
Parallel Programming with GCC
Diego Novillo

dnovillo@redhat.com

Red Hat Canada

Gelato Itanium Conference and Expo
San Jose, California, April 2006

2

Introduction
 GCC supports four concurrency models

HardHardEasyEasy

MPIMPIOpenMPOpenMPVectorizationVectorizationSchedulingScheduling

✔ automatic
✔ no user control
✔ not intrusive

✔ automaticautomatic
✔ compiler optioncompiler option
✔ not intrusivenot intrusive

✔ manualmanual
✔ compiler directivescompiler directives
✔ somewhat intrusivesomewhat intrusive

Ease of use not necessarily related to speedups!Ease of use not necessarily related to speedups!

✔ manualmanual
✔ special librariesspecial libraries
✔ very intrusivevery intrusive

3

Vectorization - 1

 Perform multiple array computations at once
 GCC currently works only on loops
 Two distinct phases

● Analysis → high-level
● Transformation → low-level

 Successful analysis depends on
● Data dependency analysis
● Alias analysis
● Pattern matching

 Successful transformation will depend on hardware
capabilities

 Performance gains only expected on loop intensive code

4

Vectorization - 2
for (n = 0; n < 2e8; n++)

 for (i = 0; i < 16; i++)

 a[i] = b[i];

Vectorized (12 secs)Original (21 secs)

 mov ar.lc = 7
.L2:
 .mmi
 adds r15 = 16, r12
 add r14 = r15, r16
 add r15 = r16, r36
 .mmi
 adds r16 = 8, r16
 ldf8 f6 = [r14]
 nop 0
 .mib
 stf8 [r15] = f6
 nop 0
 br.cloop.sptk.few .L2

 mov ar.lc = 15
.L2:
 .mmi
 adds r15 = 16, r12
 add r14 = r15, r16
 add r15 = r36, r16
 .mmi
 adds r16 = 4, r16
 ldfs f6 = [r14]
 nop 0
 .mib
 stfs [r15] = f6
 nop 0
 br.cloop.sptk.few .L2

5

Vectorization - 3

 Enable vectorizer
$ gcc -ftree-vectorize -O2 prog.c

 Requires additional -m flags on some architectures
 Speedups depend greatly on

● Regular, compute-intensive loops
● Data size and alignment
● “Simple” code patterns in inner loops
● Aliasing

 Debugging
● -fdump-tree-vect enables dump
● -ftree-vectorizer-verbose=[0-7] controls verbosity

6

Parallel Programming

 Parallelism explicitly controlled by user
 Different mental model

● Look for macro parallelism (tasks)
● Tasks mapped to threads or processes
● Profitable granularity of task dictated by target
● Tasks have shared or private data

 Parallel programming environment provides
● Task creation
● Data sharing
● Synchronization

 Two main environments
● Shared memory
● Message passing

7

OpenMP

 Language extensions for shared memory concurrency
 Supports C, C++ and Fortran
 Designed around compiler pragmas

● Directives specify parallelism and work sharing
● Clauses specify attributes for data sharing and scheduling

 Based on master-slave model

Master
thread

fork parallel
region

(5 threads)

join

8

Programming Model

 Directives → #pragma omp (C, C++) or !$omp (Fortran)
 Compiler replaces directives with calls to runtime library

(libgomp)
 Library offers API for querying/controlling threads and

scheduling
 Runtime controls in program or environment variables

● OMP_NUM_THREADS, OMP_SCHEDULE, OMP_DYNAMIC,
OMP_NESTED

 Programmer responsible for synchronization and sharing
● Sharing with variables marked with sharing clauses
● Synchronization specified with synchronization directives

 Original intent: Same program runs sequential or in parallel
● Compiler switch enables/disables the pragmas
● Invalid sequential programs are possible too: parallel algorithms

9

OpenMP Hello World

#include <omp.h>

main()

{

#pragma omp parallel

{
printf (“[%d] Hello\n”, omp_get_thread_num());

}

}

$ gcc -fopenmp -o hello hello.c

$ export OMP_NUM_THREADS=4

$./hello

[2] Hello

[3] Hello

[0] Hello

[1] Hello

fork

join

Optional

Master thread

10

Worksharing - 1

 Distributes pieces of work to threads in region
 Worksharing does not create new threads
 Most common distribution mechanism: loop iterations

#pragma omp parallel

#pragma omp for

for (i = 0; i < 16; i++)
a[i] = i;

 Each thread executes a subset of the iteration space
 Scheduling determines distribution of iteration subsets
 No synchronization, other than implicit barrier at the end

0­3 4­7 8­11 12­15

11

Worksharing - 2

 #pragma omp for
 data/loop parallelism
 Partitions iteration space with schedule(type, chunk)
 chunk is optional. Number of iterations for each thread.
 type may be

● static Static round-robin distribution by thread ID
● dynamic Iterations on a first-come, first-served queue
● guided Same as dynamic but varying chunk size
● runtime Taken from environment var OMP_SCHEDULE.

 Dynamic and guided schedules achieve better load balancing
 Runtime useful to avoid re-compiling.

12

Worksharing - 3

 #pragma omp sections
● cobegin/coend style parallelism
● Sections are delimited with #pragma omp section
● Each section is executed by a different thread

#pragma omp parallel sections

{
#pragma omp section

t1();
#pragma omp section

t2();
#pragma omp section

t3();

}

Can be combined

13

Worksharing - 4

 #pragma omp workshare
● Distributes execution of Fortran FORALL, WHERE and array

assignments
● Only valid in Fortran
● Distribution of units of work is up to the compiler

integer :: a (10), b (10)
!$omp parallel workshare
 a = 10
 b = 20
 a(1:5) = max (a(1:5), b(1:5))
!$omp end parallel workshare

14

Data Sharing

 Sharing specified at variable level
 Three sharing methods

● Shared
#pragma omp parallel shared (x,y)

● Semi-private
#pragma omp parallel firstprivate (x,y)
#pragma omp parallel lastprivate (x,y)
#pragma omp single copyprivate (x)

● Private
#pragma omp parallel private (x,y)

 Various rules to determine sharing properties.
● Globals and heap allocated variables are shared
● Locals declared inside a directive body are private
● Loop iteration variables for parallel loops are private

15

Synchronization

 With few exceptions user is ultimately responsible for
preventing data races using OpenMP directives

 #pragma omp single
● Only one thread in thread team enters block.

 #pragma omp master
● Only master thread enters block.

 #pragma omp critical
● Mutual exclusion.

 #pragma omp barrier
 #pragma omp atomic

● Atomic storage update: x op= expr, x++, x­­
 #pragma omp ordered

● Used in loops, threads enter in loop iteration order.

16

Message Passing

 Completely library based
 No special compiler support required
 The “assembly language” of parallel programming

● Ultimate control
● Ultimate pain when things go wrong
● Computation/communication ratio must be high

 Message Passing Interface (MPI) most popular model
 Separate address spaces

● It may also be used on a shared memory machine
 Heavy weight processes
 Communication explicit via network messages

● User responsible for marshalling, sending and receiving

17

Benchmark ICC 9.0 GCC 4.2.0 % Diff
wupwise 227.0 224.0 -1.3%
swim 140.0 138.0 -1.4%
mgrid 146.0 140.0 -4.1%
applu 154.9 147.3 -4.9%
equake 267.2 264.5 -1.0%
apsi 179.0 179.0 0.0%
fma3d 139.0 133.0 -4.3%
ammp 140.0 153.0 9.3%

Mean 169.11 167.31 -1.1%

wupwise
swim

mgrid
applu

equake
apsi

fma3d
ammp

Mean

0.0

25.0

50.0

75.0

100.0

125.0

150.0

175.0

200.0

225.0

250.0

275.0

SPEC OMP2001 (-O2)

ICC 9.0

GCC 4.2.0

Benchmarks

S
co

re

Status and Future Work

 Vectorization support started in 4.0 series
 OpenMP will be released with 4.2 later this year
 Implementation available in Fedora Core 5
 Automatic parallelism planned using OpenMP infrastructure

18

 GCC supports full spectrum of common parallel models

 There is no “right” choice
● Granularity of work main indicator
● Evaluate complexity ↔ speedup trade-offs

 Complex parallel applications may benefit from combined
approach

 Algorithms matter!
● Good sequential algorithms may make bad parallel ones

Conclusions

HardHardEasyEasy

MPIMPIOpenMPOpenMPVectorizationVectorizationSchedulingScheduling

