
propagation, function unnesting, 
tree profiling, DSE, NRV.


