Concurrent SSA Form in the Presence of
Mutual Exclusion

Diego Novillo Ron Unrau Jonathan Schaeffer

giY OF

q.
3 4
z ﬁ
= >
» ¢

Department of Computing Science
University of Alberta

1998 International Conference on Parallel Processing
12 Aug 1998

‘ Introduction I

e Why explicitly parallel languages?

[1 Automatic parallelization strategies have limited applicability
[1 Popular systems like Java incorporate parallel constructs

e Understanding explicitly parallel languages allows the compiler to

[1 Apply sequential optimizations safely
[Introduce new optimizations specific to parallel programs

e \We are developing an optimizing compiler framework for explicitly
parallel programs

CSSAME Framework — Introduction and Motivation ICPP98 - 1

‘ The Problem I

e An optimizing compiler for explicitly parallel programs must handle

[1 Parallel constructs [Synchronization [1 Memory conflicts

e Therefore, a sequential compiler may break these programs

If flag is initially O, Thread 1 Thread 2
constant
propagation will = while (flag) compute()

; /* Busy wait x/| flag = 1;

create an infinite print(b);

loop.

e Most existing work focuses on correctness issues (race conditions,
deadlock detection, programming environments)

e Recent research concentrates on optimization issues (but different
synchronization constructs)

CSSAME Framework — Introduction and Motivation ICPP’98 -

‘ Goals and Contributions I

1. Develop a framework to analyze and optimize explicitly parallel
programs

[1 We introduce the CSSAME form — An SSA framework for EPPs
with mutual exclusion synchronization

2. Adapt sequential optimization techniques
[1 We show how CSSAME can improve concurrent constant
propagation without modifications to the original algorithm

[1 We adapt a sequential dead-code elimination algorithm

3. Develop new optimization techniques that take advantage of parallel
and synchronization structure

[We introduce Lock Independent Code Motion — A new
optimization to reduce size of critical sections

CSSAME Framework — Introduction and Motivation ICPP’98 - 3

‘ Language Model I

e Parallel threads share same address space iligbe;(r)l;
with interleaving semantics T 1: begin
while (flag == 0)
e Parallelism specified with . /* Busy wait */
cobegin/coend (for now) print(b);
end
e Synchronization is explicit T 2: begin

b = compute();
flag = 1;
end

[J Mutual exclusion — lock/unlock
[J Event variables — set/wait

[1 Thread join points — coend
coend

CSSAME Framework — The CSSA Form ICPP'98 - 4

CSSA Form [Lee, Midkiff and Padua] I

Original program CSSA Form
cobegin
T 1: begin
cobegin IOCk_(I::)Q);
T 1: begin M=
lock(L), 33 - 77(31, 32)’.
a — 5; bl = a3 -+ 3,
b=a+3 ag = m(ay ap);
X = b *x a; X1 = by * ay;
unlock(L); unlock(Lg);
end end
T 2: begin T 2: begin
lock(L); lock(Lg);
a:b—|—6, b2:7'('(b0, bl)’
unlock(L); a9 = by + 6;
end unlock(Lg);
coend end
print(x, a); coend
ag = gb(al, 32);

print(xl, a5);

CSSAME Framework — The CSSA Form

ICPP98 - 5

The CSSAME Form | I

e Refines the CSSA form by reducing number of memory conflicts
[CSSA only recognizes set/wait
[0 CSSAME adds support for lock/unlock
e Key observation
Mutual exclusion sections serialize execution = some memory conflicts
between them might disappear
e \When are memory conflicts superfluous?

[1 Successive kills — Only last def is exposed out of mutex body
[1 Protected uses — First def inside mutex body hides conflicts

CSSAME Framework — The CSSAME Form ICPP’98 - 6

‘ The CSSAME Form I I

[1 Consecutive kills [] Protected uses
cobegin cobegin
T 1: begin T 1: begin
lock(Lg); lock(Lg);
P al pr
a2 = ... 33 = 7'('(31, 3_2),
dunlock(LO); = ag;
en unlock(Lg);
. end
T 2: begin
lock(Ly); T 2: begin
lock(Lg);
33—7'('(30, 31 32) 0
= a3, a2 = ...
unlock(Lg); unlock(Lg);
end end
coend coend

CSSAME Framework — The CSSAME Form ICPP'98 - 7

Computing the CSSAME Form |

1. Build flow graph for the program

2. | ldentify mutex structures

3. Compute CSSA form

[1 Get partial ordering between conflicting statements
[1 Place ¢-terms (standard SSA algorithm)
[] Place m-terms

4. | Rewrite m-terms

[1 Eliminate arguments that comply with mutex body properties
[1 m-terms with one argument left can be safely removed

CSSAME Framework — The CSSAME Form ICPP’98 - 8

Optimizations | — Constant Propagation I

CSSA CSSAME Constant
Form Form Propagation
cobegin
T 1: begin cobegin cobegin
lock(Lg); T 1: begin T 1: begin
a) = 9 lock(Lg); lock(Lg);
ag =m(ay, ap); ap = b; a] = 5;
34 = 7'('(31, 32),' Xl = bl * al; Xl = 40,
xq = by * ay; unlock(Lg); unlock(Lg);
unlock(Lg); end end
end
T 2: begin T 2: begin
T 2: begin lock(Lg); lock(Ly);
lock(Lg); by = m(bg by); by = m(bg by);
b2:7'('(b0, bl)’ a2:b2—|—6, a2:b2—|—6,
a9 = by + 6; unlock(Lg); unlock(Lg);
unlock(Lg); end end
end coend coend
coend ag = ¢(ay, ap); ag = ¢(ay, ap);
ag = ¢(ayz, ap); print(xq, ag); print(xq, ag);

print(xl, a5);

CSSAME Framework — Optimizing Explicitly Parallel Programs

ICPP98 - 9

Optimizations |l — Dead Code Elimination

CSSA CSSAME Dead Code
Form Form Elimination
cobegin cobegin .
T 1: begin T 1: begin COT]?elg.lll;legin
lock(Lg); lock(Lg); lo;:k(L)
a1 = fooy; a1 = foog; Do 80° ’
a9 = by * foog; a9 = by * fooy; a21_ k(lL).OOO’
unlock(Lg); unlock(Lg); I
end
end end
T 2: begin T 2: begin T12:kb(ig;?
lock(Lg); lock(Lg); CERR0);
ag = m(ap, as);
33 = 7'('(30, 31, 32),' 33 = 7'('(30, 32),' 3 0 <2/
by = aq + 6; by = aq + 6; by = a3 + 6;
2 3 2 3 unlock(Lg);
unlock(Lg); unlock(Lg); 0/
end
end end d
coend coend Zoeilgb(b b,):
by = ¢(by, by); by = ¢(by, by); 3 i

print(az, bg);

print(az, bg);

print(az, bg);

CSSAME Framework — Optimizing Explicitly Parallel Programs

ICPP’98 - 10

e A statement is lock
independent if it
references non-conflicting
variables

e [he algorithm hoists lock
independent statements
out of the mutex body

Optimizations |1l — Lock Independent Code Motion

cobegin
T 1: begin
lock(Lg);
by =8§;
O X1 = foop;
unlock(Lg);
end

T 2: begin
lock(Lg);
by = m(bg, by);
unlock(Lg);
end
coend

print(x1);

cobegin
T 1: begin
x1 = foog;

lock(Lg);

bl = 8;

unlock(Lg);
end

T 2: begin
lock(Lg);
by = m(bg, by);
unlock(Lg);
end
coend

print(x1);

CSSAME Framework — Optimizing Explicitly Parallel Programs

ICPP98 - 11

Current and Future Work I

[I Implemented in SUIF

[J New optimization techniques: single-writer/multiple-readers, code
sinking, lock picking, lock partitioning, partial lock independence

[1 Support for SPMD parallelism — barriers are another form of mutual
exclusion

[1 Applying techniques to Java

e Current work

e Future work

[1 Apply IPA to propagate mutual exclusion information

[1 Adapt other scalar optimizations

[J Cost/benefit analysis. Can we use the same models used in scalar
optimizations?

CSSAME Framework — Conclusions and Future Work ICPP'98 - 12

