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Abstract. We present two hew compiler optimizations for explicitlyaiel pro-
grams based on the CSSAME form: Lock-Independent Code M@tikCM) and
Mutex Body Localization (MBL). We have implemented thesérjzations on
top of the SUIF framework and present performance resultsdlected SPLASH
applications.

1 Introduction

Optimizations for explicitly parallel programs fall intevd classes: the adaptation of
sequential optimizations to a parallel environment; areldhect optimization of the
parallel structure of the program. There have been sevecaht advances in adapting
sequential optimizations such as global constant progagatd dead-code elimination
to explicitly parallel programs [6, 10, 13]. There has bessslemphasis on optimizing
the parallel structure of the program itself.

We build on a concurrent dataflow analysis framework call@S8ME'[12] to
analyze and optimize the synchronization structure of bask and data parallel pro-
grams.Lock-Independent Code Motion (LICM) is an optimizing transformation that
can reduce the size of critical sections in the progrsintex Body Localization (MBL)
is a new transformation that converts references to shaegdary into references to lo-
cal memory inside critical sections of the code. We have am@nted these algorithms
on top of the SUIF framework [5] and apply them to two SPLASHblagations [15]:
Water and Ocean. We also show that our techniques can beasetbimate common
optimizations that experienced programmers are currdotted to perform manually.

2 Reated Work

Previous work in the area of optimizing explicitly paralfglograms has concentrated
on the adaptation of sequential optimization techniqueheqarallel case. Lee, Mid-
kiff and Padua propose a Concurrent SSA framework (CSSAgfmiicitly parallel
programs and interleaving memory semantics [9]. They adapinstant propagation
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algorithm using the CSSA form. In recent work they have atkapded other SSA-based
technigques including common subexpression eliminatiehcde hoisting [10]. Their
work only considers event-based synchronization opara@md imposes some restric-
tions on the input program. Knoop, Steffen and Volimer depet a bitvector analysis
framework for parallel programs with shared memory andrieteving semantics [7].
They use their framework to adapt lazy code motion. Howebeiy framework does
not include synchronization operations. This reduces fipodunities for optimization
in the general case.

In previous work we have extended the CSSA framework to ipaate mutual ex-
clusion synchronization [13]. Our work extends the analyschniques proposed by
Lee et al.and shows the benefit of these extensions in the context atanpropa-
gation for explicitly parallel programs. We also adapt awsagial dead-code removal
algorithm that takes advantage of mutual exclusion infd¢iomeand describe an earlier
form of the LICM technique that we extend and improve in thaper.

3 TheCSSAME Form

The CSSAME form is a refinement of the CSSA framework [9] thabirporates more
synchronization analysis to identify memory interlearjat are not possible at run-
time due to the synchronization structure of the programil8\®GSSA only recognizes
event synchronization, CSSAME extends it to include muaxalusion synchroniza-
tion and barrier synchronization [12]. CSSAME can be ampt® both task and data
parallel programs.

Like the sequential SSA form, CSSAME has the property thatyeuse of a vari-
able is reached by exactly one definition. When the flow of mdmauses more than
one definition to reach a particular use, merge operatorsnénaduced to resolve the
ambiguity. Two merge operators are used in the CSSAME fafrfunctions andr
functions.¢ functions have the same meaning as in sequential SSAr[fijnctions
merge concurrent reaching definitions. Concurrent regctgfinitions are those that
reach the use of a variable from other threads.

The CSSAME form also examinesfunctions in critical sections of the code to
determine if they can be removed. Since thedanctions are in serialized sections of
the code, some conflicts inside mutex bodies become supesfara can be discarded.
This pruning process is based on two observations:

1. consecutive kills: only definitions that reach the exit points of a critical ts@t can
be observed by other threads.

2. protected uses: if the use of a variable is protected by a definition localte trit-
ical section, then definitions coming from concurrent catisections will not be
observed in this thread.

These two conditions allow the removal of superfluous cardliiges which in turn
may lead to the complete removal effunctions, thus creating more opportunities
for optimization [12]. The mutex synchronization analymsodifies every node in the
flowgraph so that they contain a use for each lock varidlfleock andunl ock nodes
already contain a definition and a use 19r To determine whether or not a flow graph



noden is protected by lock, we compute reaching definition information for the use
of L atn. If at least one of the reaching definitions comes fronuahock node or if
there are no reaching definitions, then nads not protected by lock [12].

Mutex bodies are defined in terms of lock-protected nodegeineral, a mutex
body By, (N) for lock variableL is a multiple-entry, multiple-exit region of the graph
that encompasses all the flowgraph nodes that are protegi@ddmmon set of ock
nodes (V). In contrast, previous work [8, 11] has treated mutex bedie single-entry,
single-exit regions. A mutex structure for a lock varialilés the set of all the mutex
bodies forL in the program.

4 Lock-Independent Code Motion

Lock-Independent Code Motion (LICM) is a code motion tecjua that attempts to
minimize the amount of code executed inside a mutex bodg djtimization analyzes
each mutex body to find code that can be moved outside. If &rtti®f the transforma-
tion a mutex body only contains unlock nodes, theri thek andunl ock instructions
are removed.

An expressior¥ inside a mutex bodyBy, (V) is lock-independent with respect to
L if moving E outsideB,,(N) does not change the meaning of the program. Similarly,
a statement (or group of statemenis} lock independent with respect foif all the
expressions and definitions srare lock-independent. A flowgraph nodés lock inde-
pendent if all its statements are lock-independent. Thegptof lock-independence is
similar to the concept of loop-invariant code for standaal optimization techniques.
Loop invariant computations compute the same result winditley are inside the loop
or not. Analogously, lock-independent code computes theesasult whether it is in-
side a mutex body or not. For instance, a statera¢hat references variables private to
the thread will compute the same value whether it is executgide a mutex body or
not. This is also true if references globally shared variables not modified by angroth
thread concurrent with.

Lock-independent code is moved to special nodes caifesiutex and postmutex
nodes. For every mutex body;, (V) there is a premutex node, denotedmutez (n;),
for eachl ock noden; € N. Each premutex nodgremutex(n;) immediate dom-
inates its associatedock noden;. Similarly, there is a postmutex node, denoted
postmutez(z;) for everyunl ock nodez;. Postmutex nodes are created as immedi-
ate post-dominators of each exit nade

4.1 Moving Statementsto Premutex Nodes

Given a lock-independent statemeritside a mutex bodyy, (IV), LICM will attempt
to moves to premutex or postmutex nodes B, (/V). The selection of ock nodes to
receive statementin their premutex node is done satisfying the following cibinds
(proofs of correctness are available separately [12]):

Protection. Candidaté ock nodes are initially selected among all theck nodes in
N that reach the node containinddenotednode(s)). This condition provides an
initial set of candidaté ock nodes calledrotectors(s).



Reachability. Sinces is reached by all the nodes protectors(s), there is a con-
trol path between eadhock node inprotectors(s) andnode(s). Therefore, when
statement is removed from its original location, the statement mustdy@aced
on every path from eachock node tonode(s). This implies thats may need to
be replicated to more than one premutex node.

To determine whicH ock nodes could receive a copy efwe perform reacha-
bility analysis among thé ock nodes reaching (protectors(s)). This analysis
computes a partition oprotectors(s), called receivers(s), that contains all the

| ock nodes that may receive a copy of statemenThe selection of receiver
nodes is done so that (a) there exists a path betwesrd everyl ock node in
protectors(s), and (b) instances afoccur only once along any of these paths (i.e.,
s is not unnecessarily replicated).

Algorithm 1 computes all the different setslabck nodes that may receive a lock-
independent statemeastin their premutex nodes. Basically, the algorithm com-
putes reachability sets among the nodegnntectors(s). The setprotectors(s)

is partitioned intok partitions P, P», ... P,. Nodes in each partitio®’; cannot
reach each other but put together they reach or are reachegely other node in
protectors(s). These patrtitions are the setslaick nodes that can receive a copy
of s in their premutex nodes.

Data Dependencies. When moving a statemeastto one of the receiver sets feythe
motion must not alter the original data dependencies forstaiement and other
statements in the program. H; is the selected receiver set fortwo restrictions
must be observed:

1. No variable defined by may be used or defined along any path frande(s)
to every node inP;.
2. No variable used by may be defined along any path fromade(s) to every
node inp;.
These two restrictions are used to prune the set of receiwvdesrcomputed in
Algorithm 1. Notice that since the program is in CSSAME fornfunctions are
also considered definitions and uses for a variable.
When more than one statement is moved to the same premutex thedoriginal
data dependencies among the statements in the same premd&rust also be
preserved. This is accomplished by maintaining the origaoatrol precedence
when moving statements into the premutex node.

Itis also possible to move statements forward to postmutebes of a mutex body
B, (N). The analysis for postmutex nodes is similar to the previase. The condi-
tions are essentially the reverse of the conditions reqdoepremutex nodes [12].

The LICMS algorithm scans all the mutex bodies in the progl@wking for lock-
independent statements to move outside the mutex body.l&ekiindependent state-
ments is checked against the conditions described previoustedd—15 in Algorithm
2 determine the sets of premutex receiversstorhe initial set of candidates computed
by Algorithm 1 checks every lock node in a mutex body agaiasheother looking for
paths between them.

Notice that it might be possible that a statement can be mmvkdth the premutex
and the postmutex nodes. In that case a cost model shoutdnite¢evhich node is more



Algorithm 1 Compute candidate premutex nodescéivers).

INPUT: A mutex bodyBy, (N) and a lock-independent statement
OUTPUT. A list of receiver sets. Each receiver g8t containd ock nodes whose premutex nodes may recgive

1: protectors(s) « setofl ock nodes that reach.

2. Q « protectors(s)

k1

4: whileQ # 0 do

5. n; < firstnode inQ

6:  P(k) « {ni}

7: removen; from Q /* Add to P(k) all the nodes that are nobnnected with n; */
8: foreachnoden; € Q and Q # 0 do

9 if (there is no patm; — n;) and (there is no patm; — n;) then

10: P(k) « P(k) J{n;}

11: removen; from Q

12: end if

13: endfor

14: k«k+1

15: end while

16: return receivers < P(1), P(2),...,P(k —1)

convenient. We will base our cost model on the effects of mktention. Suppose that
there is high contention for a particular lock. All the staents moved to premutex
nodes will not be affected by it because they execute befoyeisition of the lock.
However, statements moved to the postmutex node will beyddldithere is contention
because they execute after the lock has been releasedfdreerehen a statement can
be moved to both the premutex and postmutex nodes, the pegmatle is selected.

The basic mechanism for moving statements outside mutelebodn be used to
move lock-independent control structures. Control sticeet are handled by checking
and aggregating all the nodes contained in the structuceargingle super-node and
treating it like a single statement. After this process,dkithm 2 can be used to hoist
the structures outside mutex bodies [12].

4.2 LICM for Expressions

If hoisting statements or control structures outside misiadies is not possible, it may
still be possible to consider moving lock-independent sypressions outside mutex
bodies. This strategy is similar to moving statements (Atgm 2) with the following
differences:

1. Sub-expressions do not define variables. They only reaablas or program con-
stants.

2. If a sub-expression is moved from its original locatidre tomputation performed
by the expression must be stored in a temporary variableentdsy the compiler.
The original expression is then replaced by the temporatigbke. This is the same
substitution performed by common sub-expression andgdaeilundancy elimina-
tion algorithms [1, 3].

3. Contrary to the case with statements and control strasfuexpressions can only
be moved against the flow of control. The reason is that theavabmputed by the
expression needs to be available at the statement corgairéroriginal expression.



Algorithm 2 Lock-Independent Code Motion for Statements (LICMS).

INPUT.

ACCFG G = (N, E, Entry g, Ezitg) in CSSAME form with pre and postmutex nodes inserted in
every mutex body

OUTPUT. The program with lock-independent statements moved toctiteesponding premutex and postmutex

1:
2
3:
4.
5:
6.
7
8

e
HQ@. P

nodes
foreach lock variableL ; do
foreach mutex bodyBr, (N) € MutexStruct(L;) do

n; < node(L;)
foreach lock-independent statemesiteached by:; do

D < variables defined by
U, < variables used by

/* Determine which premutex nodes can receivé/
P <« receivers ofs at premutex nodes (Algorithm 1)
foreach P; € P do
foreach noden € P; do
if (any path between n and mnode(s) defines or uses
or (any path between andnode(s) defines a variable iV, ) then
removeP; from P
end if
end for
end for

/* Determine which postmutex nodes can receive/
X < receivers ofs at postmutex nodes
foreach X; € X do
foreach nodez € X; do
if (any path between z and node(s) defines or uses
or (any path between andnrode(s) defines a variable iV, ) then
removeX; from X
end if
end for
end for

/* Sets P and X contain sets of premutex and postmutex nodes that can eeceit/

if P # 0then
select oneP; € P (cost model or random)
removes from its original location
replicates to each nodex € P;

elseif X # 0 then
select oneX; € X (cost model or random)
removes from its original location
replicates to each node: € X;

end if

end for

/* Remove the mutex body if it is empty. */
if BL;(N) = 0 then

remove all thd ock andunl ock nodes ofBr,; (N)

end if
end for

41: end for

a variable

a variable

inDy)

inDy)




Algorithm 3 finds and removes lock-independent expressimm mutex bodies
in the program. The process of gathering candidate exmmesss similar to that of
SSAPRE, an SSA based partial redundancy elimination dlgor[3]. Mutex bodies
are scanned for lock-independent first-order expressiwhgh are expressions that
contain only one operator. Higher order expressions ardlediby successive iterations
of the algorithm.

Algorithm 3 Lock-Independent Code Motion for Expressions (LICME).

INPUT: A CCFG in CSSAME form
OUTPUT. The graph with lock-independent expressions moved todnesponding premutex nodes

1: repeat
2. foreach lock variablel; do

3 foreach mutex bodyB;,, (N) € My,; do

4 E «+— E U set of lock-independent expressiongin, , (V).

5: if E # 0 then

6: foreach expressiorE; € E do

7 P «+ premutex receivers faE; (Algorithm 1)

8 candidates «

9: foreach P; € P do

10: if Vn € P; : (n DOM node(E;)) or (node(E;) PDOM n) then

11: candidates «+ P;

12: stop looking for candidates
13: end if

14. end for

15: if candidates # (0 then

16: insert the statementt; = F; in all the premutex nodes férock nodes incandidates
17: end if

18: end for

19: end if

20: end for

21:  endfor

22: [*Replace hoisted expressions inside each mutex body. */
23:  foreach lock variableL ; do
24: foreach mutex bodyB;,, (N) € M, do

25: replace hoisted expressionsiy, ; (V) with their corresponding temporaries
26: end for
27:  endfor

28: until no more changes have been made

Once lock-independent expressions are identified, theithigolooks for suitable
premutex or postmutex nodes to receive each expression.baenee that since ex-
pressions can only be hoisted up in the graph, it is not nacg$s consider postmutex
nodes when moving lock-independent expressions. Dabk nodes are considered by
the algorithm. Furthermore, the candidai@ck must dominate or be post-dominated
by the node holding the expression (lires 13 in Algorithm 3).

The acceptable receiver sets are stored in thessetidates. It can be shown that in
this case, the algorithm for computing receiver premutedasg(Algorithm 1) will find
none or exactly one set biock nodes that can receive the expression in their premutex
nodes [12].

Figure 1 shows an example program before and after runnmg &M algorithm.
When LICM is applied to the program in Figure 1(a), the firsaph of the algorithm



moves the statement at lileand the assignment = 0 to the premutex node. The
statement at lin@0 is sunk to the postmutex node resulting in the equivalengpim
in Figure 1(b). There is still some lock-independent cod¢éhim mutex body, namely
the expressiong < M at line7, the statemeni++ at line7 and the expressiog(;j] +
sqrt(a) = sqrt(b) at line8. The only hoistable expressiondsrt(a) * sqrt(b) because
it is the only expression with all its reaching definitionggide the mutex body (Figure
1(c)). Note that a loop-invariance transformation wouldéhdetected this expression
and hoisted it out of the loop. LICM goes a step further andtsdahe expression outside
the mutex body.

1 double X[]; /* sharedx/ 1 double X[]; /* sharedx/ 1 double X[]; /* sharedx/
2 parloop (i, 0, N) { 2 2 parloop (i, 0, N) {
3 double a b; /* local x/ 3 parloop (i, 0, N) { 3 double a b; /* local x/
4 double y[]; /+ local x/ 4 double a b; /x+ local x/ 4 double y[]; /* local */
5 lock(L); 5 double y[]; /* local x/ 5 b =a=x* sin@);
6 b =a=x* sin@); 6 6 j=0;
7 for =0;j] < M;j++) { 7 .. 7t = sgr(@ * sqrib);
8 X0l = il + sa@ 8 b= axsina); 8 lock(L);
* sqri(b); 9 j=0 9 for ] < M;j++) {

9 } 10 lock(L); 10 X[l = ylil + t;
10 a =yl 11 for (j < M;j++) { 1}
11 unlock(L); 12 X[i] = y[i] + sqr(a) 12 unlock(L):
12 } * sqri(b); 13 a = y[j];

3 3 14 }

14 unlock(L);

15  a=y[i;

16 ...
17 }

(a) Program before LICM. (b) LICM on statements. (c) LICM on expressions.

Fig. 1. Effects of lock-independent code motion (LICM).

The individual LICM algorithms can be combined into a singl€M algorithm.
There are four main phases to the algorithm. The first phases|for mutex bodies
that have nothing but lock-independent nodes. These arsirtifest cases. If all the
nodes in a mutex body are lock-independent, thenl thek operations at the lock
nodes and thenl ock operations in the body can be removed. The next three phases
move interior lock-independent statements, control $tmes and expressions outside
the mutex bodies in the program.

5 Mutex Body L ocalization

Consider a mutex bodj;, that modifies a shared variablé (Figure 2(a)). With the

exception of the definition reaching the unlock node3gf, all the modifications done
to V inside the mutex body can only be observed by the thread eTdvey, it is legal to

create a local copy df and replace all the referencesifanside the mutex body to ref-
erences to the local copy. We call this transformatimiex body localization (MBL).



double V = 0; double V = 0; double V = 0; double V = 0;

parloop (i, 0, N) { parloop (i, 0, N) { parloop (i, 0, N) { parloop (i, 0, N) {
double x, y[]; double x, y[], p-V; double x, y[], p-V; double x, y[], p-V;
int i; int i; int i; int i;
lock(L); lock(L); p_vV = 0;
lock(L); p_vV = V; p_vV = 0; i=0;
i=0; i=0; i=0; while (p_V <= x) {
while (V <= x) { while (p_V <= x) { while (p.V <= x) { p-V = p.V + y[i++];
V =V + y[i++]; p_V = p_V + yli++]; p_V = p_V + yli++]; }
} } lock(L);
unlock(L); VvV = pV; V =V +pV; V =V +pV;
e unlock(L); unlock(L); unlock(L);
} } }

(a) A mutex body be- (D) After localization. (c) After  reduction  (d) After LICM.
fore localization. recognition.

Fig. 2. Applications of mutex body localization.

While LICM looks for lock-independent code, MBL createskandependent code by
introducing local copies of a shared variable. The basiesfiarmation is straightfor-
ward:

1. At the start of the mutex body a local copy of the sharedabdeiis created if there
is at least one use for the variable with reaching definitmutside the mutex body.

2. At the mutex body exits, the shared copy is updated fronmidbal copy of the
variable if at least one internal definition of the variabéaches that particular
unlock node.

3. All the interior references to the shared variable are ifiediso that they reference
the local copy.

Notice that this transformation is legal provided that tlileced references are
always made inside mutex bodies. Otherwise, the transtismaight prevent memory
interleavings that were allowed in the original program.

Algorithm 5 makes local copies of a variahlénside a mutex body, (V) if the
variable can be localized. To determine whether the vagialgian be localized it calls
Algorithm 4 (a subroutine of Algorithm 5) which returnRuE if a can be localized
inside mutex body3,, (). The localization algorithm relies on two data structutes t
can be built during the rewriting phase of the CSSAME algorithm:

exposedUses(IN) is the set of upward-exposed uses from the mutex bBdyN).
This set is associated with the entry node&/in
reachingDefs(X) is the set of definitions that can reach the exit nallesf B, (N).

Algorithm 5 starts by checking whether the variable can lmaliaed (linesl — 4).
It then checks where the local copies are needed. If thenepavard-exposed uses of
a copy is needed at the start of the mutex body (Ihesl6). If there are definitions of



a reaching an exit node, the shared copy @fiust be updated before exiting the mutex
body (linesl7 — 29). The final phase of the algorithm updates the interior exiees to

a to be references tp_a (lines30 — 34). After this phase, the CSSAME form for the
program has been altered and it should be updated. The sitwpdg to do this is to
run the CSSAME algorithm again. However, this might be expanif the localization
process is repeated many times.

An alternate solution is to incrementally update the CSSAbti after the variable
has been localized. Although this is generally considerealrd problem, the following
are some guidelines that should be considered when perigram incremental update
of the CSSAME form:

1. If the local copy is created at the start of the mutex bddy,dtatemenp_a = a
contains a use af. This use of: will have the same control reaching definition that
the upward-exposed uses @have. Notice that all the upward-exposed uses of
have the same control reaching definition.

Since this statement has a conflicting use. ot requires ar function. The argu-
ment list to thisr function is the union of all the arguments to all théunctions

for a inside the mutex body. Notice that thdunctions fora should be for upward-
exposed uses of. This is because the program is in CSSAME form and all con-
flicting references ta are made inside mutex bodies of the same mutex structure
(i.e.,a is localizable).

2. All the 7 functions fora inside the mutex body must disappear because all the
interior references ta are replaced by referencesiau.

3. All the interior¢ functions fora must be converted int¢ functions forp_a.

4. If the shared copy is updated at the end of the mutex bodystdtement = p_a
contains a use gi_a whose control reaching definition should be the definition of
p_a reaching the exit node.

Algorithm 4 Localization testfocalizable).

INPUT: A variablea and mutex bodyBy, (N)
OUTPUT. TRUE if a can be localized i3, (N), FALSE otherwise

1: My «+ mutex structure containingr, (V)

2: I* Check every conflicting referenceto a in the program. All the conflicting */

3: /* references tax must occur inside mutex bodies 81, , otherwiseu is not localizable. */
4: foreach conflicting reference € Refs(a) do

5 /* If we cannot findr in any of the mutex bodies a¥/r, , thena is not localizable. */

6: protected < FALSE

7. foreach mutex bodyB (N') € M;, do

8: if node(r) is reached by somleock node inN' then
9: protected < TRUE

10: end if

11: endfor

12:  if not protected then

13: return FALSE

14: endif

15: end for

16: /* All the references ta: are protected. Therefore,is localizable. */
17: return TRUE




Algorithm 5 Mutex body localization.

INPUT: (1) An explicitly parallel program® in CSSAME form, (2) A variable: to be localized, (3) A mutex body
Br(N)
OUTPUT. By, () with variablea localized

. I* Check if a can be localized (Algorithm 4) */
. if not localizable(a, B, (N)) then
return
end if
. [* Check for upward-exposed uses®fSince the program is in CSSAME form, */
. I* upward-exposed uses have already been computed. If dnerd
. I* upward-exposed uses afthen we need to make a local copymht the start ofB,, (V). */
. needEntryCopy < FALSE
. foreach useu € ezposedUses(IN) do
if u is a use ofz then
need EntryCopy < TRUE
end if
3: end for
. if needEntryCopy then
insert the statementa = a at the start of the mutex body
16: endif
17: /* Check if any definition ofa reaches the exit nodes &1, (N). */
18: /* Since the program is in CSSAME form, the definitions thatale the exit nodeX */
19: /* have already been computed. If a definition */
20: /* of a reachesc, we need to make a copy afbefore leaving the mutex body. */
21: needEzitCopy «+ FALSE
22: foreach definitiond € reachingDefs(X) do
23: if dis a definition ofa then

e
R RREEOXNOU RWNE

24 need EzitCopy < TRUE
25: endif
26: end for

27: if needEzitCopy then

28: insert the statement = p_a at the exit nodes of the mutex body
29: end if

30: /* Update references ta inside the mutex body to reference */
31: i*the local versionp, instead of the shared versian*/

32: foreach reference ta: inside Bz, (N) do

33:  replacea with p_a

34: end for

35: update CSSAME information for all referencesytas inside By, (V)

The MBL transformation by itself does not necessarily inyarthe performance of
a program but it opens up new optimization opportunities Tiain benefit of local-
ization is that it might create more lock-independent cdetw. instance, if a thread
contains read-only references to a variable localizing V' will make those reads
into lock-independent operations which in turn might make whole statement lock-
independent. Consider the sample program in Figure 2(dgrAdcalization (Figure
2(b)), most statements inside the mutex body foare lock-independent. However,
none can be moved outside because of the read and write iopsréd the shared
variableV at the fringes of the mutex body. If the compiler incorposagereduction
recognition pass, it is possible to do the reduction locaiig only updaté” at the end
(Figure 2(c)). Now all the lock-independent code in the muiedy can be moved to
the premutex node resulting in the equivalent program infe@(d).



6 Experimental results

The algorithms discussed in this paper have been implemiinta prototype compiler
for the C language using the SUIF compiler system [5]. Outinu@ system leverages
on the SUIF runtime system to execute the parallel program.

Once the program has been parsed by the SUIF front-end, thpiles creates the
corresponding CCFG and its CSSAME form. We do not transfdrenibput program
into SSA form. Instead we use factored use-def chains [1ffdrdlowgraph and display
the source code annotated with the appropriatend ¢ functions (variables are not
renamed but referenced using line number information indhieespondingr or ¢
functions). The CCFG can be displayed using a variety oflgragualization systems.
The CSSAME form for the program can also be displayed as aioropEinally, the
compiler incorporates mutual exclusion validation teciugis to warn the user about
potential problems with the synchronization structurenaf program [14].

Synchronization overhead is sometimes exacerbated byansixe implementa-
tion of| ock andunl ock operations. To address this problem, several techniques ha
been proposed to implement more efficient locking primgi{2 16]. But there is an-
other source of overhead that even the most efficient impiéatien cannot alleviate:
contention. Lock contention occurs when the demand for topdatr lock variable is so
high that threads spend a significant amount of time waitimgther threads to release
the lock. The techniques for eliminating superfluous syantmation operations devel-
oped in this paper can complement the benefits of using afeetffiocking mechanism.

6.1 Water

The Water application simulates forces and potentials irysiesn of liquid water
molecules. The simulation is done over a specified numbema-steps until the sys-
tem reaches equilibrium. Mutual exclusion synchronizai® used when computing
inter-molecular interactions and for keeping a global shat ts computed every time-
step.

To study the effects of LICM in Water, we performed experinsethat varied the
total number of moleculesY), the number of molecule lockd{L), and, the number
of simulation time-steps7S). Experiments were performed on an SGI PowerChal-
lenge with 8 processors and 384Mb of memory. The implemiemaises SGI native
threads ¢pr oc) and hardware lockau{ ock). All the experiments were executed on
8 processors with no other system activity.

The first experiment studies the performance effects of LI&Ma function of syn-
chronization overhead. As the number of time-steps ine®aso does synchroniza-
tion overhead. Table 1 shows the speedups obtained as aofumétthe number of
time-steps and number of molecules simulated. Notice hevgpleedups obtained with
LICM are lower when a larger number of molecules are simdlatéis is caused by the
larger computation to synchronization ratio in the largealppem. Also, by restricting
the number of molecule locks available we are increasinkjéonitention. Naturally, as
the number of available locks increases, the effects of LEZ®diminished.

2 A preliminary version is available &t t p: / / www. ¢s. ual bert a. ca/ ~j onat han/ CSSAVE/



64 molecules (10 molecule locks®d16 molecules (10 molecule locks)

Time| no LICM |with LICM | Relative|| no LICM | LICM Relative
stepstime (secsjtime (secs) Speedup|time (secstime (secs) Speedup
70 157 144 1.09 1527 1463 1.04
80 183 171 1.07 1772 1763 1.00
100 235 219 1.07 2344 2285 1.02
120 296 269 1.10 2827 2809 1.00

Table 1. Speedups obtained by LICM on Water as a function of the nurabsimulation time-
steps.

Since molecule locks are accessed more as the number ofteps-increases, the
contention on these locks also increases. To measure lot&raion we used the hard-
ware timers provided by the system to measure the averagg debhcquiring a lock.
We then computed the average delay overitthenolecule locks. This is shown in Ta-
ble 2. This table shows how average lock contention on theecwb locks increases
as a function of the number of simulation time-steps. Notiw although LICM re-
duces lock contention significantly, its impact on the mm&iof the program may not
be too noticeable if the ratio of computation to synchrotiarais high enough. Again
notice how lock contention decreases with the larger proldeze. This explains the
diminished effects of LICM on large problems.

64 molecules 216 molecules

no LICM|with LICM no LICM|with LICM
Time|avg delay avg delay|Ratio||avg delay avg delay|Ratio

steps (usecs)| (usecs) (usecs)| (usecs)
70 699 72| 9.71 561 68| 8.25
80 712 73| 9.75 575 72| 7.99
100 718 71 10.11 557 70| 7.96
120 729 85| 8.58 564 62| 9.1Q

Table 2. Effects of LICM on lock contention in Water.

6.2 Ocean

Ocean studies eddy and boundary currents in large-scaknaoevements. Mutual
exclusion is used to update global sums and to access a glmadrgence flag used in
the iterative solver. The update of global sums is done withdame strategy used in
Water. A local sum is computed and aggregated to the glolmal su
To study the effect of MBL and LICM on this application, we gilified some rou-

tines in Ocean to compute global sums directly (the origgmagram computes global
sums by aggregating locally computed partial sums). We niie new version Sim-
ple Ocean. The intention is to demonstrate how some of thm@attions that are tradi-
tionally performed manually by the programmer can be autenhasing the techniques



developed in this paper. Table 3 shows the performance wepnents obtained by ap-
plying MBL and LICM to Simple Ocean. The program was execute@ processors

with four different ocean sizes and a time-stef1 &) seconds.

Ocean |no MBL+LICM |with MBL+LICM Relativq
size time (sec) time (sec) |Speedu

66 x 66 21 19 1.11
130 x 130 69 56 1.23
258 x 258 258 198 1.30
514 x 514 865 787  1.10

Table 3. Effects of MBL and LICM on Simple Ocean.

The performance improvements obtained on Simple Oceaig 4BL and LICM
are the same improvements obtained by the manual optimimatone in the original
program. The important point of this experimentis to shoat trsing the techniques de-
veloped in this paper it is possible to automatically optieninefficient synchronization
patterns. We do not expect experienced programmers to suik inefficient synchro-
nization, but this kind of code could be found in programsteri by a less experienced
programmer or generated from generic code templates ingr@muming environment.

7 Conclusions and future work

We have shown how the CSSAME form allows new optimizationapmities by tak-
ing advantage of the semantics imposed by mutual exclusiochsonization. In pre-
vious work we have shown how the reduction of memory confbct®ss threads can
improve the effectiveness of adapted scalar optimizaticategyies [13]. In this paper,
we have introduced two new optimization techniques thatspeifically targeted at
explicitly parallel programstock-Independent Code Motion (LICM) moves code that
does not need to be locked outside critical sectiond\utex Body Localization (MBL)
converts shared memory references into local memory neée®e We consider these
techniques a step towards a unified analysis and optimiz&tonework for explicitly
parallel programs. In turn this should facilitate the admpof high-level systems with
language-supported parallelism and synchronizations@sgystems typically provide
powerful abstractions that make parallel programmingezabiut those same abstrac-
tions often hinder performance. Experienced programnersgnize these limitations
and manually circumvent them by removing abstraction layerspeed-up their code.
With the techniques developed in this paper, we can tratiséeburden of these trans-
formations to the compiler.
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