A Propagation Engine for GCC

redhat Diego Novillo

Red Hat Canada

Introduction

" Several transformations can be expressed in terms of
propagating values or attributes through the IL

* Constants
®* Copies
®* Ranges
* Type attributes
" Engine is a generalization of propagation code in SSA-CCP

" Propagation is done through simulation
® Assignments generate new values
® Values are stored in a value array indexed by SSA number

® Simulation keeps track of def-use and control edges

2 - redhat

Propagation Engine Overview

Simulates execution of statements that produce “interesting’
values.

Flow of control and data are simulated with work lists.
* CFG work list — control flow edges.

* SSA work list — def-use edges.

Values produced by an expression are associated to the
SSA name on the LHS of the expression.

User deals with values produced by statements and PHI
nodes.

Engine deals with all the mechanics of visits and iteration.

3 - redhat

Propagation Engine Details — 1

= InCCP,a, = 13 isrepresented with const _val [4] = 13

= After visiting that statement, all statements that use a, are
added to the SSA work list.
= |f a conditional jump uses a,, and the predicate can be

computed at compile-time, only the edges over which the
predicate is true are added to the CFG work list.

" Usage

ssa propagate (visit _stm, visit _phi)

4 - redhat

Propagation Engine Details — 2

= Mark all edges not-executable and seed CFG work list with
starting basic block.

= Take block B. Evaluate every statement S by calling
VisSit stnt:
a) SSA_PROP_INTERESTING: S produces an interesting value.
- Regular statement, user returns SSA name N. where value
has been stored. Def-use edges out of N are added to

SSA work list.

- If Sis a conditional jump, user code returns edge that will
always be taken.

b) SSA_PROP_NOT_INTERESTING: No edges added. S may
be visited again.

c) SSA_PROP_VARYING: Edges added. S will not be visited
again.
o - redhat

Propagation Engine Details — 3

" Once all statements have been visited, they are not visited

again unless their operands change and they have not been
marked varying.

" |f B has PHI nodes, call vi sit _phi .

* PHI nodes are always simulated.

* User code may choose to only visit arguments flowing through
executable edges:

b 11 = PH (b_9, b_10)

- redhat

Propagation Engine Details — 4

® Return values from vi si t _phi have same semantics as
visit stnt.

* PHI nodes are merging points, so they need to “intersect” all
the incoming arguments.

® Simulation terminates when both SSA and CFG work lists
are drained.

= Values should be kept in an array indexed by SSA version
number.

= After propagation, call substitute and fol dto do final
replacement in IL.

/ - redhat

Propagating Memory Operations

" For memory store/load expressions, propagated values are
associated with memory expression.

" Final substitution will replace loads with propagated values if
the associated memory expression matchegtba laad

A_3 associated with

expression. <13, Afi 9>

A 3 = V_MAY DEF <A 2>
Ali 9] = 13
[...]

VUSE 3>
X 3 = A1 _9]
Load from A_3 uses

same memory expression
as the store

8 - redhat

Value Range Propagation — 1

® Based on Patterson’s range propagation for jump prediction
* No branch probabilities (only taken/not-taken)
* Only a single range per SSA name.

® (Goal is to reduce bound checking code generated by compiler
(Java, mudflap, etc).

for (int i =0; 1 < a->len; 1++)
{
if (i <0 || 1t >= a->len)
t hrow 5;

call (a->data[i]);

}

= Conditional inside the loop is unnecessary.

9 - redhat

Value Range Propagation — 2

® Two main phases

* Range Assertions. \When a conditional executes, the taken
branch indicates what values will the SSA name(s) in the
predicate take:

1 f (a_3 > 10)

a 4 = ASSERT EXPR <a_ 3, a 3 > 10>
el se

a 5 = ASSERT EXPR <a 4, a 4 <= 10>

Now we can associate a range valuetoa 4 anda_>5.

* Range propagation. Value ranges derived from assertions and
other expressions are propagated using the propagation engine.

10 - redhat

Value Range Propagation — 3

= \Why are ASSERT EXPR necessary?

p4 =p3+1
- — = We can't tell if
T (p_4 == 0) p_4is 0 here

- p_4 can’t possibly
e =0

® \We cannot associate a known range value to p 4.
® An ASSERT EXPR after x_10 will create a new version
P 5 = ASSERT EXPR <p 4, p_4 != 0> towhich we

can pin the non-NULL range.

= A new version guarantees that the range is associated in the
right area of the code.

11 - redhat

Value Range Propagation — 4

= Two range representations

* Range [MIN, MAX] — MIN <= N <= MAX

* Anti-range ~[MIN, MAX] — N < MIN or N > MAX
m | attice has 4 states

UNDEFINED —

N

RANGE ANTI-RANGE

N

VARYING

= No upward transitions

® |nfinite values are represented using TYPE_ M N VALUE and
TYPE NMAX VALUE

12 - redhat

Value Range Propagation — 5

m Statements are evaluated by vrp_visit_stnt.
® Expression evaluation is a bit more involved than CCP.

= There is some limited symbolic processing (mostly taken out
of predicates involving more than one SSA name).

® Equivalences between names are also propagated. Multiple
ranges per name.

1f (p_4)
If (g 3 == p_4)
1f (g_3) /[* Redundant. */
= |f an expression cannot resolve into a range, it tries to derive
an anti-range before giving up.

® Scalar evolutions are used to refine ranges for statements
Inside loops.

(K] - redhat

Value Range Propagation — 6

® PHI nodes are evaluated by vrp_vi sit_phi .

= When two ranges VRO and VR1 have a non-empty
intersection, it merges into VRO U VR1.

® |t also tries to derive an anti-range before giving up (e.g.,
PHI <~[0, O], [10, 20]> is ~[0, 0]).

= Once propagation is complete
* Single valued ranges are stored in a value vector.

e Callsubstitute and fol d tofold superfluous predicates,
simplify statements using range information and do
constant/copy replacement and folding with the single valued
ranges.

14 - redhat

Conclusions

® Propagation algorithm in SSA-CCP can be abstracted out and
re-used in several other propagation problems.

® Three basic elements
* A lattice to control state transitions.
* Implement a statement visit function.
* Return 3 indicators: interesting, not interesting, varying.
* |Implement a PHI visit function.
* Same 3 indicators.
* Merge values from executable edges.
" Todo
* More than a single SSA name returned from a statement visit.
* More than one edge taken from a conditional jump visit.

135 - redhat

