
Tree SSA – A New Optimization Framework
for GCC

Diego Novillo
dnovillo@redhat.com
Red Hat Canada, Ltd.

NordU/USENIX 2003
Väster̊as, Sweden

February 2003



Goals of the Project

• Technical

1. Internal infrastructure overhaul.
2. Add new optimization features: vectorization.
3. Add new analysis features: mudflap.

• Non-technical

1. Improve maintainability.
2. Improve our ability to add new features to the optimizer.
3. Allow external groups to get interested in GCC.

Tree SSA 1



RTL based optimizers
C

trees
C

expander

RTLC++
trees

C++
expander

Java
trees

Java
expander

RTL
Optimizer

Object
code

• RTL is not suited for high-level transformations.

• Too many target features have crept in.

• Lost original data type information and control structures.

• Addressing modes have replaced variable references.

Tree SSA 2



Tree based optimizers

• GCC trees contain complete control, data and type information for the
original program.

• Suited for transformations closer the source.

– Control flow restructuring.
– Scalar cleanups.
– Data dependency analysis on arrays.
– Instrumentation.

• Problems.

– Each front end generates its own “flavor” of trees.
– Trees are complex to analyze. They can be freely combined and carry

a lot of semantic information and side-effects.

Tree SSA 3



Tree SSA Overview

Tree SSA

C
trees

C
genericize

C++
trees

C++
genericize

Java
trees

Java
genericize

GENERIC
trees gimplify GIMPLE

trees
GIMPLE
optimizer RTL

• GIMPLE trees can only be combined in a limited number of ways.

• They have no implicit side-effects.

• Full type information is preserved.

• GIMPLE trees are language/target independent.

Tree SSA 4



GIMPLE trees

d = a + b * c;

Original tree GIMPLE tree

=

+ d

*

b c

a

t1 = b * c;
d = a + t1;

=

* t1

=

+ d

b c t1 a

Tree SSA 5



SSA form – 1

• A program is in SSA form iff every USE of a variable is reached by no
more than one DEF.

• Compiler modifies flow graph to model SSA property.

a = foo ();

if (a > 3)

b = 5;

else
b = 6;

c = a + b;

a = foo ();

a > 3

b = 5; b = 6;

c = a + b;

a1 = foo ();

a1 > 3

b1 = 5; b2 = 6;

b3 = phi(b1, b2);
c1 = a1 + b3;

Tree SSA 6



SSA form – 2

➀ Build CFG.

➁ Find variable references.

➂ Build SSA web.

• Why is SSA so interesting?

1. It’s a sparse data structure that describes all the DEF/USE points in
the program.

2. Some data flow problems are trivial to solve using SSA:
– Is this definition dead?
– Is this use reached by any definition?

3. Several modern transformations are based on SSA.

Tree SSA 7



SSA form – 3

Most programs are not in SSA form and need to be converted

➀ Every time a variable is defined, it receives a new version number.

➁ Variable uses get the version number of their immediately reaching
definition.

➂ Ambiguities (i.e., more than one immediately reaching definition) are
solved by inserting artificial variables called φ-nodes (or φ-terms).

φ-nodes are functions with N arguments. One argument for each
incoming edge.

Tree SSA 8



Applications – Optimization

Original Constant Dead Code
Propagation Elimination

a1 = 10;

b1 = 3;

c1 = a1 + b1;

if (c1 < V1)

a2 = a1 + 3;

else
a3 = b1 + 10;

a4 = φ(a2, a3)
c2 = a4 − b1;

printf ("%d\n", c2);

a1 = 10;

b1 = 3;

c1 = 13;

if (13 < V1)

a2 = 13;

else
a3 = 13;

a4 = φ(a2, a3)
c2 = 10;

printf ("%d\n", 10);

printf ("%d\n", 10);

Tree SSA 9



Applications – Mudflap

• Instruments programs in GIMPLE form to detect memory access errors.

– Pointer/array dereferences.
– Addressed static/auto object lifetimes.

• Generates calls into runtime when errors are detected.

• Uses heuristics to work with uninstrumented code.

• Runtime (libmudflap)

– Tracks heap us and provides efficient checked versions of str* and
mem* function.

– Provides efficient checked versions of str* and mem* functions.
– Maintains live object database with names, bounds and statistics.

Tree SSA 10



Applications – Mudflap

Original Instrumented

{
char a;

int *b = (int *) & a;

b++;

*b = 5;

}

{
char a;

mf register (& a, sizeof(char), "file:3 a");
int *b = (int *) & a;

b++;

* ({int *ptr = b;

if (INLINE LOOKUP CACHE MISS (ptr, sizeof(int)))
mf check (ptr, sizeof(int));

ptr;}) = 5;

mf unregister (& a, sizeof(char));
}

Tree SSA 11



Current Status

• C and C++ front ends emit GIMPLE trees.

• SSA based constant propagation and dead code elimination working.

• Copy propagation, partial redundancy elimination, global value numbering
and value range propagation being implemented.

• Several compile time improvements over the last few weeks (20% faster
bootstraps since Jan22).

• Plan to merge infrastructure for GCC 3.5, provided we keep making the
same progress.

• In some (still rare) cases, tree SSA transformations simplify the program
enough to allow RTL optimizers to produce optimal code.

Tree SSA 12



TODO List

• Optimizations.

– Copy propagation (CP), Value Numbering (VN), Value Range
Propagation (VRP).

– Mudflap-specific optimizations.
– Loop transformations

loop canonicalization.
loop unswitching.
loop unrolling.

– Vectorization: Super-word level parallelism (SLP).

• Performance evaluation: profile and remove superfluous RTL passes.

• Explicit parallellism

– GOMP. New project recently started to implement OpenMP in GCC.
– http://savannah.nongnu.org/projects/gomp/

Tree SSA 13



Conclusions

• Tree SSA provides a new optimization framework to implement high-level
analyses and optimizations in GCC.

• Goals:

1. Provide a basic data and control flow API for optimizers.
2. Simplify and/or replace RTL optimizations. Improve compile times

and code quality.
3. Implement new optimizations and analyses that are either difficult or

impossible to implement in RTL.

• Currently implemented in the C and C++ front ends.

• Code lives in the FSF branch tree-ssa-20020619-branch.

• Project page http://gcc.gnu.org/projects/tree-ssa/

Tree SSA 14


