GCC

Yesterday, Today and Tomorrow
redhat

Diego Novillo
dnovillo@redhat.com

Red Hat Canada

Yesterday

Januar y 28, 2007 ‘ redhat

Brief History

. GCC 1 (1987)

- Inspired on Pastel compiler (Lawrence Livermore Labs)
- Only C
— Translation done one statement at a time

- GCC 2 (1992)

- Added C++

- Added RISC architecture support

— Closed development model challenged
- New features difficult to add

January 28, 2007 ‘ redhat

Brief History

. EGCS (1997)

- Fork from GCC 2.x

- Many new features: Java, Chill, numerous embedded
ports, new scheduler, new optimizations, integrated
libstdc++

. GCC 2.95 (1999)

- EGCS and GCC2 merge into GCC
— Type based alias analysis

= Chill front end

- 1SO C99 support

January 28, 2007 ‘ redhat

Brief History

- GCC 3 (2001)

- Integrated libjava
- Experimental SSA form on RTL
— Functions as trees (crucial feature)

. GCC 4 (2005)

- Internal architecture overhaul (Tree SSA)
- Fortran 95
— Automatic vectorization

January 28, 2007 ‘ redhat

2,200,000
2,000,000
1,800,000 -
1,600,000
1,400,000 -

1,200,000

LOC

1,000,000 -
800,000 ~

600,000 -
C++

GCC Growth'

libstdc++

400,000 - \
200,000 -

Java >//

Tree SSA
Fortran 95

e

Objective C++

/‘

Iiij /

/

» Total

| | Runtime
|| Front Ends
B Compiler
|| Ports

0 - \

1.21 1.38
1988 1990

January 28, 2007

20 281
1992 1998

199

EGCS 295 3.0 3.1

4.0

4.1

8 1999 2001 2002 2005 2006
Releases

' generated using David A. Wheeler's 'SLOCCount'.

Q redhat

Core Compiler Growth'

700,000
Tree SSA
600,000
500,000
400,000
@)
O
-1 .
300,000 I Compiler
| Ports
200,000
100,000
m R W
121 1.38 281 EGCS 2.95
1988 1990 1992 1998 1998 1999 2001 2002 2005 2006
Releases

' generated using David A. Wheeler's 'SLOCCount'.

January 28, 2007 ‘ redhat

Growing pains

* Monolithic architecture

Front ends too close to back ends
e Little or no internal interfaces

RTL inadequate for high level optimizations
Front End Back End

Assembly

January 28, 2007 ‘ redhat

Tree SSA Design

e Goals

- Separate FE from BE
— Evolution vs Revolution

* Needed IL layers

— Two ILs to choose from: Tree and RTL
- Moving down the abstraction ladder seemed simpler

e Started with FUD chains over C Trees

- Every FE had its own variant of Trees
- Complex grammar, side-effects, language dependencies

January 28, 2007 ‘ redhat

Tree SSA Design

» SIMPLE (McGill University)

- Used same t r ee data structure

- Simplified and restrictive grammar
— Started with C and followed with C++
- Later renamed to GIMPLE

— Still not enough
* GENERIC

- Target IL for every FE
— No grammar restrictions
— Only required to remove language dependencies

January 28, 2007 ‘ redhat

10

Tree SSA Design

* FUD-chains unpopular

— No overlapping live ranges (OLR)
- Limits some transformations (e.g., copy propagation)

* Replaced FUD-chains with rewriting form

- Kept FUD-chains for memory expressions (Virtual SSA)
- Needed out-of-SSA pass to cope with OLR

e Several APIs

- CFG, statement, operand manipulation
- Pass manager
— Call graph manager

January 28, 2007 ‘ redhat

11

Private
development

Activity Level

Tree SSA Timeline

EH Lowering
SRA
Statement lists
Pass manager

Operands API
Nov/03
Rewriting SSA

Statement iterators Fortran 95
Out of SSA GIMPLE for Java Complex lowering

DOM Flow-sensitive PTA
Escape analysis
/ PHI opt
CCP/DCE forward prop
Points-to analysis unnesting
Mudflap profiling

| GIMPLE and GENERIC Jan/03 DSE
Jul/03 NRV
PRE
tree-ssa-20020619-branch
SIMPLE for C++
Mainline
i SIMPLE for C Sep/02
Pretty printer it Merge
ast-optimizer- /
branch 13/May/2004
SSAon C trees 19/Jun/02
,\
Oct/00 Jul/01 Jan/02
‘ redhat 0

January 28, 2007

January 28, 2007

Today

Q redhat

13

Compiler pipeline

Front End Middle End Back End

GENERIC GIMPLE @
| Inter RTL |
||Procedural Optimizer |
‘ Optimizer * ‘
| sgA Final Code =
. Optimizer Generation |
o —
Call Graph /7\ Pcs
Manager Manager

January 28, 2007 ‘ redhat

Major Features

* De-facto system compiler for Linux
* No central planning (controlled chaos)
* Supports

— All major languages
— An insane number of platforms

* SSA-based high-level global optimizer

* Automatic vectorization

* OpenMP support

* Pointer checking instrumentation for C/C++

January 28, 2007 ‘ redhat

15

Major Issues

* Popularity
— Caters to a wide variety of user communities

- Moving in different directions at once

* No central planning (controlled chaos)
* Not enough engineering cycles
* Risk of “featuritis”

- Too many flags
- Too many passes

* Warnings depending on optimization levels

January 28, 2007 ‘ redhat

16

Longer Release Cycles

Release cycle has almost / 4 Estimated (Feb/07)

400

doubled since 3.1

350 /
300 //‘/

250 ‘//

2
o 200
- || Stage 3
150 ¢ Release
100
50~
0 a
3.1 3.3 3.4 4.0 4.1 4.2
2002 2003 2004 2005 2006 2007
Release

January 28, 2007 . redhat

A Few Current Projects

* RTL cleanups

* OpenMP

* |nterprocedural analysis framework
* GIMPLE tuples

* Link-time optimization

* Memory SSA

* Sharing alias information across ILs
* Register allocation

* Scheduling

January 28, 2007 ‘ redhat

18

RTL Cleanups

* Removal of duplicate functionality

- Mostly done
— Goal is for RTL to only handle low-level issues

* Dataflow analysis

— Substitute ad-hoc flow analysis with a generic DF solving
framework

- Increased accuracy. Allows more aggressive
transformations

— Support for incremental dataflow information
- Backends need taming

January 28, 2007 ‘ redhat

19

OpenMP

* Pragma-based annotations to specify parallelism

* New hand-written recursive-descent parser eased
pragma recognition

* GIMPLE extended to support concurrency

* Supports most platforms with thread support
* Available now in Fedora Core 6's compiler

* Official release will be in GCC 4.2

January 28, 2007 ‘ redhat

20

OpenMP

#include <omp.h>
main ()
{
#fpragma omp parallel
printf (“[%d] Hello\n”, omp get thread num());

$ gcc -fopenmp -o hello hello.c $ gcc -o hello hello.c
$./hello $./hello

[2] Hello [0] Hello

[3] Hello

[0] Hello <« Master thread

[1] Hello

January 28, 2007 ‘ redhat

Interprocedural Analysis

* Keep the whole call-graph in SSA form

* |Increased precision for inter-procedural analyses
and transformations

* Unify internal APIs to support inter/intra procedural
analysis
— No special casing in pass manager
— Improve callgraph facilities

* Challenges

— Memory consumption

- Privatization of global attributes
January 28, 2007 ‘ redhat

22

GIMPLE Tuples

* GIMPLE shares the t r ee data structure with FE

* Too much redundant information
* A separate tuple-like data structure provides

— Increased separation with FE
- Memory savings
- Potential compile time improvements

Challenges

— Shared infrastructure (e.g. f ol d())

— Compile time increase due to conversion

January 28, 2007 ‘ redhat

23

Link Time Optimzation

* Ability to stream IL to support IPO across
— Multiple compilation units

— Multiple languages

* Streamed IL representation treated like any other
language

* Challenges

— Original language must be represented explicitly
- Complete compiler state must be preserved
- Conflicting flags used in different modules

January 28, 2007 @ rednat 94

Januar y 28, 2007

Alias Analysis

Q redhat

25

Overview

* GIMPLE represents alias information explicitly
* Alias analysis is just another pass

= Atrtificial symbols represent memory expressions (virtual
operands)

- FUD-chains computed on virtual operands — Virtual SSA

* Transformations may prove a symbol non-
addressable

- Promoted to GIMPLE register
- Requires another aliasing pass

January 28, 2007 @ redhat 26

Symbolic Representation of
Memory

* Pointer P is associated with memory tag Ml

— M represents the set of variables pointed-to by P

e So*Pis areference to Ml

f (...) p points-to {a, b}

p = &a p has memory tag MI
el se

p = &b
P =5 > Interpreted as MT = 5

January 28, 2007 ‘ redhat

27

Associating Memory with Symbols

* Alias analysis

— Builds points-to sets and memory tags
e Structural analysis

— Builds field tags (sub-variables)
* Operand scanner

— Scans memory expressions to extract tags
— Prunes alias sets based on expression structure

January 28, 2007 ‘ redhat

28

Alias Analysis

* Points-to alias analysis (PTAA)

— Based on constraint graphs

- Field and flow sensitive, context insensitive
- Intra-procedural (inter-procedural in 4.2)

- Fairly precise

* Type-based analysis (TBAA)
— Based on input language rules

- Field sensitive, flow insensitive
- Very imprecise

January 28, 2007 ‘ redhat

29

Alias Analysis

* Two kinds of pointers are considered

— Symbols: Points-to is flow-insensitive

* Associated to Symbol Memory Tags (SMT)
- SSA names: Points-to is flow-sensitive

* Associated to Name Memory Tags (NMT)

« Given pointer dereference *ptr i

- If ptr, has NMT, use it
- If not, fall back to SMT associated with pt r

January 28, 2007 ‘ redhat

30

Structural Analysis

* Separate structure fields are assigned distinct

symbols

struct A

{ int x: Variable a will have 3 sub-variables
i nt y;} { SFT.1, SFT.2, SFT.3 }
Nt z; > .

1 * References to each field are

| mapped to the corresponding sub-
variable

struct A a;

January 28, 2007 @ redhat 11

|lL Representation

foo (i, a, b, *p)

{
p=(i >10) ? & : &b
f0o (i a, b, *p) # a = VDEF <a>
{ & D TP # b = VDEF
o =(i > 10) ? & : &b p =3
*p:3
return a + b # VUSE <a>
} tl = a
VUSE
t2 = b

t3 =tl1 +1t2
return t3

}

January 28, 2007 ‘ redhat

Virtual SSA Form

* VDEF operand needed

to maintain DEF-DEF
links

* They also prevent code
movement that would
cross stores after loads

* When alias sets grow
too big, static grouping
heuristic reduces
number of virtual
operators in aliased
references

January 28, 2007

foo (i, a, b, *p)

p2=(i_1>10) ? & :

VDEF <a_ 11>

VDEF <a_ 4>
= VDEF <b_ 6>

t3 10 =t1 8 + 5;
return t3 10;
}

‘ redhat

&b

33

Virtual SSA — Problems

* Big alias sets — Many virtual operators

— Unnecessarily detailed tracking
- Memory
- Compile time
- SSA name explosion
* Need new representation that can

— Degrade gracefully as detail level grows
= Or, better, no degradation with highly detailed information

January 28, 2007 @ redhat 14

Memory SSA

* New representation of aliasing information

* Big alias sets — Many virtual operators

- Unnecessarily detailed tracking
- Memory, compile time, SSA name explosion

* Main idea
— Stores to many locations create a single name

— Factored name becomes reaching definition for all
symbols involved in store

January 28, 2007 ‘ redhat

35

Memory SSA

fp' g/Ei/l_lO = VDEF <. MEM 0> 0 3 points-to {a, b, ¢ }
_MEM 11 = VDEF <. MEM 0> g_4 points-to{n, o, p }
*q 4 = ...

At most one VDEF and

#'b_12 = VDEF <. NEM 10>
— - one VUSE per statement

b = ...

¢NMEM 13 = VDEF <. MEM 10,¢b_123 .
= = = Virtual operators may refer to

*P_3 - R

more than one operand
VUSE <{MEM 13>
t 14 = b

Factored stores create
“sinks” that group multiple
Incoming names

VUSE <. MEM 11>
t 15 =0

January 28, 2007 @ redhat 16

Memory SSA

* Challenges

— Overlapping live ranges create a problem for some passes
— Requires more detailed tracking in SSA rewriting
— Dynamic association between @ nodes and symbols

* Memory partitions
- Have more than one .MEM object
— Create static associations between symbols

— Association is independent from alias relations
— Heuristics control partitioning

January 28, 2007 @ redhat 17

Januar y 28, 2007

Tomorrow

Q redhat

38

Future Work

* Wide variety of projects

* A small sample

January 28, 2007

Plug-in support

Scheduling

Register pressure reduction
Register allocation
Incremental compilation
Dynamic compilation
Dynamic optimization pipeline

‘ redhat

39

Plug-in Support

* Extensibility mechanism to allow 3™ party tools
* Wrap some internal APIs for external use
* Allow loading of external shared modules

- Loaded module becomes another pass
— Compiler flag determines location

* Versioning scheme prevents mismatching

Useful for

- Static analysis
— Experimenting with new transformations

January 28, 2007 ‘ redhat

Scheduling

* Several concurrent efforts targetting 4.3 and 4.4

— Schedule over larger regions for increased parallelism
- Most target IA64, but benefit all architectures

* Enhanced selective scheduling

* Treegion scheduling

* Superblock scheduling

* Improvements to swing modulo scheduling

January 28, 2007 ‘ redhat

41

Register Allocation

* Several efforts over the years
* Complex problem

- Many different targets to handle
- Interactions with reload and scheduling

YARA (Yet Another Register Allocator)

— Experimented with several algorithms

* |RA (Integrated Register Allocator)

= Priority coloring, Chaitin-Briggs and region based
- Expectedin4.4
— Currently works on x86, x86-64, ppc, |IA64, sparc, s390

January 28, 2007 ‘ redhat

42

Register pressure reduction

* SSA may cause excessive register pressure

- Pathological cases — ~800 live registers
- RA battle lost before it begins

* Short term project to cope with RA deficiencies

* Implement register pressure reduction in GIMPLE
before going to RTL

- Pre-spilling combined with live range splitting
- Load rematerialization

— Tie RTL generation into out-of-ssa to allow better
instruction selection for spills and rematerialization

January 28, 2007 @ redhat 4

Dynamic compilation

* Delay compilation until runtime (JIT)

— Emit bytecodes
— Implement virtual machine with optimizing transformations

* Leverage on existing infrastructure (LLVM, LTO)
* Not appropriate for every case
* Challenges

— Still active research
— Different models/costs for static and dynamic compilers

January 28, 2007 ‘ redhat

44

Incremental Compilation

* Speed up edit-compile-debug cycle

* Speeds up ordinary compiles by compiling a given
neader file “once”

* |Incremental changes fed to compiler daemon

* Incremental linking as well
* Side effects

— Refactoring
— Cross-referencing
- Compile-while-you-type (e.g., Eclipse)

January 28, 2007 ‘ redhat

45

Dynamic Optimization Pipeline

* Phase ordering not optimal for every case
* Current static ordering difficult to change
* Allow external re-ordering

- Ultimate control
- Allow expernimenting with different orderings
- Define - On based on common orderings

* Problems

— Probability of finding bugs increases
- Enormous search space

January 28, 2007 ‘ redhat

46

