
Tree SSA – A New High-Level Optimization Framework
for the GNU Compiler Collection∗

Diego Novillo
Red Hat Canada

dnovillo@redhat.com

Abstract

In this paper we introduce Tree SSA, a
new optimization framework for the GNU
Compiler Collection (GCC) based on the
Static Single Assignment form. The pa-
per provides a brief historical perspective
on GCC’s development, the rationale be-
hind the new framework and its potential
applications. We will also discuss some of
the analyses and optimizations that are
being designed and implemented on top
of Tree SSA.

1 Introduction

In its 15 year history, GCC has evolved
from a relatively modest C compiler to a
multi-language compiler that can gener-
ate code for more than 30 architectures.
This diversity of languages and architec-
tures has made GCC one of the most pop-
ular compilers in use today.

The compiler is designed around two
main components: the front end, which
handles the processing of the source lan-
guage, and the back end, which handles
code optimization and final code gen-
eration. These two phases operate on
a language-independent representation of
the program called RTL (Register Trans-

∗NordU/USENIX 2003, Väster̊as, Sweden

fer Language). The diagram in Figure 1
provides an overview of the compilation
process in GCC.

This separation between language-
dependent and language-independent
phases has facilitated the creation of dif-
ferent language front ends and of several
ports to different architectures. Unfor-
tunately, GCC’s optimization framework
has not evolved in the same way. The
main goal of this project is to develop
a new framework for GCC to allow the
implementation of high-level analyses
and optimizations (that is, closer to
the source). We aim to design and
implement the new infrastructure around
well-known, published techniques. This
will improve our ability to add new
features and maintain the compiler.

2 Overview of the optimization
process

A compiler analyzes an input program
written in one language (source code) and
transforms it into a semantically equiv-
alent program in another language (ob-
ject code). During this translation an op-
timizing compiler applies certain trans-
formations to the input program to im-
prove its efficiency, which usually means
improving runtime performance.
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Figure 1: Existing compilation process in GCC.

Once the program syntax has been ver-
ified, the compiler generates intermedi-
ate code that is a more concise represen-
tation of the original program. All the
analyses and transformations performed
by the compiler are applied to this inter-
mediate representation. The amount of
detail provided by the representation de-
pends on the type of optimization being
performed. Optimizing compilers typi-
cally have more than one intermediate
representation, each suited for different
transformations. GCC uses two different
representations, namely abstract syntax
trees (also known as trees) and RTL (Reg-
ister Transfer Language).

The front end knows very little about
what the program actually does. Opti-
mization is possible when the compiler
understands the flow of control in the
program (control-flow analysis) and how
the data is transformed as the program
executes (data-flow analysis). Analysis
of the control and data flow of the pro-
gram allows the compiler to improve the
runtime performance of the code. Many
different optimizations are possible once
the compiler understands the control and
data flow of the program. The following
are a few of the most popular optimiza-
tion techniques used in standard optimiz-
ing compilers:

Algebraic simplifications. Expres-
sions are simplified using algebraic
properties of their operators and
operands. For instance, i + 1 − i is
converted to 1. Other properties like
associativity, commutativity and dis-
tributivity are also used to simplify
expressions.

Constant folding. Expressions for
which all operands are constant can
be evaluated at compile time and
replaced with their value. For in-
stance, the expression a = 4 + 3 − 8
can be replaced with a = −1. This
optimization yields best results when
combined with constant propagation.

Redundancy elimination. There are
several techniques that deal with the
elimination of redundant computa-
tions. Some of the more common
ones include:

Loop-invariant code motion. Com-
putations inside loops that pro-
duce the same result for every
iteration are moved outside the
loop.

Common sub-expression elimina-
tion. If an expression is com-
puted more than once on a
specific execution path and its
operands are never modified,
the repeated computations are



replaced with the result com-
puted in the first one.

Partial redundancy elimination. A
computation is partially redun-
dant if some execution path
computes the expression more
than once. This optimization
adds and removes computations
from execution paths to mini-
mize the number of redundant
computations in the program.
It encompasses the effects of
loop-invariant code motion and
common sub-expression elimi-
nation.

A final translation phase produces ma-
chine or assembly code for the target ar-
chitecture. Further optimizations are en-
abled during this translation. Register al-
location and code scheduling are typically
applied during this phase. Code schedul-
ing refers to a family of instruction re-
ordering techniques that take advantage
of specific features of the processor (for
example, pipelining, VLIW, super-scalar
features, etc).

3 Optimizing the tree represen-
tation

After GCC’s front end parses the input
program, the parse trees created by the
parser are transformed into a language-
independent representation called Regis-
ter Transfer Language (RTL), which is
ultimately optimized and converted into
the target’s native code. RTL is an
intermediate representation that can be
thought of as an assembly language for a
machine with an infinite number of regis-
ters.

Being a low-level representation, RTL
works well for optimizations that are close

to the target (for example, register alloca-
tion, delay slot optimizations, peepholes,
etc). However, many optimizing trans-
formations need higher level information
about the program that is not possible (or
very difficult) to obtain from RTL (for ex-
ample, array references, data types, refer-
ences to program variables, control flow
structures). Over time, some of these
transformations have been implemented
in RTL, but since the data structure is
not really prepared for this, the end re-
sult is code that is excessively convoluted,
hard to maintain and error prone.

To avoid the limitations of RTL with
respect to analyses and transformations
closer to the source, we decided to start
with the other intermediate representa-
tion that GCC builds during compila-
tion, namely Abstract Syntax Trees (AST
or Trees). GCC’s Tree representation
contains detailed information about data
types, variables and control structures of
the original program. Optimizing the tree
representation in GCC is appealing be-
cause, (a) it facilitates the implementa-
tion of new analyses and optimizations
closer to the source, (b) it simplifies the
work of the RTL optimizers, potentially
speeding up the compilation process or
improving the generated code.

Although GCC parse trees provide very
detailed information about the original
program, they are not suitable for opti-
mization because of the following reasons:

1. Lack of a common representa-
tion. There is no single tree rep-
resentation shared by all the front
ends. This means that each lan-
guage would require a different im-
plementation of the same infrastruc-
ture. This would be a maintenance
nightmare and would make it very
difficult to add new front ends to
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Figure 2: Proposed tree optimization process.

GCC.

2. Side effects. Parse trees are allowed
to have side effects. For instance, the
following expression will have differ-
ent semantics in GCC’s front ends for
C and Java

b = a + ++a

Note that this expression is not
valid according to the C language
standard. Its behaviour is unde-
fined. However, it helps illustrate
the point about the different front
ends. GCC’s C front end evalu-
ates the pre-increment operator be-
fore the assignment. Therefore, the
above assignment is equivalent to

a = a + 1
b = a + a

In Java, however, the expression is
evaluated from left to right. There-
fore, the above assignment is equiv-
alent to

tmp = a
a = a + 1
b = tmp + a

This means that the tree analysis
and optimization phases would have
to understand the semantics of ev-
ery source language, which takes us
to the multiple implementation sce-
nario described above.

3. Structural complexity. Parse
trees may combine in arbitrarily

complex patterns, which may obfus-
cate the control flow of the program.
For instance, the following expres-
sion is represented in a single parse
tree

if ((a = (b > 5) ? c : d) >
10)

. . .

When building the control flow
graph for this code fragment, the
compiler will need to realize that
the predicate for the if() statement
contains different flows of control of
its own. Furthermore, this expres-
sion requires more than one basic
block to be represented, which is a
complete impossibility.

To overcome these limitations, we have
introduced two new tree-based intermedi-
ate representations called GENERIC and
GIMPLE. GENERIC addresses the lack
of a common tree representation among
the various front ends. GIMPLE solves
the side-effect and complexity problems
that facilitate the discovery of data and
control flow in the program. Both are de-
scribed in the next section.

3.1 GENERIC and GIMPLE

Although some front ends share the
same tree representation, there is no sin-
gle representation used by all GCC front
ends. Every front end is responsible



1 a = foo ()
2 b = a + 10
3 c = 5
4 if (a > b + c)
5 c = b++ / a + (b * a)
6 bar (a, b, c)

(a) GENERIC form.

1 a = foo ()
2 b = a + 10
3 c = 5
4 T1 = b + c
5 if (a > T1)
6 {
7 T2 = b / a
8 T3 = b * a
9 c = T2 + T3

10 b = b + 1
11 }
12 bar (a, b, c)

(b) GIMPLE form.

Figure 3: First stage of analysis. Conversion to GIMPLE form.

from translating its own parse trees di-
rectly into RTL. To address this prob-
lem, we have introduced a new represen-
tation, named GENERIC, that is merely
a superset of all the existing tree repre-
sentations in GCC. Instead of generat-
ing RTL, every front end is responsible
for converting its own parse trees into
GENERIC trees. Since GENERIC trees
are language-independent, all the seman-
tics of the input language must be explic-
itly described by each front end. Some
of these semantics are translated in the
“genericize” pass, while others are trans-
lated in the “gimplification” pass.

The conversion to GENERIC removes
language dependencies from the program
representation. However, it does not ad-
dress the structural complexity problem
described in the previous section. Be-
fore manipulating the representation, the
compiler breaks down GENERIC trees
into a simpler representation that is ul-
timately analyzed and optimized (Figure
2). This new representation, called GIM-
PLE, is lexically identical to GENERIC
but it has a different grammar that is

derived from the SIMPLE representation
used by McGill University’s McCAT com-
piler [3].

To illustrate the differences between
GENERIC and GIMPLE, consider the
following program. Figure 3(a) shows
the original program in GENERIC form,
while Figure 3(b) shows the same pro-
gram in GIMPLE form. Notice how the
GIMPLE version is equivalent, but indi-
vidual expressions are simpler and more
regular in structure. For instance, a
statement in GIMPLE form is guaran-
teed to have no more than three variable
references. GIMPLE expressions are also
guaranteed to contain no side-effects (for
example, the post-increment operation in
line 5 of Figure 3(a) has been explicitly
exposed by the conversion to GIMPLE
form).

3.2 The Control Flow Graph

The Control Flow Graph (CFG) is a
directed graph that models the execution
of the program. Each node in the CFG,



ENTRY

#0
  1    a = foo ();
  2    b = a + 10;
  3    c = 5;
  4    T1 = b + c;

  

#1
  5    if (a > T1)

  

#3
  12    bar (a, b, c);

  

#2
  7    T2 = b / a;
  8    T3 = b * a;
  9    c = T2 + T3;
  10    b = b + 1;

  

EXIT

Figure 4: CFG for the program in Figure 3(b).

called a basic block, represents a non-
branching sequence of statements (execu-
tion starts with the first instruction in the
group and it leaves the block only after
the last instruction has been executed).
The edges of the graph represent possi-
ble execution paths in the flow of control
(conditionals, loops, etc.).

The control flow graph for the example
program in Figure 3(b) is shown in Fig-
ure 4. As part of the optimization infras-
tructure, we are implementing the nec-
essary support data structures and func-
tions needed to manipulate the CFG and
the statements contained in basic blocks.

3.3 Static Single Assignment form

The CFG summarizes the possible ex-
ecution paths of the program, but opti-
mizers also need information about data
flow (where variables are modified and
used). To represent the flow of data in the
program, we use a representation called
Static Single Assignment (SSA). This is
a relatively new intermediate representa-
tion that is becoming increasingly popu-
lar because it leads to efficient algorith-
mic implementations of data flow analyz-
ers and optimizing transformations [2].
The SSA form is based on the premise
that program variables are assigned in ex-
actly one location in the program. Mul-
tiple assignments to the same variable
create new versions of the variable. In
essence, the SSA form links every use of a



1 a = foo ()
2 b = a + 10
3 c = 5
4 T1 = b + c
5 if (a > T1)
6 {
7 T2 = b / a
8 T3 = b * a
9 c = T2 + T3

10 b = b + 1
11 }
12 bar (a, b, c)

(a) Original GIMPLE program.
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(b) Program in SSA form.

Figure 5: Static Single Assignment form for the program in Figure 3(b).

variable in the program to its correspond-
ing unique definition. This allows very
efficient implementations of analyses and
optimizing transformations.

Actual programs are seldom in SSA
form initially because variables tend to
be assigned multiple times; not just once.
An SSA-based compiler modifies the pro-
gram representation so that every time a
variable is assigned in the code, a new
version of the variable is created. Dif-
ferent versions of the same variable are
distinguished by subscripting the variable
name with its version number. Variables
used in the right-hand side of expressions
are renamed so that their version num-
ber matches that of the most recent as-
signment. Notice that it is not always
possible to statically determine what is
the most recent assignment for a given
use. These ambiguities are the result of
branches and loops in the program’s flow
of control. To solve them, the SSA form
introduces a new type of operation called
φ (phi) functions. φ functions merge mul-
tiple incoming assignments to generate a
new definition; they are placed at points

in the program where the flow of control
causes more than one assignment to be
available.

Figure 5 shows the program from Fig-
ure 3(b) and its corresponding SSA form
(Figures 5(a) and 5(b) respectively). No-
tice that every assignment in the pro-
gram introduces a new version number for
the corresponding variable. Every time a
variable is used, its name is replaced with
the version corresponding to the most re-
cent assignment for the variable. Now
consider the use of variable b in the call
to bar() (line 12). There are two assign-
ments to b that could reach line 12; the
assignment at line 2 and the assignment
inside the if statement at line 10. To
solve this ambiguity, SSA introduces a
new artificial definition for b by means of
a φ function. This new definition merges
both assignments to create a new version
of b (b3). The semantics of the φ function
dictate that b3 will take the value from
one of the function’s arguments. The spe-
cific argument returned by the φ function
is not known until runtime.



It is important to note that φ functions
are not actually emitted in the final code.
They are only an analysis artifact used
by the compiler to maintain the single
assignment property of the program and
summarize the presence of multiple defi-
nitions available at a specific point in the
program. The current SSA implementa-
tion is based on the work on factored use-
def chains (FUD chains) [4].

4 Implementation

The concepts described in the previ-
ous sections are being implemented on
a development branch of GCC. The im-
plementation consists of two fundamental
components:

1. The base infrastructure provides
a core of basic functions and data
structures to analyze and manipulate
the program.

2. The optimizers transform the pro-
gram using the information provided
by the base infrastructure.

There are three main components to
the basic infrastructure: the gimplifier,
the control flow graph module and the
SSA module. Each module builds on top
of the previous one.

• The gimplifier module is responsible
for converting the GENERIC repre-
sentation into GIMPLE. It also pro-
vides functions for generating GIM-
PLE statements and testing whether
a given statement or expression is in
GIMPLE form.

• The CFG module builds the flow
graph for the program and provides

functions for manipulating it. Addi-
tionally, it can simplify the flow of
the program in the presence of un-
reachable regions or control expres-
sions made superfluous by an opti-
mization.

• The SSA module finds all the vari-
ables referenced in the program and
builds the SSA form described in sec-
tion 3.3. It provides all the neces-
sary functions and data structures
to compute, among other things,
aliasing, reaching definitions, and
reached-uses information. It also
provides the functionality needed to
update and/or rebuild data flow
information after an optimization
makes changes to the program.

Currently, we have three optimizations
at various degrees of development:

1. Sparse Conditional Constant Propa-
gation (CCP) [5] is an efficient for-
mulation of the constant propaga-
tion problem that is also capable of
finding constant conditionals and un-
reachable code.

2. Partial Redundancy Elimination
(PRE) [1] finds expressions that
are computed more than once and
re-writes them so that their values
are computed once and re-used as
necessary. In addition to removing
completely redundant computa-
tions, PRE has the ability to make
partially redundant computations
fully redundant, thus combining the
effects of global common subexpres-
sion elimination and loop invariant
code motion.

3. Dead Code Elimination (DCE) [2]
removes all statements in the pro-
gram that have no effect on its out-
put (assignments to variables that



bar()
{

T1 = "a = %d, b = %d, c = %d\n";
T2 = (char *)T1;
T3 = (const char *)T2;
printf (T3, a, b, c)

}

foo()
{

return 0;
}

main()
{

a = foo ();
b = 19;
c = 5;
T4 = b + c;
if (a > T4)
{

T5 = b / a;
T6 = b * a;
c = T5 + T6;
b = b + 1

};
bar (a, b, c)

}

Figure 6: Example program in GIMPLE form before optimization.

are never used again, conditional ex-
pressions with empty bodies, etc).

We are also developing a memory
checker called mudflap. This pass in-
struments every pointer and array ref-
erence in the program with boundary
checks. Mudflap is a combination of
compile-time instrumentation and run-
time library. The instrumented code con-
tains calls to the run-time library that
will be triggered when the program at-
tempts one of several illegal operations,
such as accessing an array out of bounds,
freeing the same block of memory more
than once, accessing unallocated memory,
leaking memory, etc.

To illustrate some of the capabilities of
the current implementation, we will show
the effects of constant propagation and
dead-code elimination with the full ver-
sion of the running example we have been
using (Figure 6)1. Figure 7 shows the ef-
fects of constant propagation on function
main(). Notice that few constants have
been propagated, mainly due to the pres-
ence of the calls to foo() and bar().

Now, we will combine the effects of
function inlining with constant propaga-
tion. Notice that now the constant prop-
agator can discover more constants and
is able to drastically reduce the code gen-
erated for main. Because the call to foo
always returns 0, the CCP pass can prove

1The code has been partially redacted to im-
prove legibility.



main()
{

a = foo ();
b = 19;
c = 5;
if (a > 24)
{

T5 = 19 / a;
T6 = a * 19;
c = T5 + T6;
b = 20

};
bar (a, b, c)

}

Figure 7: Function main after CCP and DCE (no inlining).

that the predicate for the if statement is
always false, rendering the body of the
if unreachable. When the control flow
graph clean-up routines and dead-code
elimination run, they reduce the function
to the code shown in Figure 8.

5 Conclusions

The tree SSA project provides a new
optimization framework to make it possi-
ble for GCC to implement high-level anal-
yses and optimizations. Currently, the
framework is in active development and
some optimizations have already been im-
plemented. The goals of this project in-
clude:

• Provide a basic set of data structures
and functions for optimizers to query
and manipulate the tree representa-
tion.

• Simplify and, in some cases, replace
existing optimizations that work on
the RTL representation but are not
really suited for it. By simplifying
the work for the RTL optimizers we

aim to improve compile times and
code quality.

• Implement new optimizations and
analyses that are either difficult or
impossible to implement in RTL.

By basing all the analyses and transfor-
mations on widely known published algo-
rithms, we are also trying to improve our
ability to maintain and add new features
to GCC. Furthermore, the use of stan-
dard techniques will encourage external
participation from groups in the compiler
community that are not necessarily famil-
iar with GCC.

We are also tracking the effects of the
tree SSA optimizers with periodic runs
of the SPEC benchmark suite (http://
www.spec.org/). Daily results of these
experiments can be found at http://
gcc.gnu.org/benchmarks/. Readers in-
terested in testing the current imple-
mentation or contributing to its devel-
opment are invited to visit the tree
SSA web page at http://gcc.gnu.org/
projects/tree-ssa/. This page con-
tains information for retrieving a copy of
the development branch in CVS, status of
the implementation and a list of “to-do”



main()
{

printf ("a = %d, b = %d, c = %d\n", 0, 19, 5);
}

Figure 8: Function main after constant propagation and dead-code elimination (with
inlining).

items.
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