
OpenMP and automatic parallelization in GCC

Diego Novillo
Red Hat Canada

dnovillo@redhat.com

Abstract

This paper describes the design and imple-
mentation of the OpenMP specification v2.5 in
GCC. The implementation supports all the lan-
guages specified in the standard (C, C++ and
Fortran), and it is generally available on any
platform that supports POSIX threads.

Emphasis is placed on the internal architecture
and, in particular, the intermediate represen-
tation, which could be used in the implemen-
tation of automatic parallelization techniques.
The paper also presents performance results on
the SPEC OMP2001 benchmark.

1 Introduction

OpenMP defines language extensions to C,
C++ and Fortran for implementing shared-
memory multi-threaded applications [1]. Com-
piler pragmas are used to define parallel re-
gions, data and work sharing attributes. A run-
time library implements the actual mechanism
for creating threads, synchronization and data
sharing.

This paper describes GOMP (GNU OpenMP),
an OpenMP implementation for GCC. There
are four main components: parser, intermediate
representation, code generation and the runtime

library (libgomp). The parser identifies and
validates the OpenMP pragmas and emits the
corresponding GENERIC representation. The
IR used to represent OpenMP is an extension to
GENERIC and GIMPLE. It serves a dual pur-
pose: as an interface to libgomp and as a code
generation target for auto-parallelization trans-
formations.

2 Parser

OpenMP defines a collection of compiler prag-
mas for C, C++ and Fortran. As such, three sep-
arate implementations were required for each
of the front ends. The new pragmas are catego-
rized in two groups: directives for specifying
parallelism and work-sharing, and clauses for
specifying data sharing and thread scheduling
properties.

Every OpenMP command starts with
#pragma omp and though the standard
defines quite a few of them, they are mostly
straightforward to recognize in a recur-
sive descent scan. The recognition code
is hooked into the standard pragma pro-
cessing code in each of the front ends:
c-parser.c:c_parser_omp_* for C,
cp/parser.c:cp_parser_omp_*
for C++ and fortran/parse.c:
parse_omp_* for Fortran.

1

Once recognized, the front ends generate
the corresponding GENERIC representa-
tion as described in the next section. Some
of the semantic analysis and validation is
also done during parsing. Structural di-
agnostics such as nesting of directives is
done after the representation is in GIM-
PLE form (omp-low.c:diagnose_
omp_structured_block_errors).
Other common diagnostics are emit-
ted during the conversion into GIMPLE
(gimplify.c:gimplify_omp_* and
gimplify.c:omp_*).

3 Intermediate Representation

Most directives and clauses have a correspond-
ing GENERIC node defined in tree.def.
The basic code generation strategy is to outline
the body of parallel regions into functions that
are used as arguments to the libgomp thread
creation routines. Data sharing is implemented
by passing the address of a local structure with
all the data items marked for sharing. Copy-in
data is passed by value, while copy-in/copy-out
data and variables that are bigger than a certain
threshold are passed by address.

To illustrate at a high-level how OpenMP pro-
grams are compiled, consider the program in
Figure 1 to compute the sum of all the thread
IDs in parallel1.

Figure 2 shows the corresponding High GIM-
PLE representation. Note that for debug-
ging convenience, the IL pretty-printer renders
OpenMP statements using the #pragma omp
syntax. Some transformations and mappings
are done during parsing and gimplification. For
instance, all predetermined or implicitly deter-
mined sharing attributes are made explicit for

1Yes, the program makes absolutely no sense.

main()
{

int sum = 0;
#pragma omp parallel

{
#pragma omp atomic
sum += omp get thread num ();

}
printf ("sum = %d\n", sum);

}

Figure 1: OpenMP program to compute a sum.

main ()
{

sum = 0;
#pragma omp parallel shared(sum)

{
D.1324 = omp get thread num ();
D.1325 = (unsigned int) D.1324;

sync fetch and add 4 (&sum, D.1325);
}

sum.0 = sum;
printf ("sum = %d\n", sum.0);

}

Figure 2: High GIMPLE form for Figure 1.

the benefit of code generation. In the case of
Figure 2, variable sum is predetermined shared.
Also, the atomic add operation is mapped into
the corresponding __sync built-in.

The next lowering stage (omp-low.c:
pass_lower_omp) sets up mappings for sat-
isfying data sharing attributes and linearizes the
bodies of the OpenMP directives. Converting
the code into linear form, requires the addition
of OMP_RETURN markers that indicate the end
of each body. This becomes important later
when the parallel work-sharing regions are ex-
panded into the corresponding libgomp calls.
In Figure 3, the OMP_RETURN at line 9 marks
the end of the parallel region starting at line 3.

Data sharing is implemented using an arti-
ficial data structure (struct .omp_data_
s) whose fields are all the variables included

2

main ()
{
1 sum = 0;
2 .omp data o.sum = ∑
3 #pragma omp parallel shared(sum)
4 .omp data i = &.omp data o;
5 D.1324 = omp get thread num ();
6 D.1325 = (unsigned int) D.1324;
7 D.1334 = .omp data i−>sum;
8 sync fetch and add 4 (D.1334, D.1325);
9 OMP RETURN

10 sum.0 = sum;
11 printf (&"sum = %d\n"[0], sum.0);
12 return;
}

Figure 3: Low GIMPLE form for Figure 1.

in data sharing clauses like shared and
copyin. This is why the front end is re-
quired to explicitly indicate all the variables
with sharing semantics. In general, vari-
ables with sharing or copy-in/copy-out seman-
tics are passed by reference while variables
with copy-in semantics are passed by value.
However, if a copy-in variable is too large,
it will also be passed by reference. This is
controlled by omp-low.c:use_pointer_
for_field.

Two local variables are created: .omp_data_
o, which is filled in with the addresses and
values of every shared variable to be sent to
the children threads (line 2 in Figure 3), and
.omp_data_i, which will hold the address
of .omp_data_o (line 4 in Figure 3). This
way, every reference to variable sum inside the
body of the omp parallel directive, is re-
written to use .omp_data_i->sum.

This seemingly convoluted rewriting is nec-
essary for outlining the body of the omp
parallel into a separate function as shown
in Figure 4. The new function main.omp_
fn.0 receives &.omp_data_o in its ar-
gument .omp_data_i. Final expansion
replaces the parallel body with calls into

main ()
{
1 # BLOCK 0
2 # PRED: ENTRY (fallthru)
3 sum = 0;
4 .omp data o.sum = ∑
5 builtin GOMP parallel start (main.omp fn.0,
6 &.omp data o, 0);
7 main.omp fn.0 (&.omp data o);
8 builtin GOMP parallel end ();
9 sum.0 = sum;

10 printf (&"sum = %d\n"[0], sum.0);
11 return;
12 # SUCC: EXIT
}

main.omp fn.0 (.omp data i)
{
13 # BLOCK 0
14 # PRED: ENTRY (fallthru)
15 D.1324 = omp get thread num ();
16 D.1325 = (unsigned int) D.1324;
17 D.1334 = .omp data i−>sum;
18 sync fetch and add 4 (D.1334, D.1325);
19 return;
20 # SUCC: EXIT
}

Figure 4: Final expansion for Figure 1.

libgomp to launch children threads and ex-
ecute main.omp_fn.0 (lines 5−8 in Figure
4).

The sequence of transformations proceeds as
follows:

1. The front end parses the OpenMP pragmas
and emits the corresponding GENERIC
statements as described in Section 3.1.

2. The gimplifier determines which variables
are used inside parallel regions and es-
tablishes mappings according to the data
sharing clauses. It also tries to re-
place omp atomic directives with cor-
responding atomic update functions.

3

3. pass_lower_omp creates the artificial
data structure to implement the data shar-
ing mappings, rewrites variables to use the
fields in struct .omp_data_s, ex-
pands some forms of synchronization and
adds OMP_RETURN markers for directive
bodies.

4. pass_lower_cf linearizes the direc-
tives and their bodies to remove the nested
property and prepare the IL for building
the flow graph.

5. pass_build_cfg builds the control
flow graph, making sure that incoming
edges into parallel regions are marked ab-
normal to avoid CFG cleanups from mak-
ing any assumptions that may violate par-
allel semantics. This is mostly a pre-
cautionary measure, as no such cleanups
are currently implemented that may cause
these problems.

One important property about
omp parallel regions is that they
are guaranteed to be single-entry, single-
exit. This is exploited by the expansion
phase.

6. pass_expand_omp runs just before the
code is put into SSA form. With the ex-
isting implementation, omp parallel
regions cannot be put into SSA form be-
cause it does not support concurrency se-
mantics.

This pass outlines the single-entry, single-
exit region of every omp parallel into
a new function and expands all the other
directives into calls to libgomp or the
corresponding GIMPLE expansion. For
instance, the computations needed to cal-
culate iteration space bounds for statically
scheduled parallel loops are expanded in-
line (Figures 5(a) and 5(b)).

3.1 Directives

Most OpenMP directives and clauses have a
corresponding GENERIC and GIMPLE code.
The exception are those that can be repre-
sented with built-in function calls (e.g. omp
barrier, omp flush) or attributes (e.g.
omp threadprivate are handled with the
standard the thread-local storage attributes).

Calls to libgomp are encoded as built-in func-
tions in omp-builtins.def. Directives
and clauses encoded as IL statements are de-
fined in tree.def. All the front ends emit the
statements and built-ins defined in these files.

The C and C++ front ends share common code
generation routines in c-omp.cwhile the For-
tran front end converts its parse trees into
GENERIC in fortran/trans-openmp.
c.

OMP_PARALLEL

Represents #pragma omp parallel
[clause1 ... clauseN]. It has
four operands:

Operand OMP_PARALLEL_BODY is valid
while in GENERIC and High GIMPLE
forms. It contains the body of code to
be executed by all the threads. During
GIMPLE lowering, this operand becomes
NULL and the body is emitted linearly af-
ter OMP_PARALLEL.

Operand OMP_PARALLEL_CLAUSES is
the list of clauses associated with the di-
rective.

Operand OMP_PARALLEL_FN is created
by pass_lower_omp, it contains the
FUNCTION_DECL for the function that
will contain the body of the parallel re-
gion.

Operand OMP_PARALLEL_DATA_ARG
is also created by pass_lower_omp. If

4

foo ()
{
#pragma omp for
for (i = 0; i <= 8; i = i + 1)
do work (i);
OMP CONTINUE
OMP RETURN
return;

}

(a) Low GIMPLE form.

foo ()
{

/* Lines 3-14 compute the iteration space for
each thread. */

3 D.1330 = builtin omp get num threads ();
4 D.1331 = (unsigned int) D.1330;
5 D.1332 = builtin omp get thread num ();
6 D.1333 = (unsigned int) D.1332;
7 D.1334 = 9 / D.1331;
8 D.1335 = D.1334 * D.1331;
9 D.1336 = D.1335 != 9;

10 D.1337 = D.1334 + D.1336;
11 D.1338 = D.1337 * D.1333;
12 D.1339 = D.1338 + D.1337;
13 D.1340 = MIN EXPR <D.1339, 9>;
14 if (D.1338 >= D.1340) goto <L3>; else goto <L0>;

/* Lines 20-25 compute the first and last value of
’i’ taking the loop increment value into
consideration. */

17 # BLOCK 1
19 <L0>:;
20 D.1341 = (int) D.1338;
21 D.1342 = D.1341 * 1;
22 i = D.1342 + 0;
23 D.1343 = (int) D.1340;
24 D.1344 = D.1343 * 1;
25 D.1345 = D.1344 + 0;

/* Lines 31-34 are the actual loop. */
28 # BLOCK 2
30 <L1>:;
31 do work (i);
32 i = i + 1;
33 D.1346 = i < D.1345;
34 if (D.1346) goto <L1>; else goto <L3>;

/* This barrier is emitted because the loop
was not marked with the ’nowait’ clause. */

37 # BLOCK 3
39 <L3>:;
40 builtin GOMP barrier ();
41 return;
}

(b) Corresponding expansion.

Figure 5: Expansion of a statically scheduled parallel loop.

5

there are shared variables to be communi-
cated to the children threads, this operand
will contain the VAR_DECL that contains
all the shared values and variables.

OMP_FOR

Represents #pragma omp for
[clause1 ... clauseN]. It
has 5 operands:

Operand OMP_FOR_BODY contains the
loop body.

Operand OMP_FOR_CLAUSES is the list
of clauses associated with the directive.

Operand OMP_FOR_INIT is the loop ini-
tialization code of the form VAR = N1.

Operand OMP_FOR_COND is the loop
conditional expression of the form VAR
{<,>,<=,>=} N2.

Operand OMP_FOR_INCR is the loop in-
dex increment of the form VAR {+=,-=
} INCR.

Operand OMP_FOR_PRE_BODY contains
side-effect code from operands OMP_
FOR_INIT, OMP_FOR_COND and OMP_
FOR_INC. These side-effects are part of
the OMP_FOR block but must be evaluated
before the start of loop body.

The loop index variable VAR must be a
signed integer variable, which is implicitly
private to each thread. Bounds N1 and N2
and the increment expression INCR are re-
quired to be loop invariant integer expres-
sions that are evaluated without any syn-
chronization. The evaluation order, fre-
quency of evaluation and side-effects are
unspecified by the standard.

OMP_SECTIONS

Represents #pragma omp sections
[clause1 ... clauseN].

Operand OMP_SECTIONS_BODY con-
tains the sections body, which in turn con-
tains a set of OMP_SECTION nodes for

each of the concurrent sections delimited
by #pragma omp section.

Operand OMP_SECTIONS_CLAUSES is
the list of clauses associated with the di-
rective.

OMP_SINGLE

Represents #pragma omp single.

Operand OMP_SINGLE_BODY contains
the body of code to be executed by a single
thread.

Operand OMP_SINGLE_CLAUSES is the
list of clauses associated with the direc-
tive.

OMP_MASTER

Represents #pragma omp master.

Operand OMP_MASTER_BODY contains
the body of code to be executed by the
master thread.

OMP_ORDERED

Represents #pragma omp ordered.

Operand OMP_ORDERED_BODY contains
the body of code to be executed in the se-
quential order dictated by the loop index
variable.

OMP_CRITICAL

Represents #pragma omp critical
[name].

Operand OMP_CRITICAL_BODY is the
critical section.

Operand OMP_CRITICAL_NAME is an
optional identifier to label the critical sec-
tion.

OMP_ATOMIC

Represents #pragma omp atomic.

Operand 0 is the address at which the
atomic operation is to be performed.

6

Operand 1 is the expression to evaluate.
The gimplifier tries three alternative code
generation strategies. Whenever possi-
ble, an atomic update built-in is used. If
that fails, a compare-and-swap loop is at-
tempted. If that also fails, a regular critical
section around the expression is used.

OMP_RETURN

This does not represent any OpenMP di-
rective, it is an artificial marker to indi-
cate the end of the body of an OpenMP.
It is used by the flow graph (tree-cfg.
c) and OpenMP region building code
(omp-low.c).

OMP_CONTINUE

Similarly, this instruction does not repre-
sent an OpenMP directive, it is used by
OMP_FOR and OMP_SECTIONS to mark
the place where the code needs to loop
to the next iteration (in the case of OMP_
FOR) or the next section (in the case of
OMP_SECTIONS).

In some cases, OMP_CONTINUE is placed
right before OMP_RETURN. But if there
are cleanups that need to occur right af-
ter the looping body, it will be emit-
ted between OMP_CONTINUE and OMP_
RETURN.

3.2 Clauses

Clause codes are defined in tree.h as sub-
codes for the main OMP_CLAUSE code. This
was necessary because of code space overflow
in tree.def. GCC does not support more
than 256 IL codes, so clauses are all repre-
sented by a main code (OMP_CLAUSE) and a
sub-code, which can be one of OMP_CLAUSE_
PRIVATE, OMP_CLAUSE_SHARED,
OMP_CLAUSE_FIRSTPRIVATE, OMP_
CLAUSE_LASTPRIVATE, OMP_CLAUSE_

COPYIN, OMP_CLAUSE_COPYPRIVATE,
OMP_CLAUSE_IF, OMP_CLAUSE_NUM_
THREADS, OMP_CLAUSE_SCHEDULE,
OMP_CLAUSE_NOWAIT, OMP_CLAUSE_
ORDERED, OMP_CLAUSE_DEFAULT, and
OMP_CLAUSE_REDUCTION.

Clauses associated with the same directive are
chained together via OMP_CLAUSE_CHAIN.
Those clauses that accept a list of variables are
restricted to exactly one, accessed with OMP_
CLAUSE_VAR. Therefore, multiple variables
under the same clause C need to be represented
as multiple C clauses chained together. This
facilitates adding new clauses during compila-
tion.

4 Auto parallelization

The new GENERIC and GIMPLE codes used
for OpenMP can also be the target for an auto
parallelization pass. Although GCC does not
currently implement such a transformation, all
the necessary data dependency and code gener-
ation tools are already present.

It is possible to emit both task and data par-
allel code using OMP_SECTIONS and OMP_
FOR respectively. Data sharing semantics can
be implemented with the corresponding OMP_
CLAUSE_* codes and synchronization needed
to preserve sequential data dependency seman-
tics may use the appropriate OMP directive or
call the libgomp routines directly.

Once parallel GIMPLE code is generated,
pass_expand_omp may be used to do the
outlining and low-level expansion work, and
schedule the new function into the call-graph.
Currently, care should be taken to take the func-
tion out of SSA form prior to these transforma-
tions because the call graph manager currently
expects functions to be in normal form. How-
ever, this limitation may be lifted in the future.

7

5 Runtime Library

The runtime library (libgomp) is essentially
a wrapper around the POSIX threads library,
with some target-specific optimizations for sys-
tems that support lighter weight implementa-
tion of certain primitives. For instance, lock-
ing primitives in some Linux targets are im-
plemented using atomic instructions and futex
system calls. To support libgomp, the target
must also implement thread-local storage.

The implementation is in gcc/libgomp and
most entry points into the library are defined as
built-in function calls inside the compiler.

5.1 Thread creation

The main entry point is GOMP_parallel_
start, which takes as arguments the func-
tion to run on each thread, a pointer to the
.omp_data_s structure as described earlier
and the number of threads to be launched. If
the specified number of threads is 0, the num-
ber of threads is computed automatically.

Once the parallel region ends, threads are
docked so that they can be re-used at a later
time. The master thread keeps executing the
code after GOMP_parallel_start, which
in this case is just another invocation to the
same function that the children threads are ex-
ecuting. A call to GOMP_parallel_end
Tears down the team and returns to the previ-
ous parallel state.

There are alternate entry points for com-
bined parallel and work-sharing constructs that
avoid one extra synchronization at the start
of the work-sharing construct. The com-
piler tries to emit these combined calls when-
ever possible (omp-low.c:determine_
parallel_type).

5.2 Synchronization

With few exceptions, most synchronization is
just a direct mapping to the underlying POSIX
routines. The exceptions are omp master
and omp single:

omp master simply blocks the thread with
a thread-id different than 0.

omp single has two alternate entry points,
with and without the copyprivate
clause. Since copyprivate is used to
broadcast the values computed inside the
omp single body, the compiler emits
a call to GOMP_single_copy_start,
which will block all the threads except
one. On return, the blocked threads
receive a pointer into a common area
which will have been filled by the thread
that entered the region. That area con-
tains the broadcast data. See omp-low.
c:lower_omp_single_copy for de-
tails.

5.3 Work sharing

Every scheduling variant of omp for has
been implemented in the library. There are
three main functions, GOMP_loop_*_start
to initialize the loop bounds, GOMP_loop_*_
next to get the next chunk of iteration space to
work on, and GOMP_loop_*_end to finalize
the parallel loop.

The omp sections construct is simpler.
The compiler transforms the construct into a
switch statement using the section id as in-
dex. The call to GOMP_sections_start
sets up the work-share construct and record the
number of sections found in the body. GOMP_
sections_next returns the next section id
to execute. Once all the sections have been exe-
cuted, a barrier after the switch synchronizes
all the threads.

8

Benchmark ICC 9.0 GCC 4.2.0 % Diff

wupwise 227.0 224.0 -1.3%
swim 140.0 138.0 -1.4%
mgrid 146.0 140.0 -4.1%
applu 154.9 147.3 -4.9%
equake 267.2 264.5 -1.0%
apsi 179.0 179.0 0.0%
fma3d 139.0 133.0 -4.3%
ammp 140.0 153.0 9.3%

Mean 169.11 167.31 -1.1%

wupwise
swim

mgrid
applu

equake
apsi

fma3d
ammp

Mean

0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

200.0

225.0

250.0

275.0

SPEC OMP2001 (-O2)

ICC 9.0

GCC 4.2.0

Benchmarks

S
c
o

re

Figure 6: SPEC OMP2001 scores for GCC and ICC on a dual processor EM64T. Higher scores
indicate better performance.

9

6 Implementation Status

At the time of this writing, the implementation
is feature complete for all the three languages
defined in the standard and scheduled to be re-
leased with GCC 4.2. It has also been ported to
the GCC 4.1 version included in Fedora Core
5.

The focus over the next few months will be bug
fixing and performance tuning. No firm plans
exist yet for an auto-parallelization pass as de-
scribed in the previous section, but it should
not be an exceedingly complex project to im-
plement.

To assess the performance of the code gener-
ated by GCC, I used SPEC OMP2001 on a dual
processor Intel EM64T at 3.4Ghz with 2Gb of
RAM, running Fedora Core Linux 3. The com-
pilers tested were GCC v4.2.0 20060406 (ex-
perimental) and ICC v9.0 20050914.

As shown in Figure 6, the performance differ-
ences between the two compilers are negligible.
GCC has a slight edge in some tests and vice
versa, but the geometric mean is almost identi-
cal.

Both compilers used the standard -O2 opti-
mization level. Note that the goal was to get
a rough idea on how the GCC implementation
compares to other compilers. This was not a
valid SPEC run as neither GCC nor ICC were
able to run all the benchmarks without errors.
GCC failed to execute gafort and art, while
ICC failed to build galgel and failed to exe-
cute gafort. Tests that failed in either com-
piler were taken out of the chart.

References

[1] OpenMP Architecture Review Board.
Openmp application program in-
terface v2.5. May 2005. http:

//www.openmp.org/drupal/
mp-documents/spec25.pdf.

10

