
An Architectural Overview of GCC
Diego Novillo

dnovillo@redhat.com

Red Hat Canada

Linux Symposium
Ottawa, Canada, July 2006

22/07/06 2

Topics

1. Overview

2. Development model

3. Compiler infrastructure

4. Intermediate Representation

5. Current status and future work

22/07/06 3

Overview

● Key strengths
– Widely popular
– Freely available almost everywhere
– Open development model

● However
– Large code base (2.2 MLOC) and aging (~15 years)
– Difficult to maintain and enhance
– Technically demanding

● Recent architectural changes bring hope

22/07/06 4

Development Model

22/07/06 5

Development Model

● Project organization
– Steering Committee → Administrative, political
– Release Manager → Release coordination
– Maintainers → Design, implementation

● Three main stages (~2 months each)
– Stage 1 → Big disruptive changes.
– Stage 2 → Stabilization, minor features.
– Stage 3 → Bug fixes only (driven by bugzilla,

mostly).

22/07/06 6

Development Model

● Major development is done in branches
– Design/implementation discussion on public lists
– Frequent merges from mainline
– Final contribution into mainline only at stage 1

and approved by maintainers
● Anyone with SVN access may create a

development branch
● Vendors create own branches from FSF

release branches

22/07/06 7

Development Model

● All contributors must sign FSF copyright
release
– Even if only working on branches

● Three levels of access
– Snapshots (weekly)
– Anonymous SVN
– Read/write SVN

22/07/06 8

Compiler Infrastructure

22/07/06 9

Source code

<src>

 gcc

 libada

 libcpp

 libdecnumber

 libgfortran

 libgomp

 libiberty

 libmudflap

 libobjc

 libssp

 libstdc++-v3

 boehm-gc
 libffi
 libjava
 zlib

Front/middle/back end
Pre-processor

Stack Smash Protection runtime

Ada runtime

Java runtime

OpenMP runtime

Utility functions and generic data structures

Fortran runtime

Objective-C runtime

C++ runtime

Decimal arithmetic library

Pointer/memory check runtime

22/07/06 10

Compiler pipeline

GENERIC GIMPLE RTL Assembly

Front End Middle End Back End

SSA
Optimizer

Inter
Procedural
Optimizer

C

Fortran

Java

C++

RTL
Optimizer

Final Code
Generation

Call Graph
Manager

Pass
Manager

22/07/06 11

SSA Optimizers

● Operate on GIMPLE IL
● Around 100 passes

– Vectorization
– Various loop optimizations
– Traditional scalar optimizations: CCP, DCE,

DSE, FRE, PRE, VRP, SRA, jump threading,
forward propagation

– Field-sensitive, points-to alias analysis
– Pointer checking instrumentation for C/C++

22/07/06 12

RTL Optimizers

● Operate closer to the hardware
– Register allocation
– Scheduling
– Software pipelining
– Common subexpression elimination
– Instruction recombination
– Mode switching reduction
– Peephole optimizations
– Machine specific reorganization

22/07/06 13

Intermediate
Representation

22/07/06 14

GENERIC and GIMPLE

● GENERIC is a common representation
shared by all front ends
– Parsers may build their own representation for

convenience
– Once parsing is complete, they emit GENERIC

● GIMPLE is a simplified version of GENERIC
– 3-address representation
– Restricted grammar to facilitate the job of

optimizers

22/07/06 15

GENERIC and GIMPLE
GENERIC

if (foo (a + b,c))

 c = b++ / a

endif

return c

High GIMPLE

t1 = a + b

t2 = foo (t1, c)

if (t2 != 0)

 t3 = b

 b = b + 1

 c = t3 / a

endif

return c

Low GIMPLE

t1 = a + b

t2 = foo (t1, c)

if (t2 != 0) <L1,L2>

L1:

t3 = b

b = b + 1

c = t3 / a

goto L3

L2:

L3:

return c

22/07/06 16

GIMPLE

● No hidden/implicit side-effects
● Simplified control flow

– Loops represented with if/goto
– Lexical scopes removed (low-GIMPLE)

● Locals of scalar types are treated as
“registers” (real operands)

● Globals, aliased variables and non-scalar
types treated as “memory” (virtual operands)

22/07/06 17

GIMPLE

● At most one memory load/store operation
per statement
– Memory loads only on RHS of assignments
– Stores only on LHS of assignments

● Can be incrementally lowered (2 levels
currently)

22/07/06 18

SSA Form

Static Single Assignment (SSA)

● Versioning representation to
expose data flow explicitly

● Assignments generate new
versions of symbols

● Convergence of multiple
versions generates new one (Φ
functions)

a
1
 = 3

b
2
 = 9

if (i
3
 > 20)

a
3
 = a

1
 – 2

b
4
 = b

2
 + a

3

a
5
 = a

1
 + 1

a
6
 = Φ(a

3
, a

5
)

b
7
 = Φ(b

4
, b

2
)

c
8
 = a

6
 + b

7

22/07/06 19

SSA Form

● Rewriting (or standard) SSA form
– Used for real operands
– Different names for the same symbol are distinct

objects
– overlapping live ranges (OLR) are allowed

if (x
2
 > 4)

 z
5
 = x

3
 – 1

– Program is taken out of SSA form for RTL
generation (new symbols are created to fix OLR)

22/07/06 20

SSA Form

● Factored Use-Def Chains (FUD Chains)
– Also known as Virtual SSA Form
– Used for virtual operands.
– All names refer to the same object.
– Optimizers may not produce OLR for virtual

operands.

22/07/06 21

RTL

● Register Transfer Language
● Assembler for abstract machine with infinite

registers

b = a - 1

(set (reg/v:SI 59 [b])
 (plus:SI (reg/v:SI 60 [a]
 (const_int -1 [0xffffffff]))))

22/07/06 22

RTL

● Abstracts
– Register classes
– Memory addressing modes
– Word sizes and types
– Compare-and-branch instructions
– Calling conventions
– Bitfield operations
– Type and sign conversions

22/07/06 23

RTL

● Abstractions defined and controlled in
machine description file
gcc/config/<arch>/<arch>.md

● MD file defines all code generation mappings
(instruction templates)

● Target description macros describe hardware
capabilities (register classes, calling
conventions, type sizes, etc)

22/07/06 24

Current Status
and

Future Work

22/07/06 25

Current Status

● New Intermediate Representations decouple
Front End and Back End

● Increased internal modularity
● Lots of new features

– Fortran 95, mudflap, vectorizer, OpenMP,
inter/intra procedural optimizers, stack
protection, profiling, etc.

● Easier to modify

22/07/06 26

Future Work

● Static analysis support
– Extensibility mechanism to allow 3rd party tools

● Link time optimizations
– Write intermediate representation
– Read and combine multiple compilation units

● Dynamic compilation
– Emit bytecodes
– Implement virtual machine with optimizing JIT

22/07/06 27

Contacts

● Home page http://gcc.gnu.org/
● Wiki http://gcc.gnu.org/wiki
● Mailing lists

– gcc@gcc.gnu.org
– gcc-patches@gcc.gnu.org
– gcc-help@gcc.gnu.org

● IRC
– irc.oft.net/#gcc

http://gcc.gnu.org/
http://gcc.gnu.org/wiki
mailto:gcc@gcc.gnu.org
mailto:gcc-patches@gcc.gnu.org
mailto:gcc-help@gcc.gnu.org
irc://irc.oft.net/#gcc

22/07/06 28

Additional Implementation
Details

22/07/06 29

Statement Operands

● Real operands
– Non-aliased, scalar, local variables
– Atomic references to the whole object
– GIMPLE “registers” (may not fit in a physical

register)

double x, y, z;
z = x + y;

22/07/06 30

Statement Operands

● Virtual operands
– Globals, aliased, structures, arrays, pointer

dereferences.
– Potential and/or partial references to the object.
– Distinction becomes important when building

SSA form.
int x[10]
struct A y
x = V_MAY_DEF <x>
VUSE <y>
x[3] = y.f

22/07/06 31

Statement Operands

● Partial, potential and/or aliased stores
p = (cond) ? &a : &b
a = V_MAY_DEF <a>

b = V_MAY_DEF

*p = x + 1

● Partial, total and/or aliased loads
VUSE <s>

y = s.f

22/07/06 32

Alias Analysis

● GIMPLE only has single level pointers.
● Pointer dereferences represented by artificial

symbols ⇒ memory tags (MT).
● If p points-to x ⇒ p's tag is aliased with x.

MT = V_MAY_DEF <MT>

*p = ...

● Since MT is aliased with x:
x = V_MAY_DEF <x>

*p = ...

22/07/06 33

Alias Analysis

● Symbol Memory Tags (SMT)
– Used in type-based and flow-insensitive points-to

analyses.
– Tags are associated with symbols.

● Name Memory Tags (NMT)
– Used in flow-sensitive points-to analysis.
– Tags are associated with SSA names.

● Compiler tries to use name tags first.

22/07/06 34

Implementing Optimizations

● To implement a new pass
– Create an instance of struct tree_opt_pass

– Declare it in tree-pass.h

– Sequence it in init_tree_optimization_passes

22/07/06 35

Implementing Optimizations

● APIs available for
– CFG: block/edge insertion, removal, dominance

information, block iterators, dominance tree
walker.

– Statements: insertion in block and edge,
removal, iterators, replacement.

– Operands: iterators, replacement.
– Loop discovery and manipulation.
– Data dependency information (scalar evolutions

framework).

22/07/06 36

Implementing Optimizations

● Other available infrastructure
– Debugging dumps (-fdump-tree-...)
– Timers for profiling passes (-ftime-report)
– CFG/GIMPLE/SSA verification (--enable-checking)
– Generic value propagation engine with callbacks for

statement and Φ node visits.
– Generic use-def chain walker.
– Support in test harness for scanning dump files looking for

specific transformations.
– Pass manager for scheduling passes and describing

interdependencies, attributes required and attributes
provided.

