
A Propagation Engine for GCC

Diego Novillo
Red Hat Canada

dnovillo@redhat.com

May 1, 2005

Abstract

Several analyses and transformations work
by propagating known values and attributes
throughout the program. In this paper, I will
describe a generalization of the propagation al-
gorithm used by SSA-CCP and its application
to copy propagation and value range propaga-
tion.

1 Introduction

Several compiler transformations are based on
the concept of propagation. Values or attributes
generated at various producing sites are prop-
agated into other sites consumers of those val-
ues. For instance, in constant propagation we
are interested in replacing loads from registers
or memory into direct constant references.

The most commonly used algorithm for con-
stant propagation in SSA form is known as
SSA-CCP (Conditional Constant Propagation)
[3]. The basic idea is very simple, constants
are propagated by simulating the execution of
the program while keeping track of constant
assignments. Since the program is in SSA
form, every constant assignment of the form
Ni = CST is recorded in an internal table in-
dexed by SSA indexi. During simulation, uses

of Ni are replaced withCST, if that yields an-
other constant value, the new constant value
is used for further propagation. The simula-
tion includes keeping track of conditional pred-
icates, if they are deemed to have a statically
computable value, the predicted branch is sim-
ulated, and the others ignored. Once simulation
stops, the values stored in the constant value
table are replaced in the program, expressions
folded and the control flow graph adjusted to
account for predicted branches.

This paper describes a generalization of this
basic simulation scheme used by SSA-CCP so
that it can be used in other transformations that
can be expressed in terms of value propaga-
tion. The paper also describes some applica-
tions of thispropagation engineto copy propa-
gation and value range propagation. Section 2
describes the propagation engine and its imple-
mentation in GCC. Section 3 describes an ex-
tension to the traditional SSA based copy prop-
agation that can also propagate copies across
conditionals. Section 4 describes an implemen-
tation of Value Range Propagation (VRP) in
GCC [2] and some infrastructure changes for
doing incremental updates to the SSA form.

1

2 Propagation Engine

Propagation is performed by simulating the ex-
ecution of every statement that produces inter-
esting values. In this context, aninteresting
value is anything that the specific implementa-
tion is looking to propagate: constants in SSA-
CCP, copies in copy propagation, range infor-
mation in VRP, etc.

Both control and data flow are simulated us-
ing two separate work lists: a list of control
flow edges (CFG work list) and a list of def-
use edges (SSA work list). Simulation proceeds
as follows:

1. Initially, every edge in the CFG is marked
not executable and the CFG work list is
seeded with all the statements in the first
executable basic block. The SSA work list
is initially empty.

2. A basic block B is taken from the
CFG work list and every statementS
in B is evaluated with a call to a user-
provided callback function (ssa_prop_

visit_stmt). This evaluation may pro-
duce 3 results:

SSA_PROP_INTERESTING: S produces a
value deemed interesting by the callback
function and that can be computed at com-
pile time. When this occurs,ssa_prop_

visit_stmt is responsible for storing the
value in a separate table and returning
a single SSA nameNi associated to that
value1.

All the statements with immediate uses of
Ni are then added to the SSA work list
so that they can also be simulated. Fur-
thermore, ifS is a conditional jump and

1In some propagation problems it may be useful to al-
low statements to return more than one interesting name.
But the current implementation is limited to just one.

ssa_prop_visit_stmt has determined
that it always takes the same edgeE, then
only the basic block reachable throughE
is added to the CFG work list.

If S is not a conditional jump, or ifS is
a conditional jump whose value cannot be
determined, all the immediate successors
of B are added to the CFG work list.

SSA_PROP_NOT_INTERESTING: State-
ment S produces nothing of interest and
does not affect any of the work lists. The
statement may be simulated again if any
of its input operands change in future iter-
ations of the simulator.

SSA_PROP_VARYING: The value pro-
duced byScannot be determined at com-
pile time and further simulation ofS is not
needed. IfS is a conditional jump, all the
immediate successors ofB are added to the
CFG work list. Once a statement yields a
varying value, it is never simulated again.

Once all the statements in basic blockB
have been simulated, its statements are not
traversed again. Statements are only vis-
ited more than once if they are added to the
SSA work list when visiting other state-
ments.

3. If block B has anyφ nodes, they are sim-
ulated with a call to the callback func-
tion ssa_prop_visit_phi . As opposed
to regular statements,φ nodes arealways
simulated every timeB is added to the
CFG work list. This is becauseφ nodes re-
ceive their inputs from different incoming
edges, so every time a new edge is marked
executable, a new argument of eachφ

node will become available for simulation.

It is up tossa_prop_visit_phi to only
considerφ arguments flowing through ex-
ecutable edges (marked with flagEDGE_

EXECUTABLE). The return value from
ssa_prop_visit_phi has the same se-
mantics described in 2.

2

Also, the evaluation ofφ nodes is differ-
ent from other statements. Aφ node is a
merging point of potentially different val-
ues from different SSA names. In general,
the resulting value of aφ node will be the
“intersection” of all the incoming values.
Each propagator will have a different con-
cept of intersection according to its own
lattice value rules.

4. Simulation terminates when both work
lists are drained.

For efficiency of implementation, the SSA
work list is split in two separate lists: one
to hold all the SSA names with a result of
SSA_PROP_VARYINGand another one to hold
those withSSA_PROP_INTERESTINGvalues.
The rationale is that the majority of names will
not actually yield interesting values, so it is
more efficient to dispose of the varying values
by simulating the affected statements as soon as
possible.

2.1 Keeping track of propagated values

As discussed earlier, during propagation two
user provided functions are called:ssa_

prop_visit_stmt and ssa_prop_visit_

phi . The propagator itself is only interested
in the three return values to determine which
blocks and statements to add in the work lists.
However, the real work is in keeping track of
propagated values. Every interesting value pro-
duced by simulation must be associated to a
single SSA nameNi , but the final values must
not be replaced in the IL until propagation has
finished. During propagation, names may get
more than a single value.

Once propagation has finished, final values
may be replaced into the IL with a call to
substitute_and_fold . The only argument

it receives is an arrayPV of propagated val-
ues indexed by SSA index. If nameNi has
final valueV then PV[i] == V. The call to
substitute_and_fold is optional, individ-
ual users are free to use the final propagated
values in any other way.

2.2 Propagating memory loads and stores

SSA names for GIMPLE registers (also known
as real names) represent a single object, so
when the propagator associates a value with a
real nameNi , uses ofNi can be replaced di-
rectly. On the other hand, an SSA name for
partial or aliased stores (also known asvirtual
names) may represent different objects or parts
of an object. For instance, given

1 # A3 = V MAY DEF <A2>

2 A[i9] = 13
3
4 [. . .]
5
6 # VUSE <A3>

7 x3 = A[i9]

Depending on the exact value ofi9 at runtime,
different locations ofA may be used to store 13.
However, both the memory store represented
by A3 at line 1 and the subsequent memory load
at line 7 are guaranteed to read the same value
because they are both loading from array slot
i9.

To support propagation in these cases, the ar-
ray of propagated values also includes a field
denoting what memory expression was used
in the store operation that created the asso-
ciated name. When simulating the memory
store toA3 in line 2, the implementation of
ssa_prop_visit_stmt in SSA-CCP will as-
sociate two things toA3, namely the value 13
and the memory expressionA[i9].

3

Once simulation has finished, the call to
substitute_and_fold will proceed as fol-
lows: On finding the VUSE forA3 at line 7, it
will compare the memory load expression on
the RHS of the assignment with the memory
store expression from line 2. In this case, both
expressions are identical so line 7 will be con-
verted tox3 = 13.

If the propagator is interested in working with
memory loads and stores, then it needs to han-
dle them in both the statement and theφ simu-
lator. For instance, given the following, admit-
tedly contrived, code snippet

1 if (. . .)
2 # A4 = V MAY DEF <A3>

3 A[i3] = 42;
4 else
5 # A5 = V MAY DEF <A3>

6 A[i3] = 42;
7 # A6 = PHI <A4, A5>

8
9 if (. . .)
10 # A7 = V MAY DEF <A6>

11 A[i3] = 42;
12 # A8 = PHI <A6, A7>

13
14 # VUSE <A8>

15 x9 = A[i3];

When visiting theφ nodeA6 at line 6, ssa_

prop_visit_phi will examine φ arguments
A4 andA5. Since they both represent stores to
the same memory expression,A[i3], it will store
value 42 and memory expressionA[i3] into A6.
Similarly, the visit toφ node A8 will assign
value 42 and memory expressionA[i3] to A8.

Notice that propagation of memory stores and
loads is necessarily slower than propagation
of GIMPLE register values because of the ad-
ditional comparison of memory expressions.
Therefore, the “store” versions of the prop-
agators are usually implemented as separate
passes.

Propagated values are represented using an ar-
ray indexed by SSA name index. Each element
of the array is of typeprop_value_t defined
in tree-ssa-propagate.h :

struct prop value d {
/* Lattice value. Each propagator is

free to define its own lattice and
this field is only meaningful while
propagating. It will not be used by
substituteand fold. */

unsigned lattice val;

/* Propagated value. */
tree value;

/* If this value is held in an SSA
name for a non-register variable,
this field holds the actual memory
reference associated with this
value. This field is taken from
the LHS of the assignment that
generated the associated SSA name. */

tree memref;
};

typedef struct prop value d prop value t;

To summarize, every propagation algorithm
should define three basic elements:

1. An array of valuesV of type prop_

value_t indexed by SSA index number.

2. Statement simulation (ssa_prop_

visit_stmt). Evaluates the expression
computed by the statement, if the state-
ment produces an interesting result, it
must be in the form of an SSA nameNi .
The produced value is stored inV[i] and
Ni is returned to the propagator engine so
that its def-use edges can be added to the
SSA work list.

If the statement is a conditional jump and
it is possible to compute which edgeE will

4

be taken,E is returned so that its destina-
tion basic block can be added to the CFG
work list. Otherwise, all outgoing edges
are added to the list.

3. φ node simulation (ssa_prop_visit_

phi). Similar to ssa_prop_visit_

stmt but the evaluation is a user-defined
merge operation of all the values coming
in through executable edges.

Once an implementation forssa_prop_

visit_stmt andssa_prop_visit_phi ex-
ists, propagation is done with a call tossa_

propagate .

3 Copy Propagation

Copy propagation in SSA form is, in princi-
ple, very simple. Given the assignmentx5 = y4,
all we need to do is traverse all the immedi-
ate uses ofx5 and replace them withy4. How-
ever, such approach will not be able to prop-
agate copies pastφ nodes, particularly those
involved in loops. Note that it may be de-
batable whether aggressive copy-propagation is
desirable, as this may have negative effects on
passes like register allocation (due to increased
register pressure), but the current implementa-
tion sticks to the simplistic metric of maximiz-
ing the number of propagated copies.

3.1 Lattice for copy propagation

Copy propagation can be described as the prob-
lem of propagating thecopy-of value of SSA
names. Given

y4 = z6;
x5 = y4;

We say that y4 is a copy-of z6 and x5 is a
copy-of y4. The problem with this represen-
tation is that there is no apparent link from
x5 to z6. So, when visiting assignments in
copy_prop_visit_stmt , we assign copy-of
values instead of the direct copy. If a vari-
able is not found to be a copy of anything else,
its copy-of value is itself. So, in this case we
would have y4 copy-of z6 and x5 copy-of z6. At
the end of propagation, uses of x5 and y4 will
be replaced with z6.

Propagation must also be able to propagate
copies exposed byφ nodes. For instance,

y4 = z6;
x5 = y4;
. . .
z9 = PHI <x5, y4>

Should result in z9 being a copy of z6. The im-
plementation ofssa_prop_visit_phi only
needs to check the copy-of values of every exe-
cutableφ -argument. If they all match, then the
LHS of theφ node (z9 in this case) can have its
copy-of value set to the common copy-of value.
Otherwise, the value of theφ node is consid-
ered varying and the copy-of value of the name
on the LHS is itself. So, when visiting theφ
node for z9, the propagator finds x5 copy-of z6
and y4 copy-of z6, which means that z9 is copy-
of z6.

The following example shows a more complex
situation where copy relations may be obfus-
cated by loops. Note that the actual visit order-
ing depends on the shape of the CFG and im-
mediate uses, the ordering used here is meant
for illustration only:

5

ENTRY

0
x_2 = x_3

...

9
...

10
...

1
x_3 = PHI <x_8(9), y_4(10)

E1 E2

...

11
...

12
...

2
y_4 = PHI <x_3(11), x_2(12)>

E3 E4

1. The first time we visit block 1, edge
E1 is marked executable, but edge E2 is
not. Therefore, the visit to x3 = φ<x8(9),
y4(10)> results in x4 copy-of x8. Since x3
has changed to a new value, the SSA edges
for x3 are added to the work list (1→ 2 and
1→ 0).

2. Visit SSA edge 1→ 2: y4 = φ <x3(11),
x2(12)>. Assume that edge E3 is marked
executable, and edge E4 is marked not ex-
ecutable. This yields y4 copy-of x8, be-
cause x3 is copy-of x8. The SSA edge
2→ 1 for y4 is added to the work list.

3. Visit SSA edge 1→ 0: x2 = x3. This yields
x2 copy-of x8. The SSA edge 0→ 2 for x2

is added to the work list.

4. Visit SSA edge 2→ 1: x3 = φ<x8(9),
y4(10)>. This time both edges E1 and E2
are marked executable. Since x3 has not
changed its copy-of value, no edges are
added to the work list.

5. Visit SSA edge 1→ 0: x2 = x3. The value
of x2 changes to copy-of x8. Therefore,
SSA edge 0→ 2 for x2 is added to the
work list.

6. Visit SSA edge 0→ 2. This time both
edges E3 and E4 are marked executable.
Since both arguments are copy-of x8, the
value of y4 doesn’t change.

7. Work lists are drained. Iteration stops.

The straightforward implementation of copy
propagation, would have needed multiple
passes to discover that x3 → x8. But the iter-
ative nature of the propagation engine prevents
that. Moreover, this kind of propagation will
only iterate over the subset of statements af-
fected, not the whole CFG.

4 Value Range Propagation (VRP)

This transformation is similar to constant prop-
agation but instead of propagating single con-
stant values, it propagates known value ranges.
GCC’s implementation is based on Patterson’s
range propagation algorithm [2]. In contrast
to Patterson’s algorithm, this implementation
does not propagate branch probabilities nor it
uses more than a single range per SSA name.
This means that the current implementation
cannot be used for branch prediction (though
adapting it would not be difficult).

The current implementation is used to remove
NULL pointer checks and redundant condi-
tional branches. For instance, the code in Fig-
ure 1 is extracted from a typical expansion of
bound checking code in languages like Java.
Notice how the bound checking done at line 3 is
not really necessary as variablei is guaranteed
to take values in the range [0, a->len].

6

struct array
{

const int len;
int *data;

};

void
doit (array *a)
{

1 for (int i = 0; i < a−>len; ++i)
2 {
3 if (i < 0 | | (i) >= (a−>len))
4 throw 5;
5 call (a−>data[i]);
6 }

}

Figure 1: Bound checking code generated by
the compiler.

Value range propagation works in two main
phases:

1. Range Assertions. Some expressions like
predicates in conditional jumps, pointer
dereferences or taking the absolute value
of a variable imply something about the
range of values that their result may
take. For instance, the expressionif (a_

5 > 10) ... implies that every use of a5
inside the if will be guaranteed to use val-
ues in the range [11, +INF].

For every expression in this category, the
compiler generates a new expression code
(ASSERT_EXPR) that describes the guar-
anteed range of values taken by the asso-
ciated name.

2. Range Propagation. OnceASSERT_EXPR

instructions have been inserted, the SSA
propagation engine is used to evaluate the
program. After propagation, every SSA
name created by the program will have a
range of values associated with it. Those
ranges are then used to eliminate condi-

tional jumps made superfluous by the new
range information.

4.1 Inserting range assertions

Certain expressions found in the code give us
information about the range of values that may
be taken by the operands involved in the expres-
sion. For instance, consider the code fragment
in Figure 2(a).

Since pointer p4 is dereferenced at line 6, we
know that the NULL test at line 8 must always
fail. Similarly, the use of a5 at line 12 is guaran-
teed to always use the constant value 10. How-
ever, we cannot guarantee thatall uses of p4
and a5 will always have a known value. For in-
stance, we have no way of knowing at compile
time whether the NULL test for p4 at line 3 will
succeed or not. Similarly, the use of a5 at line
14 does not use a known value.

The technique used by VRP to overcome this
problem is to create new SSA names to which
we can pin the range information that we want
to propagate. GCC generates a new expres-
sion calledASSERT_EXPRthat captures this in-
formation and stores it into a new SSA name.
When the compiler finds an expression that
contains interesting range information for name
Ni , it builds a predicate P describing that range
and generates the assignmentN_j = ASSERT_

EXPR <N_i, P> . This expression means that
variableNj has the same value asNi and that
value is guaranteed to make predicate P evalu-
ate totrue.

Therefore, for the code in Figure 2(a), the com-
piler inserts the assertions found in Figure 2(b).
The pointer dereference in line 6 produces the
assertion p5 = ASSERT_EXPR <p4, p4 != 0>.
With this conversion, all uses of p5 are guaran-
teed to be uses of a non-NULL pointer. Simi-

7

1 p4 = p3 + 1
2
3 if (p4 == 0)
4 return 0
5
6 x10 = *p4
7
8 if (p4 == 0)
9 return 0

10
11 if (a5 == 10)
12 return a5 + x10
13
14 return a5 − x10

(a) Before inserting assertions.

1 p4 = p3 + 1
2
3 if (p4 == 0)
4 return 0
5
6 x10 = *p4
7 p5 = ASSERT EXPR <p4, p4 != 0>

8
9 if (p5 == 0)

10 return 0
11
12 if (a5 == 10)
13 a6 = ASSERT EXPR <a5, a5 == 10>

14 return a6 + x10
15
16 return a5 − x10

(b) After inserting assertions.

Figure 2: Preparing the program for Value Range Propagation.

larly, uses of a6 are guaranteed to use the con-
stant value 102.

4.2 Incremental updates of the SSA form

Since range assertion expressions are inserted
once the program is in SSA form, it must be
updated before ranges are propagated. Each ex-
pressionNi = ASSERT_EXPR <Nj , P> creates a
mapping from the existing nameNj to the new
nameNi .

As assertions are inserted in the IL, a replace-
ment mapping is built. In the example code of
Figure 2(b), the compiler will build two map-
pings, namely p5 → p4 and a6 → a5. Once
all the assertions have been inserted, a call to
update_ssa replaces all the uses of every ex-
isting name dominated by the new name.

2For equality expressions, GCC generates straight as-
signments instead ofASSERT_EXPR, but the effect is
the same.

The mechanics of the updating process are
a little more elaborate than this, but in
essence all it does is search and replace in-
side the sub-regions of the CFG affected by
the existing names and their replacements.
More details about the replacement process
and its API are available in the GCC in-
ternal documentation (http://gcc.gnu.
org/onlinedocs/gccint/SSA.html).

4.3 Propagating ranges

The current VRP implementation uses two
range representations:

RANGE [MIN,MAX] to denote all the values
that are between MIN and MAX (i.e., N
such that MIN <= N <= MAX), and,

ANTI -RANGE ~[MIN,MAX] to denote all the
values that arenot between MIN and
MAX (i.e., N such that N < MIN or N >
MAX).

8

UNDEFINED

RANGE ANTI-RANGE

VARYING

Figure 3: Lattice values used for range propa-
gation.

As opposed to Patterson’s formulation, SSA
names cannot take multiple disjoint ranges.
This was done mainly for simplicity of imple-
mentation and compile-time performance3. But
it would be perfectly feasible to allow names to
take disjoint ranges in the future.

The range propagation lattice has 4 values as
shown in Figure 3. As is the case with other
propagation problems, the only valid transi-
tions are those that move downward in the lat-
tice. If we were to allow transitions in different
directions, we would risk infinite loops during
propagation.

Lattice values RANGE and ANTI-RANGE
are exactly the same in terms of propagation,
they both represent known range values for the
associated SSA names. The key difference is in
the semantics of the actual value when evaluat-
ing expressions.

Statements are evaluated byvrp_visit_

stmt . Two types of statements are considered
interesting by the propagator:

1. Assignments of the formNi = EXPR,
where EXPR is of an integral or pointer
type. The expression is evaluated and if it

3In general, I have found the current VRP implemen-
tation to be about 4x slower than the CCP pass.

results in a useful range, its value is asso-
ciated toNi .

Naturally, the more common sources of
useful range information areASSERT_

EXPRs, but other expressions may also
provide useful ranges. For instance, if
EXPR is 42, then we can set the range
of Ni to [42,42]. Similarly, expressions
involving names with known ranges may
yield useful information.

If scalar evolution information is available
for Ni , the computed range is augmented
with the bounds computed byNi ’s chain
of recurrences [1].

2. Conditional branches are also evaluated. If
the controlling predicate includes names
with known ranges, only the taken edges
are added to the CFG work list.

Evaluation of φ nodes uses the usual short-
cut of ignoring arguments coming through non-
executable edges. Given two arguments with
ranges VR0 and VR1:

1. If VR0 and VR1 have an empty intersec-
tion the resulting range is set to VARY-
ING. Note that if VR0 and VR1 were adja-
cent, the result could actually be the VR0⋃

VR1, but this has not been implemented
at the time of this writing.

2. Otherwise, the resulting range is VR0
⋃

VR1.

Propagation continues while names change
from one state to the other. Once all the basic
blocks have been simulated and no state tran-
sitions occur, simulation stops. The resulting
ranges are recorded in theSSA_NAME_VALUE_

RANGEfield of each SSA name and the affected
conditional expressions are folded.

9

5 Conclusion

This paper describes an abstraction of one of
the main components of a commonly used con-
stant propagation algorithm [3]. The basic
propagation and simulation done to propagate
constants in SSA-CCP can be factored out and
re-used for several other transformations that
need to propagate values globally.

We have also described two transformations
that are based on this generic propagation en-
gine. Several other applications are possible:
attributes like string lengths, variable types,
bit values, etc. may be propagated using this
technique. Some of these applications are ei-
ther planned or in the process of being imple-
mented.

When implementing a propagation pass using
this engine, three basic elements must be de-
fined:

1. A lattice value to control state transitions
for SSA names. It is important to only al-
low transitions in one direction and to limit
the depth of the lattice. State transitions
that go in different directions may throw
the propagator into an infinite loop. Also,
deep lattices take longer to converge.

In most cases, the majority of the values
will tend to be varying, so providing a fast
path to the varying state speeds up the sim-
ulation.

2. An implementation for ssa_prop_

visit_stmt . This function will receive
a statement taken from either the SSA or
the CFG work list. If evaluation produces
a new value, the nameNi for which that
value is produced must be returned so that
the propagator can add the SSA edges for
Ni to the work list.

If the statement is a conditional branch and
the controlling predicate can be computed
to a known value, the corresponding out-
going edge E should be returned. In that
case, only E will be added to the CFG
work list.

If a statement is considered varying, the
simulator will not schedule any more visits
to it.

3. An implementation for ssa_prop_

visit_phi . Think of this function as a
mergeoperation. If all theφ arguments
that flow through executable edges have
compatible values according to the lattice
then the result will be an interesting value.
Otherwise, the result should be marked
varying, in which case thisφ node will
not be visited again.

References

[1] D. Berlin, D. Edelsohn, and S. Pop. High-
Level Loop Optimizations for GCC. In
Proceedings of the 2004 GCC Summit, Ot-
tawa, Canada, June 2004.

[2] Jason R. C. Patterson. Accurate Static
Branch Prediction by Value Range Propa-
gation. InSIGPLAN Conference on Pro-
gramming Language Design and Imple-
mentation, pages 67–78, 1995.

[3] M. Wegman and K. Zadeck. Constant
propagation with conditional branches.
ACM Transactions on Programming Lan-
guages and Systems, 13(2):181–210, April
1991.

10

