
GCC – An Architectural Overview
Diego Novillo

dnovillo@redhat.com

Red Hat Canada

OSDL Japan - Linux Symposium
Tokyo, September 2006

05/09/06 2

Topics

1. Overview

2. Development model

3. Compiler infrastructure

4. Current status and future work

05/09/06 3

Overview

● Key strengths
– Widely popular
– Freely available almost everywhere
– Open development model

● However
– Large code base (2.2 MLOC) and aging (~15 years)
– Difficult to maintain and enhance
– Technically demanding

● Recent architectural changes bring hope

05/09/06 4

Development Model

05/09/06 5

Development Model

● Project organization
– Steering Committee → Administrative, political
– Release Manager → Release coordination
– Maintainers → Design, implementation

● Three main stages (~2 months each)
– Stage 1 → Big disruptive changes.
– Stage 2 → Stabilization, minor features.
– Stage 3 → Bug fixes only (driven by bugzilla,

mostly).

05/09/06 6

Development Model

● Major development is done in branches
– Design/implementation discussion on public lists
– Frequent merges from mainline
– Final contribution into mainline only at stage 1

and approved by maintainers
● Anyone with SVN access may create a

development branch
● Vendors create own branches from FSF

release branches

05/09/06 7

Development Model

● All contributors must sign FSF copyright
release
– Even if only working on branches

● Three levels of access
– Snapshots (weekly)
– Anonymous SVN
– Read/write SVN

05/09/06 8

Compiler Infrastructure

05/09/06 9

Source code

<src>

 gcc

 libada

 libcpp

 libdecnumber

 libgfortran

 libgomp

 libiberty

 libmudflap

 libobjc

 libssp

 libstdc++-v3

 boehm-gc
 libffi
 libjava
 zlib

Front/middle/back end
Pre-processor

Stack Smash Protection runtime

Ada runtime

Java runtime

OpenMP runtime

Utility functions and generic data structures

Fortran runtime

Objective-C runtime

C++ runtime

Decimal arithmetic library

Pointer/memory check runtime

05/09/06 10

Compiler pipeline

GENERIC GIMPLE RTL Assembly

Front End Middle End Back End

SSA
Optimizer

Inter
Procedural
Optimizer

C

Fortran

Java

C++

RTL
Optimizer

Final Code
Generation

Call Graph
Manager

Pass
Manager

05/09/06 11

GENERIC and GIMPLE
GENERIC

if (foo (a + b,c))

 c = b++ / a

endif

return c

High GIMPLE

t1 = a + b

t2 = foo (t1, c)

if (t2 != 0)

 t3 = b

 b = b + 1

 c = t3 / a

endif

return c

Low GIMPLE

t1 = a + b

t2 = foo (t1, c)

if (t2 != 0) <L1,L2>

L1:

t3 = b

b = b + 1

c = t3 / a

goto L3

L2:

L3:

return c

05/09/06 12

SSA Form

Static Single Assignment (SSA)

● Versioning representation to
expose data flow explicitly

● Assignments generate new
versions of symbols

● Convergence of multiple
versions generates new one (Φ
functions)

a
1
 = 3

b
2
 = 9

if (i
3
 > 20)

a
3
 = a

1
 – 2

b
4
 = b

2
 + a

3

a
5
 = a

1
 + 1

a
6
 = Φ(a

3
, a

5
)

b
7
 = Φ(b

4
, b

2
)

c
8
 = a

6
 + b

7

05/09/06 13

SSA Optimizers

● Operate on GIMPLE IL
● Around 100 passes

– Vectorization
– Various loop optimizations
– Traditional scalar optimizations: CCP, DCE,

DSE, FRE, PRE, VRP, SRA, jump threading,
forward propagation

– Field-sensitive, points-to alias analysis
– Pointer checking instrumentation for C/C++

05/09/06 14

RTL

● Register Transfer Language
● Assembler for abstract machine with infinite

registers

b = a - 1

(set (reg/v:SI 59 [b])
 (plus:SI (reg/v:SI 60 [a]
 (const_int -1 [0xffffffff]))))

05/09/06 15

RTL

● Abstracts
– Register classes
– Memory addressing modes
– Word sizes and types
– Compare-and-branch instructions
– Calling conventions
– Bitfield operations
– Type and sign conversions

05/09/06 16

RTL Optimizers

● Operate closer to the hardware
– Register allocation
– Scheduling
– Software pipelining
– Common subexpression elimination
– Instruction recombination
– Mode switching reduction
– Peephole optimizations
– Machine specific reorganization

05/09/06 17

Current Status
and

Future Work

05/09/06 18

Current Status

● New Intermediate Representations decouple
Front End and Back End

● Increased internal modularity
● Lots of new features

– Fortran 95, mudflap, vectorizer, OpenMP,
inter/intra procedural optimizers, stack
protection, profiling, etc.

● Easier to modify

05/09/06 19

Future Work

● Static analysis support
– Extensibility mechanism to allow 3rd party tools

● Link time optimizations
– Write intermediate representation
– Read and combine multiple compilation units

● Dynamic compilation
– Emit bytecodes
– Implement virtual machine with optimizing JIT

05/09/06 20

Contacts

● Home page http://gcc.gnu.org/
● Wiki http://gcc.gnu.org/wiki
● Mailing lists

– gcc@gcc.gnu.org
– gcc-patches@gcc.gnu.org
– gcc-help@gcc.gnu.org

● IRC
– irc.oft.net/#gcc

http://gcc.gnu.org/
http://gcc.gnu.org/wiki
mailto:gcc@gcc.gnu.org
mailto:gcc-patches@gcc.gnu.org
mailto:gcc-help@gcc.gnu.org
irc://irc.oft.net/#gcc

