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Yesterday
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Brief History

● GCC 1 (1987)
– Inspired on Pastel compiler (Lawrence Livermore Labs)
– Only C
– Translation done one statement at a time

● GCC 2 (1992)
– Added C++
– Added RISC architecture support
– Closed development model challenged
– New features difficult to add
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Brief History

● EGCS (1997)
– Fork from GCC 2.x
– Many new features: Java, Chill, numerous embedded 

ports, new scheduler, new optimizations, integrated 
libstdc++

● GCC 2.95 (1999)
– EGCS and GCC2 merge into GCC
– Type based alias analysis
– Chill front end
– ISO C99 support
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Brief History

● GCC 3 (2001)
– Integrated libjava
– Experimental SSA form on RTL
– Functions as trees (crucial feature)

● GCC 4 (2005)
– Internal architecture overhaul (Tree SSA)
– Fortran 95
– Automatic vectorization



January 28, 2007 6
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Growing pains
● Monolithic architecture
● Front ends too close to back ends
● Little or no internal interfaces
● RTL inadequate for high level optimizations

RTL Assembly
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Tree SSA Design

● Goals
– Separate FE from BE
– Evolution vs Revolution

● Needed IL layers
– Two ILs to choose from: Tree and RTL
– Moving down the abstraction ladder seemed simpler

● Started with FUD chains over C Trees
– Every FE had its own variant of Trees
– Complex grammar, side-effects, language dependencies
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Tree SSA Design
● SIMPLE (McGill University)

– Used same tree data structure

– Simplified and restrictive grammar
– Started with C and followed with C++
– Later renamed to GIMPLE
– Still not enough

● GENERIC
– Target IL for every FE
– No grammar restrictions
– Only required to remove language dependencies
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Tree SSA Design
● FUD-chains unpopular

– No overlapping live ranges (OLR)
– Limits some transformations (e.g., copy propagation)

● Replaced FUD-chains with rewriting form
– Kept FUD-chains for memory expressions (Virtual SSA)
– Needed out-of-SSA pass to cope with OLR

● Several APIs
– CFG, statement, operand manipulation
– Pass manager
– Call graph manager
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Today
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Major Features
● De-facto system compiler for Linux
● No central planning (controlled chaos)
● Supports

– All major languages
– An insane number of platforms

● SSA-based high-level global optimizer
● Automatic vectorization
● OpenMP support
● Pointer checking instrumentation for C/C++
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Major Issues

● Popularity
– Caters to a wide variety of user communities
– Moving in different directions at once

● No central planning (controlled chaos)
● Not enough engineering cycles
● Risk of “featuritis”

– Too many flags
– Too many passes

● Warnings depending on optimization levels
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A Few Current Projects
● RTL cleanups
● OpenMP
● Interprocedural analysis framework
● GIMPLE tuples
● Link-time optimization
● Memory SSA
● Sharing alias information across ILs
● Register allocation
● Scheduling
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RTL Cleanups

● Removal of duplicate functionality
– Mostly done
– Goal is for RTL to only handle low-level issues

● Dataflow analysis
– Substitute ad-hoc flow analysis with a generic DF solving 

framework
– Increased accuracy.  Allows more aggressive 

transformations
– Support for incremental dataflow information
– Backends need taming
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OpenMP

● Pragma-based annotations to specify parallelism
● New hand-written recursive-descent parser eased 

pragma recognition
● GIMPLE extended to support concurrency
● Supports most platforms with thread support
● Available now in Fedora Core 6's compiler
● Official release will be in GCC 4.2
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OpenMP
#include <omp.h>

main()

{

  #pragma omp parallel

  printf (“[%d] Hello\n”, omp_get_thread_num());

}

$ gcc -fopenmp -o hello hello.c
$ ./hello
[2] Hello
[3] Hello
[0] Hello ← Master thread
[1] Hello

$ gcc -o hello hello.c
$ ./hello
[0] Hello
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Interprocedural Analysis

● Keep the whole call-graph in SSA form
● Increased precision for inter-procedural analyses 

and transformations
● Unify internal APIs to support inter/intra procedural 

analysis
– No special casing in pass manager
– Improve callgraph facilities

● Challenges
– Memory consumption
– Privatization of global attributes
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GIMPLE Tuples

● GIMPLE shares the tree data structure with FE

● Too much redundant information
● A separate tuple-like data structure provides

– Increased separation with FE
– Memory savings
– Potential compile time improvements

● Challenges
– Shared infrastructure (e.g. fold())

– Compile time increase due to conversion
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Link Time Optimzation

● Ability to stream IL to support IPO across
– Multiple compilation units
– Multiple languages

● Streamed IL representation treated like any other 
language

● Challenges
– Original language must be represented explicitly
– Complete compiler state must be preserved
– Conflicting flags used in different modules



January 28, 2007 25

Alias Analysis
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Overview

● GIMPLE represents alias information explicitly
● Alias analysis is just another pass

– Artificial symbols represent memory expressions (virtual 
operands)

– FUD-chains computed on virtual operands → Virtual SSA

● Transformations may prove a symbol non-
addressable
– Promoted to GIMPLE register
– Requires another aliasing pass
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Symbolic Representation of 
Memory

● Pointer P is associated with memory tag MT

– MT represents the set of variables pointed-to by P

● So *P is a reference to MT

if (...)
  p = &a
else
  p = &b
*p = 5

 p points-to {a, b}
 p has memory tag MT

 Interpreted as MT = 5
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Associating Memory with Symbols

● Alias analysis
– Builds points-to sets and memory tags

● Structural analysis
– Builds field tags (sub-variables)

● Operand scanner
– Scans memory expressions to extract tags
– Prunes alias sets based on expression structure
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Alias Analysis

● Points-to alias analysis (PTAA)
– Based on constraint graphs
– Field and flow sensitive, context insensitive
– Intra-procedural (inter-procedural in 4.2)
– Fairly precise

● Type-based analysis (TBAA)
– Based on input language rules
– Field sensitive, flow insensitive
– Very imprecise
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Alias Analysis

● Two kinds of pointers are considered
– Symbols: Points-to is flow-insensitive

● Associated to Symbol Memory Tags (SMT)
– SSA names: Points-to is flow-sensitive

● Associated to Name Memory Tags (NMT)

● Given pointer dereference *ptr
42

– If ptr
42

 has NMT, use it

– If not, fall back to SMT associated with ptr
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Structural Analysis

● Separate structure fields are assigned distinct 
symbols

struct A
{
  int x;
  int y;
  int z;
};

struct A a;

● Variable a will have 3 sub-variables
{ SFT.1, SFT.2, SFT.3 }

● References to each field are 
mapped to the corresponding sub-
variable
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IL Representation

foo (i, a, b, *p)
{
  p =(i > 10) ? &a : &b
  *p = 3
  return a + b
}

foo (i, a, b, *p)
{
  p = (i > 10) ? &a : &b

  # a = VDEF <a>
  # b = VDEF <b>
  *p = 3

  # VUSE <a>
  t1 = a

  # VUSE <b>
  t2 = b

  t3 = t1 + t2
  return t3
}
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Virtual SSA Form
● VDEF operand needed 

to maintain DEF-DEF 
links

● They also prevent code 
movement that would 
cross stores after loads

● When alias sets grow 
too big, static grouping 
heuristic reduces 
number of virtual 
operators in aliased 
references

foo (i, a, b, *p)
{
  p_2 = (i_1 > 10) ? &a : &b

  # a_4 = VDEF <a_11>
  a = 9;

  # a_5 = VDEF <a_4>
  # b_7 = VDEF <b_6>
  *p = 3;

  # VUSE <a_5>
  t1_8 = a;

  t3_10 = t1_8 + 5;
  return t3_10;
}
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Virtual SSA – Problems

● Big alias sets → Many virtual operators
– Unnecessarily detailed tracking
– Memory
– Compile time
– SSA name explosion

● Need new representation that can
– Degrade gracefully as detail level grows
– Or, better, no degradation with highly detailed information
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Memory SSA

● New representation of aliasing information
● Big alias sets → Many virtual operators

– Unnecessarily detailed tracking
– Memory, compile time, SSA name explosion

● Main idea
– Stores to many locations create a single name
– Factored name becomes reaching definition for all 

symbols involved in store
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Memory SSA

# .MEM_10 = VDEF <.MEM_0>
*p_3 = ...

# .MEM_11 = VDEF <.MEM_0>
*q_4 = ...

# b_12 = VDEF <.MEM_10>
b = ...

# .MEM_13 = VDEF <.MEM_10, b_12>
*p_3 = ...

# VUSE <.MEM_13>
t_14 = b

# VUSE <.MEM_11>
t_15 = o

p_3 points-to { a, b, c }

q_4 points-to { n, o, p }

At most one VDEF and 
one VUSE per statement

Virtual operators may refer to 
more than one operand

Factored stores create 
“sinks” that group multiple 
incoming names
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Memory SSA

● Challenges
– Overlapping live ranges create a problem for some passes
– Requires more detailed tracking in SSA rewriting
– Dynamic association between Φ nodes and symbols

● Memory partitions
– Have more than one .MEM object
– Create static associations between symbols
– Association is independent from alias relations
– Heuristics control partitioning
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Tomorrow
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Future Work

● Wide variety of projects
● A small sample

– Plug-in support
– Scheduling
– Register pressure reduction
– Register allocation
– Incremental compilation
– Dynamic compilation
– Dynamic optimization pipeline
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Plug-in Support

● Extensibility mechanism to allow 3rd party tools
● Wrap some internal APIs for external use
● Allow loading of external shared modules

– Loaded module becomes another pass
– Compiler flag determines location

● Versioning scheme prevents mismatching
● Useful for

– Static analysis
– Experimenting with new transformations
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Scheduling

● Several concurrent efforts targetting 4.3 and 4.4
– Schedule over larger regions for increased parallelism
– Most target IA64, but benefit all architectures

● Enhanced selective scheduling
● Treegion scheduling
● Superblock scheduling
● Improvements to swing modulo scheduling
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Register Allocation
● Several efforts over the years
● Complex problem

– Many different targets to handle
– Interactions with reload and scheduling

● YARA (Yet Another Register Allocator)
– Experimented with several algorithms

● IRA (Integrated Register Allocator)
– Priority coloring, Chaitin-Briggs and region based
– Expected in 4.4
– Currently works on x86, x86-64,  ppc, IA64, sparc, s390
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Register pressure reduction

● SSA may cause excessive register pressure
– Pathological cases → ~800 live registers
– RA battle lost before it begins

● Short term project to cope with RA deficiencies
● Implement register pressure reduction in GIMPLE 

before going to RTL
– Pre-spilling combined with live range splitting
– Load rematerialization
– Tie RTL generation into out-of-ssa to allow better 

instruction selection for spills and rematerialization
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Dynamic compilation

● Delay compilation until runtime (JIT)
– Emit bytecodes
– Implement virtual machine with optimizing transformations

● Leverage on existing infrastructure (LLVM, LTO)
● Not appropriate for every case
● Challenges

– Still active research
– Different models/costs for static and dynamic compilers
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Incremental Compilation

● Speed up edit-compile-debug cycle
● Speeds up ordinary compiles by compiling a given 

header file “once”
● Incremental changes fed to compiler daemon
● Incremental linking as well
● Side effects

– Refactoring
– Cross-referencing
– Compile-while-you-type (e.g., Eclipse)
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Dynamic Optimization Pipeline

● Phase ordering not optimal for every case
● Current static ordering difficult to change
● Allow external re-ordering

– Ultimate control
– Allow experimenting with different orderings

– Define -On based on common orderings

● Problems
– Probability of finding bugs increases
– Enormous search space


