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Abstract of the program to achieve better performance. Unfortu-

Most current compiler analysis techniques are unable to hately, standard optimi_zation techr_liques use(_j _in sealent
cope with the semantics introduced by explicit parallel and programs cannot be directly applied t(_) explicitly parallel
synchronization constructs in parallel programs. In thés p programs beca_use they may generate incorrect transforma-
per we propose new analysis and optimization techniquest'ons [11]. This has motivated recent devel_opments tha_tt
for compiling explicitly parallel programs that use mutual have st_art_ed _to uncover the potent_la_ll benefits of analysis
exclusion synchronization. We introduce the CSSAME form,anOI opt|m|zz_it|on tec_hm_ql_Jes for explicitly parallel pragrs
an extension of the Concurrent Static Single Assignment[?" 7, _13_]' L|k_e any_mmplent teCh”O'Ogy' these techniques
(CSSA) form that incorporates mutual exclusion into a data 3¢ St'_” in their primitive stages, especially when congghr
flow framework for explicitly parallel programs. We show to th?'_r sequential counterparts. ) i
how this analysis can improve the effectiveness of constant INitial work by Shasha and Snir proposed re-ordering
propagation in a parallel program. We also modify a dead- Memory references in a program to increase concurrency
code elimination algorithm to work on explicitly parallel While maintaining the sequential consistency dictated by
programs. Finally, we introduce lock independent code mo- the code [13]. Midkiff and Padua demonstrated that a di-
tion, a new optimization technique that attempts to mingmiz rect application of optimization techniques designed &r s

the size of critical sections in the program. guential languages fail on explicitly parallel program&][1
Grunwald and Srinivasan developed data-flow equations to

compute reaching definition information on explicitly plara
1. Introduction lel programs withcobegi n/ coend parallel sections [3].
' However, their work only deals with a weak memory con-

Although recent advances in parallelizing compilers and SiStency model dictated by the PCF Fortran stand.ard. Par-
data-parallel languages have been impressive [4, 8], theréll€l sections are required to be data independent; memory
are important problem domains for which parallelizing the UPdates are done at specific points in the program using the
best sequential algorithm or data layout yields sub-optima ¢OPY-1 n/ copy-out model. Synchronization is limited
performance relative to an implementation that is expiicit  (© €vent-based synchronization usiSigt andVai t op-
parallel from the outset. Furthermore, popular systenss lik erations. Knoop, Steffen and Vollmer devel_oped a bitvector
Java incorporate parallel constructs at the language level@nalysis framework for parallel programs with shared mem-
and commodity multiprocessors are becoming increasingly ©'Y @nd interleaving semantics [6]. They show how to adapt
popular. For these reasons, we believe that there is a nee§t@ndard optimization algorithms to their framework. How-
for compilers that accept explicitly parallel programsdan €Ver, they do not incorporate synchronization operations
that the demand for such compilers will increase. in their analysis. Lee, Midkiff and Padua propose a Con-

To correctly compile and optimize explicitly parallel pro- current SSA_‘ framew_ork (CSSA) for eXplIfZItly parallel pro-
grams the compiler must have an innate knowledge of thedrams and interleaving memory se_mant|cs_ [7]. They only
parallelism in the program and the semantics of synchro- consider event-based synchronization and impose some re-

nization primitives. In addition to the standard optimiza- strlct|0n§ on.th.e m_putprogr_am. ) .
tion techniques used by sequential compilers, an optimiz-. A Major limitation of existing techniques for optimiz-
ing parallel compiler should exploit the parallel strugur N9 explicitly parallel programs is the restricted knowded
about synchronization in the program. To the best of our
*To appear in the 1998 International Conference on Paratielé3sing _knOWIGdge’ the only synchronization _Con_StrUCt recognized
(ICPP'98), Minneapolis, Minnesota, August 1998. is a subset of event-based synchronization (Bet, and




Wai t usually with noCl ear). We see this as a severe

limitation because event synchronization can only be used

to describe a small class of parallel algorithms. One of the
goals of our work is to incorporate knowledge about com-
mon synchronization structures into the compiler so it can
perform more aggressive optimizations. As a first step to

that goal, we have extended the Concurrent Static Single

Assignment (CSSA) form [7] to handle mutual exclusion
synchronization. Specifically, we

» extend the concurrent control flow graph used by kée
al. (Section 3.1) and show how to detect mutual exclusion
synchronization in a parallel program (Section 3.3),

« introduce the CSSAMEform, an extension to the CSSA
form to account for the semantics introduced by mutual ex-
clusion synchronization (Section 4),

+ show how CSSAME can improve the effectiveness of the

Concurrent Sparse Conditional Constant (CSCC) propaga-

tion algorithm [7] (Section 5.1),

» adapt a sequential dead-code elimination algorithm to
work on explicitly parallel programs (Section 5.2), and

« introducdock independent code moticmnew optimiza-
tion technique for explicitly parallel programs which at-
tempts to reduce the size of mutual exclusion sections in
the program (Section 5.3).

2. Our approach

In an explicitly parallel program with interleaving mem-
ory semantics, the use of a shared variabban be reached
by any definition ofv in another concurrent thread. How-
ever, mutual exclusion may prevent some variable defini-
tions from being visible in other threads. For example, con-
sider the code fragment in Figure 1. If we ignore the mutual
exclusion regions created by the locks we will conclude that
the definition for variable in thread? can reach both uses
of a in thread7;. However, the synchronization used in the
program serializes the references:tso that the assignment
toa in Ty cannot reach the second usexafi 7. Therefore,
the call to functiory() in 77 will always be executed with
a=3.

Understanding mutual exclusion has important implica-
tions from an optimization point of view because it allows

cobegin /+ Begin concurrent execution/
T 0: begin /* Launch thread TO«/
Lock(L);
a=a+b
Unlock(L);
end

T 1: begin
f(a);
Lock(L);
a=3;
b=b+ g(a);
Unlock(L);
end

coend

/* Launch thread T1x/

/* This kills the assignment ta in TO %/
/* Variable a is always3 %/

Figure 1. Mutual exclusion can reduce data depen-
dencies across threads in a parallel program.

introduced by Masticola and Ryder in their work on non-
concurrency analysis [10]. Basically, a mutex structure is
associated with each lock variable used in the program and
it contains the sets of flow graph nodes that are guaranteed
to execute under the protection of the associated lock vari-
able. Once mutual exclusion information is gathered into
mutex structures, we modify the Concurrent SSA (CSSA)
form proposed by Leet al.[7] to account for it.

Explicitly parallel programs start as a single thread of
computation. New threads are logically created when ex-
ecution reaches a parallel section. Although the creation,
placement and scheduling of threads is not significant for
our research, the compiler must be able to recognize paral-
lel sections in the code. We assume that threads run in a
shared address space with interleaving semantics (i.e., up
dates to shared memory made by one thread are immedi-
ately visible to other threads). There are a variety of mech-
anisms for expressing parallel activity. Some examples in-
clude cobegi n/coend constructs, explicif or k state-
ments, parallel loops, etc. In this paper parallel sectayes
specified usingobegi n/coend constructs (Figure 1).

Mutual exclusion is used to serialize references to shared
variables in the program. We will assume, without loss
of generality, that programmers use standhmtk and
Unl ock instructions to serialize access to shared variables.

3. Mutual exclusion analysis

the compiler to reduce the number of data dependencies that

need to be considered. It also allows the compiler to conser-

vatively validate the synchronization structures expedss

inside the code. This paper focuses on the former; future

work will also investigate correctness and user interfaee i
sues.

To determine the effects of mutual exclusion on the data-
flow of the program the compiler must recognize which sec-
tions of the program execute under the protection of a lock.
We base our analysis on the concepimiftex structurefrst

1Pronouncedesame

3.1. Parallel Flow Graphs

We introduce the Parallel Flow Graph (PFG), an exten-
sion to the Concurrent Control Flow Graph (CCFG) [7] that
also represents mutual exclusion synchronization. In ad-
dition to the directed synchronization edges in the origi-
nal CCFG, we incorporate undirected mutex synchroniza-
tion edges which represent mutual exclusion constraints
and do not enforce a specific execution order. Bachk
and Unl ock operation is represented by a separate node
in the PFG. Mutex synchronization edges jhiack and



tweenLock andUnl ock nodes in concurrent threads.

a=0; Definition 2 A path fromz to y is acontrol pathif it only
goze%?m contains edges if,;. o
TLg;klegi" In subsequent sections we will use the standard concepts
a=5 of dominance and post-dominance [1] applied exclusively
b=a+3s to control paths.
if (b> 4){
amerh 3.2. Mutex structures
X =a
nlockL; The concepts and algorithms described in this section are
based on the non-concurrency analysis techniques devel-
TLg;:kle?'in oped by Masticola and Ryder [10]. Our work differs from
a=b+6; theirs in the following aspects:
{anloec”km; 1. Our analysis targets locks instead of binary semaphores.
end 2. The analysis is intended to gather data flow information
g‘r’,ﬁ?&) for the purposes of program optimization instead of dead-
print(y); Frinc! lock detection.
3. Even though the notation is similar, there are difference
—— Control flow edge in the definitions and the algorithms used. In particular,
Legend - -~ ﬁﬁ?;')‘f;ggge we use a simpler notion of mutex body that is not based
on the concept oétrict interval defined by Masticola [9].
Figure 2. A program and its PFG. Strict intervals require other structural conditions tha¢

not needed in our case. For instance, strict intervals do not
Unl ock nodes that operate on the same variable in concur-include ambiguous or illegal mutex bodies. If at the end of

rent threads. the mutex analysis there is at least one unmatttosk op-
Definition 1 A Parallel Flow Graph (PFG)is a directed  eration for a lock variablé,, the whole set of mutex bodies
graph G = (N, E, Entryg, Fxite) such that: for L will be discarded. In our case, we allow mutex struc-
1. N is the set of parallel basic blocks in the program. tures with ill-formed mutex bodies. Our data-flow analysis
2. Entrye andEwit are the unique entry and exit points Wil still be conservative because illegal mutex bodies in a
of the program. mutex structure will not be considered when reducing data

dependencies.

Definition 3 Given a PFG({, a synchronization vari-
able L and two nodes:,» € G, the setBy(n,z) =
SDOM ™! (n) (| PDOM ~!(x) is amutex bodyor I if the

3. Lock andUnl ock operations are represented by their
own nodes.

4. E = E.:|JEy|J Ec; is the set of edges in the graph
such that¥.; is the set of control flow edges. These edges . L g
have the same meaning as in a sequential control flow grapHeO"OV\"ng| conditions are met:

(CFG).Eyy = Emuter | Edsyne is the set of synchroniza- 1. n = Lock(L) andz = Unl ock(L),

tion edges. Two different kinds of synchronization are rec- 2- @ DOM x andz PDOM n, and _

ognized: Eyurer aNd Egsyne. Emutes 1S the set of mutex 3. Ya € Br(n,z)suchthatt # n Aa # z = aisnota
synchronization edges representing mutual exclusion con-LOCk(L) oranUnl ock(L) node. o
straints. Mutex synchronization edges are undirectedsedge A mutex body defines a single-entry, single-exit region
between relatetlock andUnl ock operations.£ g,yn. IS of the graph delimited by nodesandz. The mutex body
the set of directed synchronization edges representing orincludes all the nodes strictly dominated hyand post-
dering constraints. These edges join reledet andWai t dominated by (i.e., noden is not included inBy (n, z)).
statements in different threads. Finally,, is the set of  Definition 4 A mutex structurdor a synchronization ob-
conflict edges. Conflict edges are directed edges that joinject ., denotedV/y, is the set of all mutex bodi&B; (n, x)

any two parallel basic blocks that conflict. Two letter label in the program. o
on the edge represent the memory operations done at each L .
end of the edge: def (D) or use (U). o 3.3. Identifying mutex structures in the code

An example of a PFG is shown in Figure 2. Memory Algorithm A.1 returns the set of all the mutex structures
access conflicts are represented by dashed edges betweem an explicitly parallel program. The algorithm starts by
the conflicting nodes in each thread (most conflict edgespairing upLock andUnl ock nodes that comply with con-
have been removed to improve readability). Mutual ex- ditions 1 and 2 of Definition 3. The final phase of the algo-
clusion synchronization is represented by dotted edges betithm (lines 19—26) examines all the mutex bodies found to



eliminate those mutex bodies that do not comply with con-
dition 3 of Definition 3. That is, it removes any body found
by the previous step that contaibeck or Unl ock nodes

By (n, z) that contains the usé?. Sinced andu are in-
side mutex bodies in the same mutex structure, they cannot
execute concurrently. Therefore, the definition/igannot

for the same variable (other than the entry and exit nodesreach the use im via the conflict edge that joing and w.

for the body).

4. CSSA with Mutual Exclusion support

The main goal of mutual exclusion analysis is to reduce
the number of incoming conflict edges to nodes in the PFG
that use shared variables. In the CSSA framework concur-
rent modifications to the same memory location by different
threads are modeled usingterms which are placed in the
parallel join nodef the graph. A parallel join node is one
that contains a conflicting use for a shared variablEach
7 term hasn + 1 arguments; one for the unique incoming
control flow edge ana for the n incoming conflict edges.
The goal of the extensions described in this section is to
remove superfluous arguments fromterms inside mutex
bodies.

Theorems 1 and 2 give sufficient conditionsto reduce the
number of reachable definitions for uses inside mutex bod-

We need to consider two possibilities:

1. DB’ does not reach node. In this case it is clear that
DB’ cannot reactt/Z (Theorem 1).

2. DB’ reaches node’. Now we need to consider

the partial execution ordering betweeB.(n,z) and
!/

B (0, 2'):

(a) Br(n,z) executes to completion befo®] (n’, z').
Nodew executes before nodk thereforeD?’ cannot
reachU 2.

(b) By (n',2') executes beford; (n, z). Sincel/? is not
upward-exposed fronBy, (n, ), any definitions of
made beforeB; (n, ©) starts executing are guaranteed
to be killed by some other definition insidey, (n, ).

1
Therefore,DZ" cannot react/P. -

We now introduce the CSSAME form, an extension to
the CSSA form to handle mutual exclusion synchronization.
Algorithm A.2 transforms an explicitly parallel program

ies. Both theorems rely on the concepts of upward-exposedo CSSAME form. The algorithm starts by building the PFG

uses [15] and reaching definitions [1].

Theorem 1 Let M be a mutex structure for lock variable
L. Let DP be a definition for a shared variabieinside a
mutex bodyBy (n,z) € M. If DP does not reach node
x thenDP cannot reach uses ofin any other mutex body
Bi(n',2')y € Mg. o
PROOF Let U’ be a use of in B} (n’,z'). Letd be the
node containingD?. Let u be the node containing?'.
Sinced andu are inside mutex bodies in the same mutex
structure they cannot execute concurrently. Therefore, th
definition ind cannot reach the use invia the conflict edge
that joinsd and . SinceBy(n,«) and B (n', ') cannot
execute concurrently, for every execution of the program
that includes both mutex bodies there can only be two pos-
sible partial orderings between them:

1. Br(n,z) executes to completion beforB; (n', z’).
Even though nodd executes before nodg the definition
DB cannot reacli/2" because it is always killed by some
other definition before it reaches the exit nodg%f(n, z).

2. B} (n',2') executes to completion befotBy (n, z).
Nodeu executes before nodg thereforeD? cannot reach
UE' -
Theorem 2 Let M be a mutex structure for lock variable
L. Let UZ be a use for a shared variahlénside a mutex
body By, (n,z) € M. If UP is not upward-exposed from
Br(n,z) thenUZ cannot be reached by definitions from
any other mutex bodg; (n', z’) € My. o
PROOF Let DB’ be a definition for variable: in mutex
body B (n’, '). Letd be the node irB}, (n’, «') that con-
tains the definitiomD?’. Letu be the node in mutex body

for P. Once the PFG has been built, the algorithm creates
the mutex structures for the mutual exclusion synchroniza-
tion used in the program. The next step builds the CSSA
form using the algorithms proposed in [7]. The only differ-
ence in our approach is that the underlying sequential SSA
form is computed using factored use-def (FUD) chains [15]
with appropriate modifications to avoid placing superfluous
¢ terms atcoend nodes. The computation of partial order-
ings and the placement af functions use the same algo-
rithms described in [7]. Notice that since analyzing mutual
exclusion synchronization does not require executionrerde
ing information, we do not impose restrictions on the input
program.

Once the CSSA form has been computederms are
modified using Algorithm A.3. This algorithm examines
every mutex body of the program trying to remove argu-
ments from eachr term using theorems 1 and 2. Aterm
will be removed from the graph if and only if at the end of
the algorithm it contains only one argument. If theerm
only contains one argument, it must be the argument for the
incoming control edge to the node because this is the only
argument that is never removed by Algorithm A.3.

5. Optimizing explicitly parallel programs
5.1. Constant propagation

Lee et al.[7] adapted the sequential Sparse Conditional
Constant propagation (SCC) algorithm [14] to work with
explicitly parallel programs. We will use the program in
Figure 2 to show how our extensions to the original CSSA



a0 = 0; a0 = 0; a0 = 0; a0 = 0;
b0 = 0; b0 = 0; b0 = 0; b0 = 0;
cobegin cobegin cobegin cobegin
T 0: begin T 0: begin T 0: begin T O:
Lock(LO); Lock(LO); Lock(LO0); begin
al=5; al=5; al=5; Lock(LO0);
tal =n(al, ad); bl=al+ 3; tal =n(al, ad); al=5;
bl = tal +3; if (b1> 4) { bl = tal +3; bl = 8;
if (b1 > 4){ a2=al+ bl if (b1 > 4){ a2 = 13;
tall =n(al, a4); } tall ==(al, a4); a3 = 13;
a2 = tall + bi; a3 =¢(al, a2); a2 = tall + bi; x0 = 13;
} x0 = a3; } Unlock(LO);
a3 =¢(al, a2); Unlock(LO0); a3 =¢(al, a2); end
tal2 =n(a3, ad); end tal2 =n(a3, ad);
x0 = tal2; x0 = tal2; T 1:
Unlock(LO0); T 1: begin Unlock(LO0); begin
end Lock(LO); end Lock(LO0);
tb0 == (b0, bl); tb0 == (b0, bl);
T 1: begin a4 = th0 +6; T 1: begin a4 = th0 +6;
Lock(LO); y0 = a4; Lock(LO); y0 = a4;
tb0 == (b0, bl); Unlock(LO); tb0 == (b0, b1); Unlock(LO);
a4 = tb0 +6; end a4 = tb0 +6; end
tad =7 (a4, al, a2); coend tad =7 (a4, al, a2); coend
y0 = ta4; ab =¢(a3, ad); y0 = ta4; ab =¢(a3, ad);
Unlock(LO0); print(x0); Unlock(LO0); print(x0);
end print(y0); end print(y0);
coend coend
ab =¢(a3, ad); ab=¢(a3, ad);
print(x0); print(x0);
print(y0); print(y0);
a. CSSA form b. CSSAME form a. Using CSSA b. Using CSSAME

Figure 3. CSSA forms for the program in Figure 2. Figure 4. Constant propagation for Figure 2.

framework can be used to improve the constant propaga-[1]- We introduce the Parallel Dead Code Elimination algo-
tion algorithm when mutual exclusion is taken into account. "ithm (PDCE), an extension of the dead code elimination al-
There are two different CSSA forms for the program in Fig- 90rithm proposed by Cytroat al.[2] to work on explicitly

ure 2. The one in Figure 3a is the original CSSA form Parallel programs. The algorithm starts by marking dead
without mutual exclusion extensions. Figure 3b shows the @ll the statements of the program except those that are as-

CSSAME form built using the algorithms in Section 4 (no- Sumed to affect the program output such as /0 statements
tice the reduction of- terms in Figure 3b). or assignments to variables outside the current scope. This

Figure 4a shows the result of applying the constant prop- |n|t|_alt set gfbhvteh staltem_?r? s |_?hus|_edt fo sededt tge Y[\;]ork list
agation algorithm to the program using CSSA. Notice that maintained by the aigorithm. 1 e ISt 1S updated with every

the constant propagation is conservatively correct buesin new statement that is marked live. When the listempties, all
the original CSSA framework does not recognize the mu- the statements still marked dead are removed from the pro-

tual exclusion semantics of the program, no constants cardram. A statement will be marked live if it satisfies one of

be propagated. On the other hand, translating the program:he ?"(?[V\{'hng conditions [tZ]: t(l)EThe s;cate_melntdls fll(s)suinted
to CSSAME form allows the compiler to remove all the 0 affect the program output. Examples inciude state-

terms for variablex in thread7,. The key to this is the ments, assignm_ent to global variables, calls to procedur_es
assignment to variable in thread7; right after the lock that may have side effects, etc_. (2) The statement contains
operation. Since all the statements in thréadexecute in- a definition that reaches uses in statements already marked
divisibly as one atomic operation, uses of variablafter live. (3) The statement is a conditional branch and there

the first assignment cannot possibly be affected by defini-?re |I\|/E stat?]ments that are control dependent on this eondi
tions of « made by thread. This allows the compiler to lonalbranch.

propagate constants inside thré&das if it were a sequen- The sequential algorithm needs two important modifica-
tial program (Figure 4b) tions to work on explicitly parallel programs:

1. Condition 2 of Cytroret al!s algorithm calls for the com-
putation of reaching definition information for each live
statement of the program. The rationale is that if statement
Dead code refers to program statements that have no efs is live then any other statement that defines variables used
fect on any program output [2]. Although it is not common by s must also be marked live. We compute reaching defini-
for the programmer to introduce dead code intentionally, tion information using botk and = terms when following
dead code may be generated by optimizing transformationsuse-def chains in the program. Algorithm A.4 computes the

5.2. Parallel Dead Code Elimination



b0 = 0; b0 = 0;

cobegin cobegin
T 0: begin T 0: begin
Lock(LO); Lock(LO);
bl = §; bl =8;
x0 = 13; Unlock(LO);
Unlock(LO); x0 = 13;
end end
T 1: begin T 1: begin
Lock(LO); Lock(LO);
tb0 == (b0, b1); tb0 == (b0, bl);
a4 = th0 +6; a4 = th0 +6;
y0 = a4; Unlock(LO0);
Unlock(LO0); y0 = a4;
end end

coend coend

print(x0); print(x0);

print(y0); print(y0);

a. After PDCE b. After LICM

Figure 5. PDCE and LICM for Figure 4b.

set of reaching definitions for every use of a variable in an
explicitly parallel program. The algorithmis a modified ver
sion of an algorithm for finding reaching definitions in a se-
guential SSA framework [15]. The main modification done
to the original algorithm is the additional test ferterms

when traversing use-def chains in the PFG. We have also

5.3. Lock independent code motion

Because of the restrictions imposed by mutual synchro-
nization operations, it is often desirable to minimize the
time spent inside mutex bodies in the program. To achieve
this goal we can optimize the code inside mutex bodies
as much as possible. Alternatively, we can minimize the
amount of code executed inside a mutex body by moving
code that does not need to be locked outside the mutex body.
In this section we introduceck independent code motion
(LICM), a new technique that performs safe code motion on
mutex bodies.

To determine what code can be safely moved outside a
mutex body we must find those interior statements that are
not affected by the presence of the lock. We call tHesk
independenstatements. Althoughiit is unlikely for the pro-
grammer to write lock independent statements inside a mu-
tex body, other compiler optimizations might produce lock
independent code (e.g., the statemeht= 13 in Figure 5a
is lock independent due to constant propagation and PDCE).
This is similar to the concept of loop-invariant code fomsta
dard loop optimization techniques [1]. However, the condi-
tions that make a statement lock independent are different
than those that make it loop invariant. Loop invariant com-

extended the algorithm to compute def-use links (neededputations are basically statements with all their operands

by the constant propagation algorithm).
2. A cobegi n statement will be marked live if there is at

least one statement in one of its children threads marked

live. If at the end of the algorithm there is only one thread
with live statements in it, theobegi n/coend construct

will be replaced by the sequential code corresponding to

the live thread.

These modifications to the sequential DCE algorithm are
necessary to account for the concurrent activity in the pro-
gram. Since reaching definition information will be com-
puted using bothr and ¢ terms, if a useu is live in one

constant or with reaching definitions outside the loop. Lock
independent code computes the same result whether it is in-
side a mutex body or not. For instance, a statement that
references variables private to the thread will compute the
same value whether it is executed inside a mutex body or
not. This is also true if the statement references variables
not used by any other concurrent thread in the program.
Definition 5 A statement inside a mutex bodylexk inde-
pendenif the variables that it defines and/or uses cannot be

modified concurrently. o

Although lock independence is a necessary condition
to do code motion, it is not sufficient because the motion

thread, any definition made by other concurrent threads thatgp g 14 4150 preserve all the control and data dependencies

reachu will also be marked live. Furthermore, the reduc-
tion of dependencies made possible by CSSAME directly
benefits the elimination of dead code in the program.

To show the effects of dead code elimination consider

for the statement. For instance, if the statement is inside a
loop it cannot be moved out unless the whole loop is lock
independent.

To perform code motion we need to modify the flow

the program in Figure 2 after constant propagation has beergraph to add two special nodes that will act as landing pads
performed (Figure 4b). As can be seen in the example pro-for statements moved out of each mutex bétly(», x). We

gram, all the assignments to varialden 7, are dead be-

call these two nodes thgre-mutexand post-mutexnode.

cause they do not affect the output of the program (i.e., they The pre-mutexnode is placed as an immediate strict domi-

do not reach any other use ofin the program). On the
other hand, the assignmentitdn 7; cannot be considered
dead because it is used By. Note that a sequential dead
code elimination algorithm would have erroneously marked
the assignment té dead because it lacks the appropriate
reaching definition information. Figure 5a shows the result
of a dead code pass on the code in Figure 4b.

nator ofn, while thepost-mutexiode is placed as an imme-
diate strict post-dominator af.
Theorem 3 Let s be a lock independent statement inside
a mutex bodyB; (n,z). Let a be the node containing
s

1. If « dominates all the nodes i ands does not have
any reaching definitions withimthens can be moved to the



pre-mutex node of3.

2. If z immediately post-dominatesands does not have
any reached uses withinthens can be moved to the post-
mutex node of3. o

PrROOF 1. If a dominates all the nodes il then its im-
mediate dominator must be node If s does not have
any reaching definitions withim then s can be moved
to a node dominating without affecting its internal data
dependencies. Furthermore, definitions reachirg@gnnot
reach through conflict edges becauss lock independent.
Neither can they reach from nodebecause there are no
definitions in that node. Therefore, movirgto the pre-

mutex node will not alter any data dependencies in the pro-

gram. Notice that when movingto the pre-mutex node, it

end, the compiler creates the corresponding PFG and its
CSSAME form. The PFG implementation is an extension
of the sequential Control Flow Graph library provided by
Machine SUIF [5]. The PFG can be displayed using a vari-
ety of graph visualization systems. The flow graphs in this
paper were generated with the VCG tool (Visualization of
Compiler Graphs) [12]. The CSSA form for the program
can also be displayed as an option. Mutual exclusion analy-
sis can also issue warning messages like unmattbedk
andUnl ock operations or improperly nested locks. A lim-
ited form of data race detection capability is also built-in
for inconsistent use of locks to protect shared variables. F
instance, if modifications to a variable are not always pro-
tected by the same lock, the compiler will warn the user

should be placed as the last statement of the node. Thi@Pout a potential data race.

will preserve any data dependencies from statements al-

ready present in the node.
2. If x immediately post-dominates then« is the last

node to be executed before leaving the mutex body. If defi-

nitions made by do not reach any use withirthen moving

s to the post-mutex node will not alter any data dependen-

cies insidea. Furthermore, definitions make bycannot
reach other threads through conflict edges becaiséck
independent. Therefore, movingto the post-mutex node

A simple extension to algorithm A.1 allows the compiler
to perform some semantic checking on the synchronization
structure of the program. At the end of the algorithm, every
Lock orUnl ock node inp!° | ] p#™e¢* that is not part of

a mutex body can be reported as a warning to the user. The
compiler will recognize several potentially unsafe sitoas

and report a warning.

7. Future work

will not alter any data dependencies in the program. Notice

that when movings to the post-mutex node, it should be translation of scalar optimizations to the parallel case, e

placed as the first statement of the node. This will preservepeciaIIy if the sequential strategy is SSA based. We are

z;g;(;edata dependencies to statements already present in th&esently investigating the representation of parallep®
. u

in the CSSA framework. Different semantics for parallel
These conditions guarantee that the statement beingoops (i.e.,doaccr oss, doal | , etc.) will have differ-
moved will not break any data dependencies with other ent data-flow properties. Another extension the CSSAME
nodes in the body and will not introduce any conflict edges framework involves other commonly used synchronization
with any concurrent node. Applying Theorem 3 to the pro- primitives such as barriers and semaphores.
gram in Figure 5a allows the compiler to move some state-  Wjth the lock independent code motion strategy we have
ments out of the mutex bodies to obtain the equivalent pro-entered the field of new optimization techniques that are
gram in Figure 5b. Notice that both assignments to vari- specifically targeted at explicitly parallel programs. We a
ablesz andy can be safely moved out of each mutex body presently designing new optimization techniques that take

because there are no Conflicting definitions in their Slbllng advantage of the para||e| and Synchroniza’[ion structure of
threads. Algorithm A.5 implements the concepts describedthese programs.

previously. After code motion is complete, any empty mu-
tex bodies will be removed from the program.

We have found that the CSSAME form facilitates the

A. Algorithms

6. Implementation A.1. Identification of mutex structures

. . . . . nput: APFGG and asetl. = {Li,Lo,..
The algorithms discussed in previous sections have beeriock variables used in the program.

implemented in a prototype compiler for the C language output: A set of mutex structured/ = U, M: whereM; is the set of
using the SUIF compiler system [4]. To avoid modifying mutex bodies for lock variablé; .
SUIF's front-end we added support foobegi n/coend 1: /* Find nodes in7 that lock and unlock each; */
; 2: foreachlock variableL; do
anddoal | parallel structures via language macros. These ph
. D opio®t «—{n € N:n = Lock(L;)}
macros re-define control structures of the language so that ,.

- . ) : p%‘"look —{z € N:z="Unlock(L;)}
the compiler can recognize them as parallel at the interme- 5: end for

diate language level. 6: /* Build the dominator and post-dominator trees @t/
Once the program has been parsed by the SUIF front- 7: call buildDomTree()

., Lm } containing all the



8: call buildPDomTree()

9: /* Find candidate mutex bodies */
10: foreachlock variableL; do
11: foreachn € plocF do

12: foreachz € p#niock do

13: if n € DOM(z)andz € PDOM ((rn) then
14: add(n, z) to the set of candidate¥,

15: end if

16: end for

17:  endfor

18: end for

19: /* Remove illegal mutex bodies from easfy */
20: foreach(n,z) € M; do
21:  foreachm € plock | p¥niock do

22: if m # nandm # z andn € DOM(m) andz €
PDOM (m) then

23: removen, z) from M;

24: end if

25:  end for

26: end for

27: M + U, M;

28: return M

A.2. CSSAME algorithm

Input: An explicitly parallel progranP
Output: The programP in CSSAME form

1: Build the PFG forP using an extended version of the CFG algorithm

in [5]
2: Identify mutex structures using Algorithm A.1.
3: Compute the CSSA form for the graph using the algorithnig]in
4: Rewriterr terms using Algorithm A.3.

A.3. Rewrite » terms

Input: APFGG in CSSA form

Output: The graph’# in CSSA form withw terms modified to accountfor

mutual exclusion synchronization

1: /* Traverse mutex bodies looking farterms to rewrite */
2: foreachlock variableL; do

3:  foreachmutex bodyb € MutezStruct(L;) do
4: call rewrite(b)

5: end for

6: end for

7: I* Examine all ther terms inb */
8: procedure rewrite (b)

9: foreachnoder. € b do

10: foreachw termp € n do

11: v is the variable referenced by

12: [* If an argument complies with theorems 1 or 2, */

13: /* then we may safely remove the argument from#tterm */

14: foreachp argument! coming from a conflict edgdo

15: if d comes from another mutex bodly € MutexStruct(b)

then

16: if (the use ot is not upward exposed fro#) or (d does not
reach the exit node df) then

17: Remove! from p

18: end if

19: end if

20: end for

21: [* If = termp has no conflict arguments then remove it */

22: if p has only one argumetiten

23: chain(u) + firstargument op

24: Remove fromn

25: end if

26: end for
27: end for

A.4. Parallel reaching definitions

Input: APFGG in CSSAME form

Output: The set of reaching definitions for each variable used in the p
gram and the set of reached uses for each variable defined pralgram
1: foreachvariable definition? in the programdo

2 marked(d) + L

3 uses(d) «+ 0

4: end for

5: foreachvariable use. in the progrando

6 defs(u) « 0

7. call followChain(chain(u), u)

8: end for

9: procedure followChain(d, u)
10: if marked(d) = u then
11: return
12: end if
13: marked(d) < u
14: if 4 is a definition foru then
15:  Addd to defs(u)
16: Addwuto uses(d)
17: end if
18: if (d is a¢ term) or (@ is aw term)then
19: foreachterm argumeni do

20: call followChain(j, «)
21: end for
22: end if

A.5. Lock independent code motion

Input: APFGG in CSSAME form
Output: The graph with lock independent code moved to the correspond
ing pre-mutex and post-mutex nodes

1: foreachlock variableL; do

2: foreachmutex bodyB, (n, ) € MutexStruct(L;) do
3: insert pre-mutex node immediately dominating

4: insert post-mutex node immediately post-dominating
5: end for

6: end for

7: foreachlock variableL; do

8. foreachmutex bodyB,, (n, ) € MutexStruct(L;) do
9: PRE + the pre-mutex node a8
10: POST « the post-mutex node @8

11: done~— FALSE

12: while not donedo

13: a + node immediately dominated by
14: foreachstatement € « do

15: if s is lock independerthen

16: if Definers(s) does not contain a statement frarthen
17: moves to the end of nod®RFE
18: end if

19: end if

20: end for

21: if a = 0 then

22: remove: from the graph

23: else

24. done +— TRUE

25: end if

26: end while

27: done— FALSE

28: while not donedo



20: b + node immediately post-dominated by
30: foreach statement € b do

31: if s is lock independerihen

32: if Users(s) does not contain a statement frérthen
33: moves to the beginning of nod®0ST
34: end if

35: end if

36: end for

37: if b = 0 then

38: remove from the graph

39: else

40: done < TRUE

41 end if

42 end while

43: if DOM~!(n) PDOM ~!(z) = 0 then

44: remove: andx from the graph

45: end if

46: end for

47: end for
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