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Brief History

. GCC 1 (1987)

- Inspired on Pastel compiler (Lawrence Livermore Labs)
- Only C
— Translation done one statement at a time

- GCC 2 (1992)

- Added C++

- Added RISC architecture support

— Closed development model challenged
- New features difficult to add
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Brief History

. EGCS (1997)

- Fork from GCC 2.x

- Many new features: Java, Chill, numerous embedded
ports, new scheduler, new optimizations, integrated
libstdc++

. GCC 2.95 (1999)

- EGCS and GCC2 merge into GCC
— Type based alias analysis

= Chill front end

- 1SO C99 support
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Brief History

- GCC 3 (2001)

- Integrated libjava
- Experimental SSA form on RTL
— Functions as trees (crucial feature)

. GCC 4 (2005)

- Internal architecture overhaul (Tree SSA)
- Fortran 95
— Automatic vectorization
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Growing pains

* Monolithic architecture

Front ends too close to back ends
e Little or no internal interfaces

RTL inadequate for high level optimizations
Front End Back End

Assembly
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Tree SSA Design

e Goals

- Separate FE from BE
— Evolution vs Revolution

* Needed IL layers

— Two ILs to choose from: Tree and RTL
- Moving down the abstraction ladder seemed simpler

e Started with FUD chains over C Trees

- Every FE had its own variant of Trees
- Complex grammar, side-effects, language dependencies

January 28, 2007 ‘ redhat



Tree SSA Design

» SIMPLE (McGill University)

- Used same t r ee data structure

- Simplified and restrictive grammar
— Started with C and followed with C++
- Later renamed to GIMPLE

— Still not enough
* GENERIC

- Target IL for every FE
— No grammar restrictions
— Only required to remove language dependencies
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Tree SSA Design

* FUD-chains unpopular

— No overlapping live ranges (OLR)
- Limits some transformations (e.g., copy propagation)

* Replaced FUD-chains with rewriting form

- Kept FUD-chains for memory expressions (Virtual SSA)
- Needed out-of-SSA pass to cope with OLR

e Several APIs

- CFG, statement, operand manipulation
- Pass manager
— Call graph manager
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Compiler pipeline
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Major Features

* De-facto system compiler for Linux
* No central planning (controlled chaos)
* Supports

— All major languages
— An insane number of platforms

* SSA-based high-level global optimizer

* Automatic vectorization

* OpenMP support

* Pointer checking instrumentation for C/C++
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Major Issues

* Popularity
— Caters to a wide variety of user communities

- Moving in different directions at once

* No central planning (controlled chaos)
* Not enough engineering cycles
* Risk of “featuritis”

- Too many flags
- Too many passes

* Warnings depending on optimization levels
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Longer Release Cycles
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A Few Current Projects

* RTL cleanups

* OpenMP

* |nterprocedural analysis framework
* GIMPLE tuples

* Link-time optimization

* Memory SSA

* Sharing alias information across ILs
* Register allocation

* Scheduling
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RTL Cleanups

* Removal of duplicate functionality

- Mostly done
— Goal is for RTL to only handle low-level issues

* Dataflow analysis

— Substitute ad-hoc flow analysis with a generic DF solving
framework

- Increased accuracy. Allows more aggressive
transformations

— Support for incremental dataflow information
- Backends need taming
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OpenMP

* Pragma-based annotations to specify parallelism

* New hand-written recursive-descent parser eased
pragma recognition

* GIMPLE extended to support concurrency

* Supports most platforms with thread support
* Available now in Fedora Core 6's compiler

* Official release will be in GCC 4.2
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OpenMP

#include <omp.h>
main ()
{
#fpragma omp parallel
printf (“[%d] Hello\n”, omp get thread num());

$ gcc -fopenmp -o hello hello.c $ gcc -o hello hello.c
$ ./hello $ ./hello

[2] Hello [0] Hello

[3] Hello

[0] Hello <« Master thread

[1] Hello
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Interprocedural Analysis

* Keep the whole call-graph in SSA form

* |Increased precision for inter-procedural analyses
and transformations

* Unify internal APIs to support inter/intra procedural
analysis
— No special casing in pass manager
— Improve callgraph facilities

* Challenges

— Memory consumption

- Privatization of global attributes
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GIMPLE Tuples

* GIMPLE shares the t r ee data structure with FE

* Too much redundant information
* A separate tuple-like data structure provides

— Increased separation with FE
- Memory savings
- Potential compile time improvements

Challenges

— Shared infrastructure (e.g. f ol d() )

— Compile time increase due to conversion
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Link Time Optimzation

* Ability to stream IL to support IPO across
— Multiple compilation units

— Multiple languages

* Streamed IL representation treated like any other
language

* Challenges

— Original language must be represented explicitly
- Complete compiler state must be preserved
- Conflicting flags used in different modules

January 28, 2007 @ rednat 94



Januar y 28, 2007

Alias Analysis

Q redhat

25



Overview

* GIMPLE represents alias information explicitly
* Alias analysis is just another pass

= Atrtificial symbols represent memory expressions (virtual
operands)

- FUD-chains computed on virtual operands — Virtual SSA

* Transformations may prove a symbol non-
addressable

- Promoted to GIMPLE register
- Requires another aliasing pass
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Symbolic Representation of
Memory

* Pointer P is associated with memory tag Ml

— M represents the set of variables pointed-to by P

e So*Pis areference to Ml

f (...) p points-to {a, b}

p = &a p has memory tag MI
el se

p = &b
P =5 > Interpreted as MT = 5
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Associating Memory with Symbols

* Alias analysis

— Builds points-to sets and memory tags
e Structural analysis

— Builds field tags (sub-variables)
* Operand scanner

— Scans memory expressions to extract tags
— Prunes alias sets based on expression structure
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Alias Analysis

* Points-to alias analysis (PTAA)

— Based on constraint graphs

- Field and flow sensitive, context insensitive
- Intra-procedural (inter-procedural in 4.2)

- Fairly precise

* Type-based analysis (TBAA)
— Based on input language rules

- Field sensitive, flow insensitive
- Very imprecise
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Alias Analysis

* Two kinds of pointers are considered

— Symbols: Points-to is flow-insensitive

* Associated to Symbol Memory Tags (SMT)
- SSA names: Points-to is flow-sensitive

* Associated to Name Memory Tags (NMT)

« Given pointer dereference *ptr i

- If ptr, has NMT, use it
- If not, fall back to SMT associated with pt r
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Structural Analysis

* Separate structure fields are assigned distinct

symbols

struct A

{ int x:  Variable a will have 3 sub-variables
i nt y;} { SFT.1, SFT.2, SFT.3 }
Nt z; > .

1 * References to each field are

| mapped to the corresponding sub-
variable

struct A a;
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|lL Representation

foo (i, a, b, *p)

{
p=(i >10) ? & : &b
f0o (i a, b, *p) # a = VDEF <a>
{ & D TP # b = VDEF <b>
o =(i > 10) ? & : &b p =3
*p:3
return a + b # VUSE <a>
} tl = a
# VUSE <b>
t2 = b

t3 =tl1 +1t2
return t3

}
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Virtual SSA Form

* VDEF operand needed

to maintain DEF-DEF
links

* They also prevent code
movement that would
cross stores after loads

* When alias sets grow
too big, static grouping
heuristic reduces
number of virtual
operators in aliased
references
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foo (i, a, b, *p)

p2=(i_1>10) ? & :

VDEF <a_ 11>

VDEF <a_ 4>
= VDEF <b_ 6>

t3 10 =t1 8 + 5;
return t3 10;
}
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Virtual SSA — Problems

* Big alias sets — Many virtual operators

— Unnecessarily detailed tracking
- Memory
- Compile time
- SSA name explosion
* Need new representation that can

— Degrade gracefully as detail level grows
= Or, better, no degradation with highly detailed information
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Memory SSA

* New representation of aliasing information

* Big alias sets — Many virtual operators

- Unnecessarily detailed tracking
- Memory, compile time, SSA name explosion

* Main idea
— Stores to many locations create a single name

— Factored name becomes reaching definition for all
symbols involved in store
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Memory SSA

fp' g/Ei/l_lO = VDEF <. MEM 0> 0 3 points-to {a, b, ¢ }
# _MEM 11 = VDEF <. MEM 0> g_4 points-to{n, o, p }
*q 4 = ...

At most one VDEF and

#'b_12 = VDEF <. NEM 10>
— - one VUSE per statement

b = ...

# ¢NMEM 13 = VDEF <. MEM 10,¢b_123 .
= = = Virtual operators may refer to

*P_3 - R

more than one operand
# VUSE <{MEM 13>
t 14 = b

Factored stores create
“sinks” that group multiple
Incoming names

# VUSE <. MEM 11>
t 15 =0
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Memory SSA

* Challenges

— Overlapping live ranges create a problem for some passes
— Requires more detailed tracking in SSA rewriting
— Dynamic association between @ nodes and symbols

* Memory partitions
- Have more than one .MEM object
— Create static associations between symbols

— Association is independent from alias relations
— Heuristics control partitioning
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Future Work

* Wide variety of projects

* A small sample

January 28, 2007

Plug-in support

Scheduling

Register pressure reduction
Register allocation
Incremental compilation
Dynamic compilation
Dynamic optimization pipeline
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Plug-in Support

* Extensibility mechanism to allow 3™ party tools
* Wrap some internal APIs for external use
* Allow loading of external shared modules

- Loaded module becomes another pass
— Compiler flag determines location

* Versioning scheme prevents mismatching

Useful for

- Static analysis
— Experimenting with new transformations
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Scheduling

* Several concurrent efforts targetting 4.3 and 4.4

— Schedule over larger regions for increased parallelism
- Most target IA64, but benefit all architectures

* Enhanced selective scheduling

* Treegion scheduling

* Superblock scheduling

* Improvements to swing modulo scheduling
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Register Allocation

* Several efforts over the years
* Complex problem

- Many different targets to handle
- Interactions with reload and scheduling

YARA (Yet Another Register Allocator)

— Experimented with several algorithms

* |RA (Integrated Register Allocator)

= Priority coloring, Chaitin-Briggs and region based
- Expectedin4.4
— Currently works on x86, x86-64, ppc, |IA64, sparc, s390
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Register pressure reduction

* SSA may cause excessive register pressure

- Pathological cases — ~800 live registers
- RA battle lost before it begins

* Short term project to cope with RA deficiencies

* Implement register pressure reduction in GIMPLE
before going to RTL

- Pre-spilling combined with live range splitting
- Load rematerialization

— Tie RTL generation into out-of-ssa to allow better
instruction selection for spills and rematerialization
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Dynamic compilation

* Delay compilation until runtime (JIT)

— Emit bytecodes
— Implement virtual machine with optimizing transformations

* Leverage on existing infrastructure (LLVM, LTO)
* Not appropriate for every case
* Challenges

— Still active research
— Different models/costs for static and dynamic compilers
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Incremental Compilation

* Speed up edit-compile-debug cycle

* Speeds up ordinary compiles by compiling a given
neader file “once”

* |Incremental changes fed to compiler daemon

* Incremental linking as well
* Side effects

— Refactoring
— Cross-referencing
- Compile-while-you-type (e.g., Eclipse)
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Dynamic Optimization Pipeline

* Phase ordering not optimal for every case
* Current static ordering difficult to change
* Allow external re-ordering

- Ultimate control
- Allow expernimenting with different orderings
- Define - On based on common orderings

* Problems

— Probability of finding bugs increases
- Enormous search space

January 28, 2007 ‘ redhat

46



