
GCC
Yesterday, Today and Tomorrow

Diego Novillo
dnovillo@redhat.com

Red Hat Canada

2nd HiPEAC GCC Tutorial
Ghent, Belgium

January 2007

January 28, 2007 2

Yesterday

January 28, 2007 3

Brief History

● GCC 1 (1987)
– Inspired on Pastel compiler (Lawrence Livermore Labs)
– Only C
– Translation done one statement at a time

● GCC 2 (1992)
– Added C++
– Added RISC architecture support
– Closed development model challenged
– New features difficult to add

January 28, 2007 4

Brief History

● EGCS (1997)
– Fork from GCC 2.x
– Many new features: Java, Chill, numerous embedded

ports, new scheduler, new optimizations, integrated
libstdc++

● GCC 2.95 (1999)
– EGCS and GCC2 merge into GCC
– Type based alias analysis
– Chill front end
– ISO C99 support

January 28, 2007 5

Brief History

● GCC 3 (2001)
– Integrated libjava
– Experimental SSA form on RTL
– Functions as trees (crucial feature)

● GCC 4 (2005)
– Internal architecture overhaul (Tree SSA)
– Fortran 95
– Automatic vectorization

January 28, 2007 6

GCC Growth1

1.21
1988

1.38
1990

 2.0
1992

2.8.1
1998

EGCS
1998

2.95
1999

 3.0
2001

 3.1
2002

 4.0
2005

 4.1
2006

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

Total

Runtime

Front Ends

Compiler

Ports

Releases

LO
C

libstdc++
Java

libjava

Ada

C++

Tree SSA
Fortran 95

Objective C++

1 generated using David A. Wheeler's 'SLOCCount'.

January 28, 2007 7

1.21
1988

1.38
1990

 2.0
1992

2.8.1
1998

EGCS
1998

2.95
1999

 3.0
2001

 3.1
2002

 4.0
2005

 4.1
2006

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

Compiler

Ports

Releases

LO
C

Core Compiler Growth1

Tree SSA

1 generated using David A. Wheeler's 'SLOCCount'.

January 28, 2007 8

Growing pains
● Monolithic architecture
● Front ends too close to back ends
● Little or no internal interfaces
● RTL inadequate for high level optimizations

RTL Assembly

Front End Back End

C

Fortran

Java

C++

January 28, 2007 9

Tree SSA Design

● Goals
– Separate FE from BE
– Evolution vs Revolution

● Needed IL layers
– Two ILs to choose from: Tree and RTL
– Moving down the abstraction ladder seemed simpler

● Started with FUD chains over C Trees
– Every FE had its own variant of Trees
– Complex grammar, side-effects, language dependencies

January 28, 2007 10

Tree SSA Design
● SIMPLE (McGill University)

– Used same tree data structure

– Simplified and restrictive grammar
– Started with C and followed with C++
– Later renamed to GIMPLE
– Still not enough

● GENERIC
– Target IL for every FE
– No grammar restrictions
– Only required to remove language dependencies

January 28, 2007 11

Tree SSA Design
● FUD-chains unpopular

– No overlapping live ranges (OLR)
– Limits some transformations (e.g., copy propagation)

● Replaced FUD-chains with rewriting form
– Kept FUD-chains for memory expressions (Virtual SSA)
– Needed out-of-SSA pass to cope with OLR

● Several APIs
– CFG, statement, operand manipulation
– Pass manager
– Call graph manager

January 28, 2007 12

Oct/00 Jul/01
 Jan/02

19/Jun/02

Sep/02

Jan/03

 Jul/03

Nov/03

13/May/2004

A
ct

iv
ity

 L
ev

el

Tree SSA Timeline

Fortran 95
GIMPLE for Java

DOM

ast-optimizer-
branch

SSA on C trees

Private
development

SIMPLE for C
Pretty printer

PRE
tree-ssa-20020619-branch

SIMPLE for C++

CCP/DCE
Points-to analysis

Mudflap
GIMPLE and GENERIC

Rewriting SSA
Statement iterators

Out of SSA

EH Lowering
SRA

Statement lists
Pass manager
Operands API

Complex lowering
Flow-sensitive PTA

Escape analysis
PHI opt

forward prop
unnesting
profiling

DSE
NRV

Mainline
Merge

January 28, 2007 13

Today

January 28, 2007 14

Compiler pipeline

GENERIC GIMPLE RTL Assembly

Front End Middle End Back End

SSA
Optimizer

Inter
Procedural
Optimizer

C

Fortran

Java

C++

RTL
Optimizer

Final Code
Generation

Call Graph
Manager

Pass
Manager

January 28, 2007 15

Major Features
● De-facto system compiler for Linux
● No central planning (controlled chaos)
● Supports

– All major languages
– An insane number of platforms

● SSA-based high-level global optimizer
● Automatic vectorization
● OpenMP support
● Pointer checking instrumentation for C/C++

January 28, 2007 16

Major Issues

● Popularity
– Caters to a wide variety of user communities
– Moving in different directions at once

● No central planning (controlled chaos)
● Not enough engineering cycles
● Risk of “featuritis”

– Too many flags
– Too many passes

● Warnings depending on optimization levels

January 28, 2007 17

Longer Release Cycles

 3.1
2002

 3.3
2003

 3.4
2004

 4.0
2005

 4.1
2006

 4.2
2007

0

50

100

150

200

250

300

350

400

Stage 3

Release

Release

D
ay

s

Estimated (Feb/07)Release cycle has almost
doubled since 3.1

January 28, 2007 18

A Few Current Projects
● RTL cleanups
● OpenMP
● Interprocedural analysis framework
● GIMPLE tuples
● Link-time optimization
● Memory SSA
● Sharing alias information across ILs
● Register allocation
● Scheduling

January 28, 2007 19

RTL Cleanups

● Removal of duplicate functionality
– Mostly done
– Goal is for RTL to only handle low-level issues

● Dataflow analysis
– Substitute ad-hoc flow analysis with a generic DF solving

framework
– Increased accuracy. Allows more aggressive

transformations
– Support for incremental dataflow information
– Backends need taming

January 28, 2007 20

OpenMP

● Pragma-based annotations to specify parallelism
● New hand-written recursive-descent parser eased

pragma recognition
● GIMPLE extended to support concurrency
● Supports most platforms with thread support
● Available now in Fedora Core 6's compiler
● Official release will be in GCC 4.2

January 28, 2007 21

OpenMP
#include <omp.h>

main()

{

 #pragma omp parallel

 printf (“[%d] Hello\n”, omp_get_thread_num());

}

$ gcc -fopenmp -o hello hello.c
$./hello
[2] Hello
[3] Hello
[0] Hello ← Master thread
[1] Hello

$ gcc -o hello hello.c
$./hello
[0] Hello

January 28, 2007 22

Interprocedural Analysis

● Keep the whole call-graph in SSA form
● Increased precision for inter-procedural analyses

and transformations
● Unify internal APIs to support inter/intra procedural

analysis
– No special casing in pass manager
– Improve callgraph facilities

● Challenges
– Memory consumption
– Privatization of global attributes

January 28, 2007 23

GIMPLE Tuples

● GIMPLE shares the tree data structure with FE

● Too much redundant information
● A separate tuple-like data structure provides

– Increased separation with FE
– Memory savings
– Potential compile time improvements

● Challenges
– Shared infrastructure (e.g. fold())

– Compile time increase due to conversion

January 28, 2007 24

Link Time Optimzation

● Ability to stream IL to support IPO across
– Multiple compilation units
– Multiple languages

● Streamed IL representation treated like any other
language

● Challenges
– Original language must be represented explicitly
– Complete compiler state must be preserved
– Conflicting flags used in different modules

January 28, 2007 25

Alias Analysis

January 28, 2007 26

Overview

● GIMPLE represents alias information explicitly
● Alias analysis is just another pass

– Artificial symbols represent memory expressions (virtual
operands)

– FUD-chains computed on virtual operands → Virtual SSA

● Transformations may prove a symbol non-
addressable
– Promoted to GIMPLE register
– Requires another aliasing pass

January 28, 2007 27

Symbolic Representation of
Memory

● Pointer P is associated with memory tag MT

– MT represents the set of variables pointed-to by P

● So *P is a reference to MT

if (...)
 p = &a
else
 p = &b
*p = 5

 p points-to {a, b}
 p has memory tag MT

 Interpreted as MT = 5

January 28, 2007 28

Associating Memory with Symbols

● Alias analysis
– Builds points-to sets and memory tags

● Structural analysis
– Builds field tags (sub-variables)

● Operand scanner
– Scans memory expressions to extract tags
– Prunes alias sets based on expression structure

January 28, 2007 29

Alias Analysis

● Points-to alias analysis (PTAA)
– Based on constraint graphs
– Field and flow sensitive, context insensitive
– Intra-procedural (inter-procedural in 4.2)
– Fairly precise

● Type-based analysis (TBAA)
– Based on input language rules
– Field sensitive, flow insensitive
– Very imprecise

January 28, 2007 30

Alias Analysis

● Two kinds of pointers are considered
– Symbols: Points-to is flow-insensitive

● Associated to Symbol Memory Tags (SMT)
– SSA names: Points-to is flow-sensitive

● Associated to Name Memory Tags (NMT)

● Given pointer dereference *ptr
42

– If ptr
42

 has NMT, use it

– If not, fall back to SMT associated with ptr

January 28, 2007 31

Structural Analysis

● Separate structure fields are assigned distinct
symbols

struct A
{
 int x;
 int y;
 int z;
};

struct A a;

● Variable a will have 3 sub-variables
{ SFT.1, SFT.2, SFT.3 }

● References to each field are
mapped to the corresponding sub-
variable

January 28, 2007 32

IL Representation

foo (i, a, b, *p)
{
 p =(i > 10) ? &a : &b
 *p = 3
 return a + b
}

foo (i, a, b, *p)
{
 p = (i > 10) ? &a : &b

 # a = VDEF <a>
 # b = VDEF
 *p = 3

 # VUSE <a>
 t1 = a

 # VUSE
 t2 = b

 t3 = t1 + t2
 return t3
}

January 28, 2007 33

Virtual SSA Form
● VDEF operand needed

to maintain DEF-DEF
links

● They also prevent code
movement that would
cross stores after loads

● When alias sets grow
too big, static grouping
heuristic reduces
number of virtual
operators in aliased
references

foo (i, a, b, *p)
{
 p_2 = (i_1 > 10) ? &a : &b

 # a_4 = VDEF <a_11>
 a = 9;

 # a_5 = VDEF <a_4>
 # b_7 = VDEF <b_6>
 *p = 3;

 # VUSE <a_5>
 t1_8 = a;

 t3_10 = t1_8 + 5;
 return t3_10;
}

January 28, 2007 34

Virtual SSA – Problems

● Big alias sets → Many virtual operators
– Unnecessarily detailed tracking
– Memory
– Compile time
– SSA name explosion

● Need new representation that can
– Degrade gracefully as detail level grows
– Or, better, no degradation with highly detailed information

January 28, 2007 35

Memory SSA

● New representation of aliasing information
● Big alias sets → Many virtual operators

– Unnecessarily detailed tracking
– Memory, compile time, SSA name explosion

● Main idea
– Stores to many locations create a single name
– Factored name becomes reaching definition for all

symbols involved in store

January 28, 2007 36

Memory SSA

.MEM_10 = VDEF <.MEM_0>
*p_3 = ...

.MEM_11 = VDEF <.MEM_0>
*q_4 = ...

b_12 = VDEF <.MEM_10>
b = ...

.MEM_13 = VDEF <.MEM_10, b_12>
*p_3 = ...

VUSE <.MEM_13>
t_14 = b

VUSE <.MEM_11>
t_15 = o

p_3 points-to { a, b, c }

q_4 points-to { n, o, p }

At most one VDEF and
one VUSE per statement

Virtual operators may refer to
more than one operand

Factored stores create
“sinks” that group multiple
incoming names

January 28, 2007 37

Memory SSA

● Challenges
– Overlapping live ranges create a problem for some passes
– Requires more detailed tracking in SSA rewriting
– Dynamic association between Φ nodes and symbols

● Memory partitions
– Have more than one .MEM object
– Create static associations between symbols
– Association is independent from alias relations
– Heuristics control partitioning

January 28, 2007 38

Tomorrow

January 28, 2007 39

Future Work

● Wide variety of projects
● A small sample

– Plug-in support
– Scheduling
– Register pressure reduction
– Register allocation
– Incremental compilation
– Dynamic compilation
– Dynamic optimization pipeline

January 28, 2007 40

Plug-in Support

● Extensibility mechanism to allow 3rd party tools
● Wrap some internal APIs for external use
● Allow loading of external shared modules

– Loaded module becomes another pass
– Compiler flag determines location

● Versioning scheme prevents mismatching
● Useful for

– Static analysis
– Experimenting with new transformations

January 28, 2007 41

Scheduling

● Several concurrent efforts targetting 4.3 and 4.4
– Schedule over larger regions for increased parallelism
– Most target IA64, but benefit all architectures

● Enhanced selective scheduling
● Treegion scheduling
● Superblock scheduling
● Improvements to swing modulo scheduling

January 28, 2007 42

Register Allocation
● Several efforts over the years
● Complex problem

– Many different targets to handle
– Interactions with reload and scheduling

● YARA (Yet Another Register Allocator)
– Experimented with several algorithms

● IRA (Integrated Register Allocator)
– Priority coloring, Chaitin-Briggs and region based
– Expected in 4.4
– Currently works on x86, x86-64, ppc, IA64, sparc, s390

January 28, 2007 43

Register pressure reduction

● SSA may cause excessive register pressure
– Pathological cases → ~800 live registers
– RA battle lost before it begins

● Short term project to cope with RA deficiencies
● Implement register pressure reduction in GIMPLE

before going to RTL
– Pre-spilling combined with live range splitting
– Load rematerialization
– Tie RTL generation into out-of-ssa to allow better

instruction selection for spills and rematerialization

January 28, 2007 44

Dynamic compilation

● Delay compilation until runtime (JIT)
– Emit bytecodes
– Implement virtual machine with optimizing transformations

● Leverage on existing infrastructure (LLVM, LTO)
● Not appropriate for every case
● Challenges

– Still active research
– Different models/costs for static and dynamic compilers

January 28, 2007 45

Incremental Compilation

● Speed up edit-compile-debug cycle
● Speeds up ordinary compiles by compiling a given

header file “once”
● Incremental changes fed to compiler daemon
● Incremental linking as well
● Side effects

– Refactoring
– Cross-referencing
– Compile-while-you-type (e.g., Eclipse)

January 28, 2007 46

Dynamic Optimization Pipeline

● Phase ordering not optimal for every case
● Current static ordering difficult to change
● Allow external re-ordering

– Ultimate control
– Allow experimenting with different orderings

– Define -On based on common orderings

● Problems
– Probability of finding bugs increases
– Enormous search space

